光学集成设备的制作方法

文档序号:6847010阅读:265来源:国知局
专利名称:光学集成设备的制作方法
技术领域
本发明背景发明领域本发明涉及一种光学集成设备和一种信号处理装置。本发明尤其涉及一种光学集成设备,该光学集成设备主要用于光拾取器和光盘装置,和一种使用这种光学集成设备的信号处理装置,该信号处理装置以一种用于光记录介质的信号处理装置为代表。
背景技术
描述

图13示出了传统光学集成设备的构造图。当来自光源91的光束照射到一个光记录介质上时(未示出),该光束的反射光由光接收元件92接收,并且在光接收元件92中产生与该反射光相符的电流。在这种情况下,将一控制信号输入给休眠控制终端95,其中该控制信号使得电流/电压转换放大器93工作。休眠控制电路94响应该控制信号,向电流/电压转换放大器93供电。从而,电流/电压转换放大器93,将各个光接收元件92中产生的电流转换为电压,然后输出该转换后的电压。另一方面,在没有来自光源91的光束照射的情况下,将一个控制信号输入到休眠控制终端95,其中该控制信号使得电流/电压转换放大器93进入低能耗状态(在下文中称为“休眠状态”)。当输入这一控制信号时,休眠控制电路94不再向电流/电压转换放大器93供电。通过执行这些操作,如图13中所示的光学集成设备,当光源91没有运行的时候,使电流/电压转换放大器93进入休眠状态,从而实现能耗的降低。如图13所示的光学集成设备,通过从该光学集成设备的外部输入上述控制信号,来执行休眠控制。
在传统技术中,对光学集成设备执行休眠控制,需要从光学集成设备的外部输入一个控制信号。从而,需要一个用于输入该控制信号的休眠控制终端,导致光学集成设备中终端数量的增加。另一方面,如果不提供休眠控制终端,光学集成设备是保持运行,导致光学集成设备能耗的增加。

发明内容
因此,本发明的目标是提供一种光学集成设备,该光学集成设备,通过执行休眠控制,实现减少终端数目和降低能耗的目的。
为达到上述目标,本发明具有以下特点。具体而言,本发明的第一方面旨在提供一种光学集成设备,包括一个光源,用于将光束照射到光记录介质上;一个第一光接收元件,用于接收来自光记录介质的该光束的反射光,并且根据该反射光输出一个电信号;一个信号处理部件,用于对从第一光接收元件输出的该电信号进行预定处理;和一个连接到一个终端的休眠控制电路,该终端输出一个用于指示光源操作电压的信号,以基于该终端处的电压,控制该信号处理部件处于运行状态,还是处于低能耗状态。
本发明的第二方面在于提供一种光学集成设备,包括一个光源,用于将光束照射到一光记录介质上;一个第一光接收元件,用于接收来自光记录介质的该光束的反射光,并且根据该反射光输入一个电信号;一个信号处理部件,用于对第一光接收元件输出的该电信号进行预定的处理;一个第二光接收元件,用于接收从光源照射的光束,并且输出一个电信号,该电信号用于指示光束的量;和一个休眠控制电路,用于根据从第二光接收元件上输出的该电信号,控制该信号处理部件是处于运行状态,还是处于低能耗状态。
在第二方面中,光学集成设备进一步包括一个电流/电压转换放大器,用于把从所述第二光接收元件输出的所述电信号的电流值转换为电压值。在这种情况下,所述休眠控制电路,根据由电流/电压转换放大器转换的电压值来控制所述信号处理部件是处于运行状态,还是处于低能耗状态。
在第二方面中,光学集成设备进一步包含了一个电流镜电路,用于放大由第二光接收元件输出的所述电信号的电流值,然后把放大的电流值转换为电压值。在这种情况下,休眠控制电路,根据由电流镜电路转换的电压值,控制所述信号处理部件是处于运行状态,还是处于低能耗状态。
在第一方面中,将终端电压和预定的参考电压输入给所述休眠控制电路,并且休眠控制电路包括一个迟滞比较器。
在第二方面中,将幅度与从第二光接收元件输出的所述电信号的电流值成比例的电压,和预定的参考电压输入给所述休眠控制电路,并且休眠控制电路可以包括一个迟滞比较器。
在第一方面中,当在一个预定时间段内,终端电压值持续指示光源没有工作,则所述休眠控制电路可以使所述信号处理部件处于低能耗状态。
在第二方面中,当在一个预定时间段内,从第二光接收元件输出的所述电信号,持续指示光源没有工作,则所述休眠控制电路可以使所述信号处理部件处于低能耗状态。
在第一和第二方面中,典型地,所述休眠控制电路可以使用一个时钟信号来测量所述预定的时间段。
可选地,在第一和第二方面中,光学集成设备可能进一步包含一个带电容的时间测量电路,该电容由终端处的电压充电,该终端输出信号,以指示光源的工作电压。在这种情况下,当该电容的端电压改变为一个低于预定值的电压时,则所述休眠控制电路使所述信号处理部件处于低能耗状态。
在第一和第二方面中,光学集成设备可以进一步包含一个连接到所述休眠控制电路的信号输入端的低通滤波器。
本发明还可以信号处理装置的形式提出,该信号处理装置包括依照第一或者第二方面的光学集成设备,并且对在一个信号处理部件中经过预定处理的信号执行预定的处理。
依照本发明,由于无需从光学集成设备的外部输入控制信号,所以不必为光学集成设备配备一个休眠控制终端。从而,可以减少光学集成设备中的终端数量。此外,由于在光学集成设备内部就能够执行休眠控制,即使是一个没有休眠控制终端的光学拾取器,也能够在光学集成器中执行休眠控制,因此可以降低待机能耗。
由以下结合附图对本发明的详细描述,本发明的这些和其他目的、特性、方面和优势将会变得清楚明了。
附图简述图1示出依照第一实施例的光学集成设备的构造图;图2示出具有休眠控制电路4的光学集成设备示意图,其中该休眠控制电路4由晶体管构成;图3A和图3B描述了迟滞比较器的工作;图4示出依据第二实施例的光学集成设备构造图;图5示出在第二实施例中的休眠控制电路的输入和输出信号;图6示出在第二实施例的变型中,时间测量电路5和休眠控制电路4的输入和输出信号;图7是依照第三实施例的光学集成设备的构造图;图8是依照第四实施例对光学集成设备的构造图;图9是依照第一实施例的变型的光学集成设备的构造图;图10是依照第二实施例的变型的光学集成设备的构造图;图11是依照第三实施例的变型的光学集成设备的构造图;图12是依照第四实施例的变型的光学集成设备的构造图;并且图13是一个传统的光学集成设备的构造图。
优选实施例的描述(第一实施例)下面,描述依照本发明第一实施例的光学集成设备。图1是依照第一实施例的光学集成设备的构造图。在图1中,光学集成设备包括光源1,光接收元件2,电流/电压转换放大器3,和一个休眠控制电路4。如图1所示的光学集成设备,典型地应用于用以读出记录在光记录介质上的信息的光盘装置中。光源1是一个半导体激光器,并且将一光束照射到一光记录介质上(未示出)。注意,作为光源1的半导体激光器的阴极终端接地到GND。光接收元件2是一个光电二极管,并且从光记录介质接收该光束的反射光。在图1中,可以配备多个光接收元件2;然而也可以配备任何数量的光接收元件2。电流/电压转换放大器3的数目等同于光接收元件2的数目。每个电流/电压转换放大器3的一个输入终端连接到每个光接收元件2的阴极,并且将一个预定参考电压输入到每个电流/电压转换放大器3的另一个输入终端。休眠控制电路4具有连接到光源1的正极的输入终端,并且一个输出终端连接到每个电流/电压转换放大器3。特别是,休眠控制电路4的输出终端连接到一个包括在电流/电压转换放大器3中的运算放大器的电源终端。
以下将描述如图1中所示的光学集成设备的操作情况。基于光源1的工作状态,休眠控制电路4确定,是使电流/电压转换放大器3处与运行状态,还是处于休眠状态。具体地,当光源1工作时,休眠控制电路4使得电流/电压转换放大器3处于运行状态,而当光源1不工作时,休眠控制电路4也会使电流/电压转换放大器3处于休眠状态。在第一实施例中,休眠控制电路4测量半导体激光器两端的电压。注意,尽管根据半导体激光器类型等,正在运行的半导体激光器的终端之间的电压会发生变化,红色激光器具有大约2.5到3伏特的电压,红外线激光器具有大约2伏特的电压。如果半导体激光器终端之间的电压是这样的值,则休眠控制电路4判断该半导体激光器是正在运行,并且使电流/电压转换放大器3处于运行状态。另一方面,如果半导体激光器终端之间的电压没有达到这样的值,则休眠控制电路4确定半导体激光器没有运行,并且因此使电流/电压转换放大器3处于休眠状态。
具体地,将光源1的阳极终端11的电压输入到休眠控制电路4。如果终端11的电压等同于或者高于一个预定的阀值,则休眠控制电路4向电流/电压转换放大器3供电,如果终端11的电压小于该预定的阀值,则休眠控制电路4就不向电流/电压转换放大器3供电。将该预定的阀值设定在低于光源1运行状态下的阳极电压值,而高于光源1不工作状态下的阳极电压值。更具体而言,该预定阀值优选设定为低于半导体激光器运行时的电压的20%到30%,其中该半导体激光器作为光源1。
当包括在光盘装置中的光学拾取器处于运行状态时,光源1也处于运作状态,并且因此将一个特定的电压施加给光源1的阳极终端11。因此,终端11的电压高于上述的预定阀值,从而,休眠控制电路4确定光源1处于运作状态,并且允许每个电流/电压转换放大器3运行。因此,由于接收到来自光源1的光束的反射光,光接收元件2产生电流,该电流被电流/电压转换放大器3转换为电压。转换为电压的信号是光学集成设备的输出。在另一个实施例中,电流/电压转换放大器3可以是其它类型的信号处理电路。实现休眠控制的电路可以是任何电路,只要这个电路是对由光接收元件2中产生的信号执行某种信号处理。
当包括在光盘装置中的光学拾取器没有处于运行状态时,光源1也没有处于运作状态,并且因此光源1两端的电压是0。因此,终端11的电压小于上述的预定阀值,因此休眠控制电路4确定光源1没有处于运作状态,并且因此使每个电流/电压转换放大器3处于休眠状态。在这种情况下,由于不向电流/电压转换放大器3供电,可以降低电流/电压转换放大器3的能耗。
休眠控制电路4的一个具体构造例子,例如包括一个比较器。在这种情况下,设定该比较器使之根据上述的预定阀值切换输出。
可选择地,休眠控制电路4可以包括一个晶体管。图2是示出了带有由晶体管组成的休眠控制电路4的示例性光学集成设备。在图2中,休眠控制电路4包括一个电流源13,一个休眠控制电路输入晶体管14,和一个电流镜电路15,用于控制电路电流。电流源13向电流镜电路15供应一参考电流I1,并且连接到休眠控制电路输入晶体管14的发射端。输出端等同于电流/电压转换放大器3的数量的电流镜电路15,被连接到休眠控制电路输入晶体管14的集电极。此外,终端11被连接到休眠控制电路输入晶体管14的基极。注意,在图2所示的构造中,一个用于提供电路电流的电流镜电路17被连接到休眠控制电路4的输出端。
在图2显示的构造中,休眠控制电路输入晶体管14的发射极电压如下设定(发射极电压)=(控制参考电压VTH)-(晶体管基极和发射极之间的电压),其中控制参考电压VTH为图2中示出的终端16处的电压。在发射极电压以如此方式设定的情况下,休眠控制电路4的操作如下。具体而言,当光学集成设备进入运行状态后,终端11的电压升高。然后,当终端11的电压达到控制参考电压VTH或者更高时,休眠控制电路输入晶体管14工作,参考电流I1从电流镜电路15流过。因此,通过电流镜电路17,将电流I1提供给每一个电流/电压转换放大器3。在另一方面,当光学集成设备没有处于运行状态,终端11的电压小于控制参考电压VTH,并且由此休眠控制电路输入晶体管14关闭。从而,电流不会流经电流镜电路15,并且因此电流/电压转换放大器3进入休眠状态。
除了由比较器和图2所示的电路组成的电路外,休眠控制电路4可以按照如下构造。具体而言,在另一个将晶体管用在休眠控制电路4的输入端的例子中,可以使用一种电路,该电路可,通过改变使用电阻器的电流镜电路15和电流镜电路17的镜比率(mirror ratios),提供n倍于原始电流的电流。可选地,休眠控制电路输入晶体管14可以由PNP晶体管组成,其中,当半导体激光的输出端关闭时,输入晶体管工作,并且使该电路提供的电流通过休眠电路,从而阻止休眠电路的电流供应。
如上所述,根据第一实施例,由于休眠控制电路4的输入连接到光学集成设备内部,所以无需为控制该休眠电路4配备一个控制终端,从而得以减少光学集成设备中的终端数量。此外,由于休眠控制电路4能够在光学集成设备内部加以控制,因而无需在光学集成设备外部产生一个控制信号。
在光学拾取器中,当回放一个光记录介质记录的信息时,一个不影响光学集成设备信号的高频信号(比如,300MHz),叠加到输入到激光器的信号上。因此,终端电压VLD+可能受到影响,并改变大约0.2(V)。由于这一改变,休眠控制电路4可能发生故障。为防止这种故障的发生,可以使用一个迟滞比较器用为休眠控制电路4。
图3A和3B是描述迟滞比较器的图示。注意,在这个例子中,如图3A所示的比较器的输入终端18,用作休眠控制电路4的输入终端,同时,输出终端20用作休眠控制电路4的输出终端。此外,将预定的阀值电压VTH施加给比较器的输入终端19上。此时如果比较器的输入电压VIN逐步升高,比较器的输入和输出关系就具有如图3B中曲线B显示的特性。在这种情况下,在输入电压VIN=VTH2的点处,比较器的输出为高。另一方面,如果半导体激光器从运行状态转换为关闭状态,比较器的输入和输出关系,就有如同图3B中曲线A显示的特性。在这种情况下,在输入电压VIN=VTH1的点处,比较器的输出为低。在将具有上述迟滞的比较器用作休眠控制电路4的情况下,通过将VTH1和VTH2之间的势差,设定为等于或者大于由高频信号叠加而产生的电压变化值,则休眠控制可以正确地执行,而不会使休眠控制电路4受到高频信号叠加的影响。
在另一个防止由高频信号叠加而引起的故障的例子中,可以采取一种使用低通滤波器的方法。具体而言,将一个低通滤波器插入到终端11和休眠控制电路4的输入端之间。在这个例子中,将低通滤波器的截止频率设定在不受高频信号叠加影响的频率上。例如,如果叠加了一个300(MHz)的高频信号,则截止频率设定为1(MHz)。使用这种低通滤波器也可防止休眠控制电路4受到高频信号叠加的影响,从而得以防止休眠控制电路4发生故障。注意,在第二到第四实施例中(后面描述),也在休眠控制电路4的输入端配备有一个低通滤波器。
(第二实施例)下面描述依据本发明第二实施例的光学集成设备。依据第二实施例的光学集成设备旨在,当由于外部因素,半导体激光器的驱动电压暂时降低时,防止电流/电压转换放大器3进入休眠状态,或者发生故障等。
图4示出了依据第二实施例的光学集成设备的构造图。在图4中,光学集成设备,除了具有图1中示出的各个组件外,还进一步包括一个时间测量电路5。注意,在图4中,与图1中所示相同的组件由相同的附图标记指示,并且略去对其的描述。
在图4中,时间测量电路5与休眠控制电路4连接。时间测量电路5向休眠控制电路4输出具有预定周期的时钟信号。在第二实施例中,当终端11的电压VLD+低于预定的阀值时,如果预定数目或者更多的时钟信号的脉冲被输入给休眠控制电路4,则休眠控制电路4停止向电流/电压转换放大器3供电。
图5示出在第二实施例中休眠控制电路4的输入和输出信号。在图5中,顶部的线条表示来自终端11的输入信号,中间的线条表示来自时间测量电路5的输入信号,底部的线条表示输出到电流/电压转换放大器3的信号。如图5中所示,休眠控制电路4,根据来自终端11的输入信号和来自时间测量电路5的输入信号,改变输出信号。具体而言,当来自终端11的输入信号电压低于预定的阀值时,如果预定数目或者更多的时钟信号脉冲被输入到休眠控制电路4,则休眠控制电路4使输出信号恢复为低电平。电流/电压转换放大器3响应该恢复为低电平的输出信号,进入休眠状态。
如上所述,根据第二实施例,只有当终端11的电压VLD+低于预定的阀值时,且仅当持续一预定时间段(在这个时间段中,预定数目的时钟信号脉冲被输入到休眠控制电路4)后,电流/电压转换放大器3才进入休眠状态。因此,通过适当地设定预定时间段,可以防止由于受外部因素影响,半导体激光器的驱动电压暂时降低而导致的电流/电压转换放大器3转移到休眠状态,或者发生故障等。
在第二实施例中,输出时钟信号的时间测量电路5可以用由电容器和电阻器组成的时间常数电路来配置。在这种情况下,将终端11处的电压输入到时间常数电路,并将时间常数电路的输出信号输入给休眠控制电路4。时间常数电路监控光源1的终端电压,并且当半导体激光器运行的时候,在电容器中积累电荷,当半导体激光器不运行时,释放电容器中的电荷。
图6示出,如上情况下,时间常数电路和休眠控制电路4的输入和输出信号。图6示出时间测量电路5和依据第二实施例的变型的休眠控制电路4的输入和输出信号。在图6中,顶部的线条表示从终端11输入到时间测量电路5的信号,中部的线条表示从时间测量电路5输入到休眠控制电路4的信号,底部的线条显示从休眠控制电路4输出到电流/电压转换放大器3的信号。如图6所示,当半导体激光器没有运行时,释放掉在电容器中积累的电荷,并且电容器的终端电压随着时间降低。如果半导体激光器在一个预定时间段内持续不运行,导致电容器的终端电压降低,并且由此低于预定的阀值,则休眠控制电路4使时间常数电路处于休眠状态。注意,利用包含在时间常数电路中的电容器和电阻器,可以将时间常数电路中电容器的终端电压低于预定阀值的时间,设定为任意想要的值。通过以上描述的构造也可以达到第二实施例的优势。
(第三实施例)以下描述根据本发明第三实施例的光学集成设备。依据第三实施例的光学集成设备,通过监测来自光源1的光束,而不是通过监测光源1两端的电压,来实现休眠控制。图7示出依据第三实施例的光学集成设备的构造图。在图7中,光学集成设备,除了图1中所示的部件外,进一步包括一个用于探测激光束的光接收元件6和一个电流/电压转换放大器7。光接收元件6是一个光电二极管,而且光接收元件6的阴极连接到电流/电压转换放大器7的一个输入终端。在第三实施例中,休眠控制电路4的一个输入终端连接到电流/电压转换放大器7的一个输出终端,而不是终端11。除了这些不同之外,依据第三实施例的光学集成设备的构造与图1所示相同,因此在图7中如图1所示的同样的部件用同样的附图标记示出,并且略去对其的描述。
在图7中,光接收元件6接收来自光源1的光束,从而产生电流。产生的电流,由电流/电压转换放大器7转变为电压。注意,电流/电压转换放大器7和电流/电压转换放大器3有着同样的构造。在第三实施例中,休眠控制电路4,根据电流/电压转换放大器7输出的电压值,决定是否使电流/电压转换放大器3处于休眠状态。具体而言,如果电流/电压转换放大器7输出的电压值等于或者高于预定的阀值,休眠控制电路4为电流/电压转换放大器3供电,并且使电流/电压转换放大器3处于运行状态。另一方面,如果电流/电压转换放大器7的输出电压低于预定的阀值,休眠控制电路4停止为电流/电压转换放大器3供电,并且使电流/电压转换放大器3处于休眠状态。
如上所述,依据第三实施例,以及第一实施例,休眠控制电路的输入端连接到光学集成设备的内部。因此,无需为控制该休眠控制电路4配备一个控制终端,从而得以减少光学集成设备中的终端数量。此外,由于休眠控制电路4能够在光学集成器内部加以控制,从而无需从光学集成设备的外部产生一个控制信号。
在第三实施例中,休眠控制电路4也可以具有与第一实施例相同的构造。此外,依据第三实施例的光学集成设备可以进一步包括一个第二实施例中所示的时间测量电路。
(第四实施例)以下描述依据本发明第四实施例的光学集成设备。依据第四实施例的光学集成设备,使用一个电流镜电路,来代替第三实施例中的电流/电压转换放大器7。图8示出了依据第四实施例的光学集成设备的构造图。在图8中,光学集成设备有一个电流镜电路8,来代替图7中所示的电流/电压转换放大器7。除了这一不同之外,依据第四实施例的光学集成设备的构造与图7所示相同,因此,在图8中与图7所示相同的部件用相同的附图标记标出,并且略去对其的描述。
在图8中,当探测激光束的光接收元件6,接收到来自半导体激光器的光束,并且由此产生电流时,R4/R5倍于所产生的该电流的电流,流经电流镜电路8的电阻器R6。在第四实施例中,休眠控制电路4,根据电阻器R6两端的电压值,确定是否使电流/电压转换放大器3处于休眠状态。具体而言,如果电阻器R6两端的电压值等于或者低于预定阀值,休眠控制电路4确定光源1没有运行,并由此使电流/电压转换放大器3处于休眠状态。另一方面,如果电阻器R6两端的电压值高于预定的阀值,休眠控制电路4,确定光源1正在运行,并且由此使得电流/电压转换放大器3处于运作状态。注意,尽管光接收元件6的输出电流为R4/R5倍于原始电流,优选地,将该相乘因子设定为,使得电流镜电路8不会在电阻器R6上所产生的电压处饱和。
如上所述的第四实施例也具有第三实施例所达到的优势。注意,休眠控制电路可以具有与第一实施例同样的构造。此外,依据第四实施例的光学集成设备可以进一步包括第二实施例中所示的时间测量电路。
(变型)前述第一到第四实施例描述的是有单个信号光源的例子。在其他实施例中,可能配备有多个光源。以下描述具有多个光源的实施例,作为前述第一到第四实施例的变型。
图9示出了依据第一种实施例变型的光学集成设备的构造图。在图9中,光学集成设备包括两个可以照射不同波长激光束的光源1A和1B。在图9中,如果光源1A或者光源1B中的任意一个处于运行中,电流/电压转换放大器3就需要进入运行状态。因此,休眠控制电路4监测光源1A的电压值VLD1+和光源1B的电压值VLD2+。然后,如果VLD1+和VLD2+的电压值都低于预定阀值,休眠控制电路4使电流/电压转换放大器3处于休眠状态。另一方面,如果VLD1+或者VLD2+的电压值等于或者高于预定的阀值,休眠控制电路4使电流/电压转换放大器3处于运行状态。
图10示出依据第二实施例变形的光学集成设备的构造的图。在图10中,光学集成设备包括两个可以照射不同波长激光束的光源1A和1B。在图10中,与图9中一样,如果光源1A或者光源1B中任意一个处于运行状态,电流/电压转换放大器3需要进入运行状态。因此,当VLD1+和VLD2+的电压值都低于预定的阀值时,同时预定数目或者更多的时钟信号脉冲从时间测量电路5输入,则休眠控制电路4使电流/电压转换放大器3处于休眠状态。另一方面,如果VLD1+或者VLD2+的电压值等于或者高于预定阀值,休眠控制电路4使电流/电压转换放大器3处于运行状态。
图11示出了依据第三实施例变型的光学集成设备的构造的图。在图11中,光学集成设备包括两个可以照射不同波长激光束的光源1A和1B。此外,光学集成设备还包括一个用于接收来自光源1A的光束的光接收元件6A,一个用于接收来自光源1B的光束光接收元件6B。光接收元件6A和6B各自的阴极连接到电流/电压转换放大器7的一个输入终端。在图11中,与在图9中相同,如果光源1A或者光源1B处于运行状态,则电流/电压转换放大器3需要进入运行状态。当光接收元件6A或者6B中之一接收到激光束时,从电流/电压转换放大器7输出的电压值等于或者高于预定的阀值。当光接收元件6A和6B都没有接收到激光束时,从电流/电压转换放大器7输出的电压值低于预定的阀值。因此,在图11中,将休眠控制电路4配置成执行与第三实施例相同的操作。
图12示出依据第四实施例变形的光学集成设备的构造的图。在图12中,光学集成设备包括与如图8所示构造相同的电流镜电路8,以代替图11中所示的电流/电压转换放大器7。除这点不同之外,其构造与图11所示相同。因此,在图12所示的构造中,与图11所示相同,如果光源1A或者光源1B处于运行状态,则控制电流/电压转换放大器3处于运行状态,如果光源1A和光源1B都没有处于运行状态,则控制电流/电压转换放大器3处于休眠状态。
注意,尽管图9到图12描述了具有两个光源的情况,还可以设置三个或者更多的光源。在有三个或者四个光源的情况中,与上述情况相同,当所有光源都没有处于运行状态时,控制电流/电压转换放大器3处于休眠状态,当任意一个光源处于运行状态时,控制电流/电压转换放大器3处于运行状态。
通过将依据第一到第四实施例的任意一个光学集成设备与一个用于对来自该光学集成设备的输出信号进行预定的信号处理的信号处理部件结合在一起,可以配置一个信号处理装置。例如,通过使用一个来自光学集成设备的输出信号,信号处理部件执行对一个光记录介质上的信息的回放,当回放该光记录介质上的信息时,执行跟踪控制和聚焦控制,或者对用于写入该光记录介质的控制信号进行处理。
如上所述,依据本发明,可以实现休眠控制,而无需从光学集成设备外部输入控制信号。从而,得以减少光学集成设备中的终端数目。此外,通过对光学拾取器中的光学集成设备进行最优的休眠控制,甚至无需休眠控制终端,就可以实现节能。
依据本发明的光学集成设备可以,通过执行休眠控制,减少终端数量,或者降低能耗。
虽然以上详细描述了本发明,但是以上描述从各个方面讲都是说明性的,而非限制性的。应当理解,在不脱离本发明的范围的前提下,可以设计出各种其他的修改和变型。
权利要求
1.一种光学集成设备,包括一个用于将光束照射到光记录介质上的光源;一个第一光接收元件,用于接收来自光记录介质的该光束的反射光,并根据该反射光输出一电信号;一个信号处理部件,用于对由第一光接收元件输出的电信号进行预定处理;和一个休眠控制电路,连接到一个终端,该终端输出一个用于指示该光源运行电压的信号,该休眠控制电路,根据该终端的电压,控制该信号处理部件处于运行状态,还是使之处于低能耗状态。
2.如权利要求1所述的光学集成设备,其中将所述终端电压和一个预定参考电压输入给所述休眠控制电路,并且所述休眠控制电路包括一个迟滞比较器。
3.如权利要求1所述的光学集成设备,其中当所述终端电压值在一个预定时间段内持续指示所述光源没有运行时,所述休眠控制电路使所述信号处理部件处于低能耗状态。
4.如权利要求3所述的光学集成设备,其中所述休眠控制电路用一个时钟信号来测量所述预定的时间段。
5.如权利要求3所述的光学集成设备,进一步包括一个具有电容器的时间测量电路,该电容器由所述终端电压充电,其中,当该电容器的终端电压低于一预定的阀值时,所述休眠控制电路使所述信号处理部件处于低能耗状态。
6.如权利要求1所述的光学集成设备,进一步包括一个与所述休眠控制电路的信号输入端相连的低通滤波器。
7.一个光学集成设备,包括一个用于将光束照射到光记录介质上的光源;一个第一光接收元件,用于接收来自光记录介质的该光束的反射光,并且依据该反射光输出一电信号;一个信号处理部件,用于对由第一光接收元件输出的电信号进行预定的处理;一个第二光接收元件,用于接收由该光源照射的光束,并且输出用于指示光束量的电信号;和一个休眠控制电路,用于根据从该第二光接收元件输出的电信号,控制该信号处理部件处于运行状态,还是使之处于低能耗状态。
8.如权利要求7所述的光学集成设备,进一步包括一个电流/电压转换放大器,用于将由所述第二光接收元件输出的电信号的电流值转换为电压值,其中所述休眠控制电路,根据由电流/电压转换放大器转换的电压值,控制所述信号处理部件处于运行状态,还是使之处于低能耗状态。
9.如权利要求7所述的光学集成设备,进一步包括一个电流镜电路,用于对所述第二光接收元件输出的所述电信号的电流值进行放大,并且将放大后的电流值转换为电压值,其中所述休眠控制电路,根据由该电流镜电路转换的电压值,控制所述信号处理部件处于运行状态,还是使之处于低能耗状态。
10.如权利要求7所述的光学集成设备,其中将电压幅度与从所述第二光接收元件输出的电信号的电流值成比例的电压,和一个预定参考电压输入该所述休眠控制电路,而且所述休眠控制电路包括一个迟滞比较器。
11.如权利要求7所述的光学集成设备,其中当在一预定的时间段内,由所述第二光接收元件输出的电信号持续指示所述光源没有处于运行状态时,所述休眠控制电路使所述信号处理部件处于低能耗状态。
12.如权利要求11所述的光学集成设备,其中所述休眠控制电路使用一个时钟信号来测量所述预定时间段。
13.如权利要求11所述的光学集成设备,进一步包括一个带有电容器的时间测量电路,该电容器由一个终端电压充电,该终端用于输出指示所述光源运行电压的信号,其中当该电容器的终端电压低于预定值时,所述休眠控制电路使所述信号处理部件处于低能耗状态。
14.如权利要求7所述的光学集成设备,进一步包括一个连接到所述休眠控制电路的输入端的低通滤波器。
15.一种信号处理器,包括一个用于将光束照射到一光记录介质上的光源;一个第一光接收元件,用于接收来自光记录介质的该光束的反射光,并且根据该反射光输出一电信号;一个信号处理部件,用于对由该第一光接收元件输出的电信号执行第一预定处理;和一个休眠控制电路,连接到用于输出表示该光源运行电压的信号的终端,该休眠控制电路,根据该终端电压控制使该信号处理部件处于运行状态,还是使之处于低能耗状态,其中对经历了第一预定处理的信号执行第二预定处理。
16.一个信号处理装置,包括一个用于将光束照射到一光记录介质上的光源;一个第一光接收元件,用于接收来自光记录介质的该光束的反射光,并且根据该反射光输出一电信号;一个信号处理部件,用于对由该第一光接收元件输出的电信号执行第一预定处理;一个第二光接收元件,用于接收由该光源照射的光束,并且输出一个用于指示该光束量的电信号;以及一个休眠控制电路,用于根据该第二光接收元件输出的该电信号,控制使该信号处理部件处于运行状态,还是使之处于低能耗状态,其由对经历了第一预定处理的信号执行第二预定处理。
全文摘要
一个光学集成设备包括一个光源,一个光接收元件,一个信号处理部件,和一个休眠控制电路。光源将光束照射到一个光记录介质上。该光接收元件接收来自光记录介质的该光束的反射光,并且根据该反射光输出一电信号。该信号处理部件对从光接收元件输出的电信号进行预定处理。该休眠控制电路连接到一个输出表示该光源的运行电压的信号的终端上,并且根据该终端电压控制是使该信号处理部件处于运行状态,还是使之处于低能耗状态。
文档编号H01S5/00GK1638216SQ20051000371
公开日2005年7月13日 申请日期2005年1月6日 优先权日2004年1月7日
发明者江崎伸也, 谷口正记 申请人:松下电器产业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1