调制用于形成二维图象的入射光束的方法和装置的制作方法

文档序号:2771685阅读:200来源:国知局
专利名称:调制用于形成二维图象的入射光束的方法和装置的制作方法
技术领域
本发明涉及一种调制用于形成二维图象的入射光束的方法和装置。更具体地讲,本发明涉及实现这种调制的条形衍射光栅。
现在有许多关于通过改变光的振幅、频率或相位等等而调制光束的器件的申请。例如,这样的器件有如

图1所示的反射可变形光栅光调制器10。这种调制器10由Bloom等人在美国专利5311360中提出。该调制器10包括多个等间隔可变形的反射条18,这些反射条悬浮在具有反射表面部分的基板16上方。硅基板16上沉积有绝缘层11。然后沉积要去除的二氧化硅膜12和低应力的氮化硅膜14。氮化硅膜14有一定图案以形成条形区18,并刻蚀二氧化硅层12的部分区域以使得条形区18被氮化物框架20支撑在氧化物间隔层12上。为了调制单波长λ0的光,将调制器设计成条形区18的厚度和氧化物间隔区12的厚度都等于λ0/4。
该调制器10的光栅振幅被定义为条形区18的反射表面22与基板16反射表面之间的垂直距离d,该振幅受施加在条形区18(条形区16的反射表面22作为第一电极)与基板16(基板16下面的导电膜24作为第二电极)之间电压控制。在其未变形状态下,不施加电压,光栅振幅为λ0/2,而且在条形区与基板之间反射的光其全部光程差为λ0,致使反射光的相位增加。因此,在未变形状态下,调制器10作为平面反射镜反射光。未变形状态表示在图2中,其中入射和反射光由26表示。
当在条形区18与基板16之间施加适当电压时,静电力使条形区18变形为与基板16表面相接触的下位置。在下位置,光栅振幅变为等于λ0/4。全部光程的差为二分之一波长,致使变形条形区18表面的反射与基板16的反射发生有害的干涉。这种干涉的结果是,调制器衍射入射光26。图3中表示了该变形状态,衍射光的+/-1级衍射模(D+1,D-1)分别用于28和30表示。
为了在条形区18的下方产生空隙,在湿处理过程中完成条形区18与基板16之间的粘附,已经发现这些器件在调制器10工作期间有问题。已经提出了许多减小粘附工艺,包括冻结干刻,干刻丙酮光致抗蚀剂去除层,OTS单层处理,用较短条形区和/或张力氮化物膜构成硬质条形区,使一个或两个表面粗糙化或起皱,在条形区的下方形成插入轨道,改变表面的化学性质。Sandejas等人在“用于高分辨率显示的可变形光栅光阀的表面微加工”中,以及Apte等人在“用于高分辨率显示的光束光阀”(固态传感器和执行器制作所,Hilton HeadIsand,SC June 1994)中证实可通过减小接触面积来防止这种粘附,而减小接触面积是通过在凸脊下方形成插入轨道,和采用粗糙的多晶硅膜实现的。
而且,如Apte等人判明的,调制器10的机械操作特性在条形区18变形时,作为所加电压的函数是有迟滞的。迟滞的理论原因是条形区18与基板16之间的静电吸引力与变形量呈非线性函数关系,而条形区18的刚性和应力所产生的恢复力基本是线性函数。图4表示一个仿真迟滞特性,其中光输出(条形区变形量的间接体现)表示在垂直轴上,而条形区18和基板16之间的电压表示在水平轴上。于是,当条形区18变形到与基板16接触的下位置时,需要比原始施加单元小的保持电压,使它们适当贴合。
Bloom等人在美国专利US.5,311,360中教导,这种贴合特性是需要的,因为它使调制器10获得不需有源器件而具有有源矩阵设计的优点。此外,Bloom等人教导,该贴合特性在可用能源的充分利用很重要的低功率应用场合也是需要的。但是,为证明粘附问题,Bloom等人教导,在条形区18的下面加上一些小凸脊,以减小接触面积,且从而减小粘附问题。但是由于调制器10的基板用作光学表面,因需要使基板16的反射部分平滑而具有高反射率并且要处在平行于条形区18的一个平面内的缘故,在表面上添加小凸脊的制作工艺较为复杂。
传统的显示器由二维象素阵列构成。大量象素形成的离散图象集中到人眼中,形成代表一个完整图象的象素组合。不幸的是,由于形成整个阵列需要重叠每个象素,致使制造每个同样象素的成本要叠加,所以这种显示系统的成本很高。这种象素型显示器的例子是电视和计算机监视器。其象素可以由液晶显示器件,或阴极射线管构成。
所以需要采用衍射光阀使反射元件与基板的粘附减小或消除,而无需借助于减小这种粘附所需的复杂表面处理。
而且需要一种在不降低图象质量的情况下,通过减少构成系统所需象素的数量而减少制造成本的显示器。
本发明涉及一个衍射光栅光阀和用其调制入射光束形成二维图象的方法。该衍射光栅光阀包括多个长条元件,其每个长条元件都有一个反射表面。这些长条元件基本彼此平行地悬浮在基板的上方,且其各自的端部受到支撑并基本对准,以此形成一列相邻的反射表面(GLV阵列)。根据显示单元对这些长条元件进行分组。通过施加电压,各组彼此交替地相对于基板可发生变形。每个变形长条元件的近似平面中心部分基本平行于每个未变形元件的中心部分,且彼此间隔开预定的距离。将该预定距离选择为近似等于未变形反射表面与基板间距离的三分之一至四分之一,以使变形的长条元件不与基板的表面接触。避免与基板的接触可防止该长条元件与基板之间的吸附。此外,限制这个预定距离还可避免在长条元件变形过程中的迟滞。
入射到该列相邻的反射表面上的光束从交替的一组未变形长条元件反射出来。且该光束被交替的一组变形长条元件所衍射。一定时间内按组的反射与衍射比率确定了相应显示单元的显示强度。在该光束按时间交替依次为红、绿和兰。在另一个实施例中,该光束为白光,且每个显示单元的长条元件的宽度被选择为在适当的衍射角方向衍射红、绿或兰光波长。根据各个显示单元所要表示的图象,在各个期间形成每个显示单元的适当强度与颜色。
从该列反射表面衍射的光由一个透镜汇集起来。在该透镜的出瞳处,光束为柱形的,并代表一列所要表示的图象。一个具有跨过一列图象的预定宽度狭缝的遮光罩位于第二透镜的出瞳处,以使得仅仅选出部分的光透过该狭缝。遮光罩的这种布置防止了由第一透镜汇集的非该长条元件近似平面中心部分衍射的光透过该狭缝。在另一个实施例中,一个固定的反射表面位于长条元件端部的上方,以防止光从每个长条元件的非近似平面的中心部分衍射出来。一个旋转反射表面(扫描反射镜)安置在透镜的与遮光罩相反一侧,以使透过狭缝的光进入目镜或入射到显示屏上。反射表面前后转动,并与该列显示单元对光的调制同步,以表示出显示的图象列。因此,二维彩色图象被扫入目镜和扫到显示屏幕上。旋转扫描反射镜可以用其他类型的反射镜构件代替,如多面转镜。
图1表示现有技术的反射可变形光栅光调制器。
图2表示现有技术的反射可变形光栅光调制器在未变形状态下反射入射光的情况。
图3表示现有技术的反射可变形光栅光调制器在变形状态下衍射入射光的情况。
图4表示现有技术的反射可变形光栅光调制器的迟滞曲线。
图5-6和8是表示用于制造本发明直列衍射光栅光阀(GLV)方法工序的侧视图。
图7是表示用于制造本发明直列衍射光栅光阀(GLV)方法工序的顶视图。
图9是表示本发明直列衍射光栅光阀的侧视图。
图10是表示对应于一个显示单元的含有六个长条元件的GLV的部分顶视图。
图11是表示具有未变形而反射入射光的六个长条元件的GLV显示单元的前视图。
图12是表示本发明GLV变形的长条元件的侧视图。
图13是表示具有交替变形而衍射入射光的六个长条元件的GLV显示单元的前视图。
图14是表示使用GLV的光学显示系统的顶视图。
图15是表示沿着线段C-C’剖开图14所示光学显示系统的侧视图。
图16是表示一个用于包括出瞳的图14所示光学显示系统的目镜装置的侧剖图。
图17是表示一个用于包括出瞳的图14所示光学显示系统的显示屏装置的侧剖18表示了本发明的另一个实施例,它用于避免显示不是从长条元件的近似平面中心区衍射出来的光。
图5-6表示了用于制造本发明直列衍射光栅光阀(GLV)方法工序的侧视图。参考图5,在硅基板100上形成一绝缘层。优选地,该绝缘层是一个包括通过热氧化而形成的场氧化层102和形成在场氧化层上的氮化硅薄层104的复合层。然后,在氮化硅层104上形成导电层106。优选地,该导电层106是一种耐热金属,如钨,钼,钨钛或钽,或者其他的导电多晶硅或扩散导体。该导电层106用作为GLV选出的长条元件施加偏置电压的下电极。在另一个实施例中,导电层106被形成在基板100的下表面上。
接下来,在该导电层106上形成一个将被去除的层108。该去除层108相对于导电层106必须可以被选择地刻蚀。优选地,该去除层108是一层可用二氟氖干刻的多晶硅。另外,去除层108可以是一层掺杂玻璃,如硼磷硅酸盐玻璃或磷硅酸盐玻璃。去除层108的厚度可以由导电层106与形成在去除层108上的长条元件之间距离确定。如本文将要说明的,去除层108的厚度明显不同于以前的光调制器,以前的光调制器去除层108要厚得多。在优选实施例中,去除层108的厚度近似等于预期的入射波长。例如,如果预期入射波长在可见光波段(近似为450-760nm),则去除层108的厚度也在这个范围。如果预期波长在紫外波段(近似为200-450nm),则去除层108的厚度便在该范围中。如果预期波长在红外波段(近似为760-2000mm),则去除层108的厚度也在此范围中。
参见图6,用已知技术对导电层106和去除层108进行光刻掩膜,然后通过干刻或化学湿刻法依次进行刻蚀,为GLV的每个长条元件形成一对支撑孔110。优选地,形成的支撑孔110彼此间距大约为75微米,尽管其他间距也可以。为了说明的目的,层102-108的视在厚度大于支撑孔110之间的距离。
图7表示的是支撑孔110已经如上所述刻蚀完成之后的GLV顶视图。为了便于说明,图7表示了一列六对支撑孔,每对支撑孔对应一个GLV长条元件。在优选实施例中,GLV包括更多对的支撑孔110。例如,1920对支撑孔110可以对应于按直列阵排布的1920个长条元件。
参见图8,在去除层108和支撑孔110上方形成一个弹性材料层112,部分或全部地填充支撑孔110。优选地,弹性材料层112是一层氮化硅,该层有一定沉积厚度,并且有剩余应力,该剩余应力是由每个长条元件在被施加足够大反极性偏置以抵销其处于下状态位置所加偏置产生静电力之后而返回到其上状态所必需弹性力定义的。接下来,在弹性层112上沉积反射层114。该反射层114为GLV的每个长条元件提供了反射表面,并作为选择GLV某个长条元件所施加偏置电压的上电极。优选地,反射层114是溅镀的铝。
最后,将光致抗蚀剂层118按选择的图案涂覆在反射层114和弹性层112上,以形成长条元件。此外,刻蚀去除层108,去除长条元件下方的空间。
图9表示了未变形状态时GLV长条元件200的侧视图。注意,在图9中,长条元件200下方的去除层108(图5,6和8)被空间202代替了。于是,长条元件200是悬空的,其端部在基板表面(包括其结构层)的上方。此外,光致抗蚀剂层118(图8)已经被除去了。
图10表示了有六个长条元件200的一部分GLV的顶视图。应注意,长条元件200具有相等的宽度并且彼此平行排布。长条元件200海可以彼此间隔开一个很小的间隔,以使每个长条元件200可以从其他长条元件中被选出发生变形。图10中表示的六个长条元件200适宜对应于一个显示单元300。于是,一列1920个长条元件对应于具有320个排成一列的显示单元的GLV阵列。应当清楚,显示单元的数量将影响所得到的显示分辨率,而且可以选择不同的数量。此外,每个显示单元300可以有不同数量的长条元件200。例如,2,4,8,10或12个一组的长条元件200可以对应于一个显示单元300。甚至可以用更多的长条元件形成一个显示单元300。也可以用奇数个长条元件200构成一个显示单元300。
图11表示了具有未变形长条元件200的显示单元300的正视图。图11中表示的断面是沿着图9中A-A线截得的。通过相对于导电层106在每个长条元件200上施加相等的偏压而达到该未变形状态。应注意,由于长条元件200的反射表面基本上是共面的,入射到长条元件200上的光被反射。
图12表示了GLV中变形长条元件200的侧视图。图12表示出在变形状态下,长条元件200保持悬空,不与长条元件2000下方的基板层表面接触。这与图1-3现有技术的调制器相反,通过避免长条元件200与基板表面的接触,解决了现有调制器的粘附问题。但是要注意,在变形状态下,长条元件200是向下垂的。这是因为将长条元件200拉向基板的静电力沿着其长度均匀分布的,致使长条元件所受拉力是沿着长条元件200长度的。于是,其反射表面呈现为曲线型,而非平面。但是注意,图12中为了说明的目的长条元件200下垂的程度比其长度还大。
但已经发现,长条元件200的中心部分202(图12)保持近似的平面,致使仅仅是每个长条元件200中心部分202衍射光所得到的对比度是令人满意的。实际上已经发现,近似平面的中心部分202近似等于支撑孔110之间长度的三分之一。所以,当支撑孔之间距离为75微米时,近似平面的中心部分202接近25微米的长度。
图13表示了具有另一些变形长条元件200的显示单元300的正视图。图13中表示的断面是沿着图12中B-B线截得的。通过对其施加偏压,基板本不移动的长条形区200保持在所需位置上。使这些长条形区200移动的变形状态,是通过相对于导电层106在另一些长条元件200上施加适当驱动电压而实现的。垂直距离d1在整个近似平面的中心部分202(图12)区域上近似为常数,并限定了GLV的光栅振幅。通过调节加在受驱动长条元件200上的驱动电压,可以调节光栅振幅d1。这使精细调谐GLV优化对比度成为可能。
为了能使单一波长(λ1)的入射光被恰当的衍射,GLV适宜具有等于四分之一入射光波长(λ1)的光栅振幅d1,以获得显示图象的最大对比度。但是应当清楚,光栅振幅仅仅要求一个周期往返距离等于二分之一波长λ1加上波长的整数倍(即d1=λ1/4,3λ1/4,5λ1/4,…,Nλ1/2+λ1/4)。
参考图13,可以看到,每个变形长条元件200的下表面都与基板隔开一个距离d2。于是,长条元件200在GLV工作期间不与基板接触。这避免了现有技术调制器反射条形区与基板互相粘附的问题。该距离d2适宜选择为近似等于两倍或三倍的距离d1。因此在变形状态下,长条元件200向基板移动了近似四分之一到三分之一距离d2。该距离d2由去除层108厚度(图5,6和8)加上距离d1来确定。
参见图4中所示的磁滞曲线,由于长条元件200通过仅向基板移动三分之一的距离到四分之一而衍射入射光,因此可以避免磁滞现象。另外,从未变形状态开始,长条元件200向着基板变形,且然后沿着各移动方向相同的电压光强曲线再回到不变形状态。这与图1-3所示当变形到衍射状态时要考虑磁滞现象的现有技术调制器相反。这个实施例通过以连续方式改变加在被驱动的长条元件200上的驱动电压,能够连续地选择亮度。
由于每个长条元件200的端部不是近似平面,如果端部衍射的光被汇集或显示出来,所显示图象的对比度将不会令人满意。所以如本文所述,本发明提供了一种用于防止每个长条元件200近似平面中心部分202之外的衍射光参与形成显示图象的遮光器。另外,该光可以被光学地处理,以使得其仅仅入射到近似平面的中心部分202。该方法避免了光的浪费。
图14表示了使用GLV阵列402的光显示系统400的顶视图。照射GLV阵列402的照明装置包括红,分别为绿和兰光光源404R,404G和404B。这些光源可以是任何简便的光源,或红,绿和兰光,并可以是半导体发光器件,如发光二极管(LED)或半导体激光器,或独立二极管泵浦固态激光器,或具有交替滤光器的白光光源,诸如具有依次透过红,绿和兰光的三个滤光器的旋转盘等。在系统400中,假设光源404R,404G和404B是以大致对称的方式发射的光源。二向色滤光器组406使来自其中任一光源的光基本沿着系统的光轴z向准直透镜408传播。使不同颜色三个光源学光学系统中从同一原点发出的二向色滤光器组或棱镜块在光学领域是公知的,如菲利浦棱镜等。因此,本文不再详述这种二向色滤光器组。
采用三个分立图象形成系统眼红、绿和兰,然后光学合成这些图象也是已知的。本发明的系统还可以包括三个组合起来进而被扫描的显示机构,以形成合成的图象。
由于GLV是用半导体处理技术制成的,因此可以形成三个平行的直线阵列,且其彼此已经基本很好地对准了。分别为红、绿和兰的三个照明系统可以配置成使其各自颜色的光分别入射到三个基本很好对准GLV直线阵列中的一个上。按这种方法,合成图象的对准比传统的合成彩色系统要容易。
公知的传统彩色显示系统的一个共同问题是色散。这源于这种系统按随意的次序显示红帧,绿帧和兰帧。已知该技术是按帧依次排列颜色的。如果一个物体从观看者与显示的图象之间穿过,则将在显示图象中出现该物体一个颜色的幻影。类似地,如果观看者迅速转动他的头,将会出现人为的帧序颜色。
由于GLV技术可以在足够的带宽下工作,因此该系统可以提供扫描时三个显示颜色每个显示一行的工作方式。本发明人杜撰了一个术语“行序颜色”,以描述这种技术。帧序颜色的不良幻影将不再出现。
在行序颜色中,当扫描图象时,每种颜色依次出现在GLV的直线阵列中。换句话说,全部三种颜色以近似等于传统象素显示中的一个图象行。
通过扫描GLV的直线阵列形成图象。该直线阵列中的长条元件都是平行的且垂直于直线阵列的长度。这避免了任何相邻单元的不连续显示。于是,不存在相邻显示单元之间的象素,而这存在于传统液晶或阴极射线管显示中。而且,由于是在垂直于直线阵列的方向平顺地扫描该阵列,所以不会沿该方向在显示单元之间产生任何象素。按此方法,图象质量比传统显示技术的象质大大提高了。
透镜408被简单地表示为简单“球面”透镜,即在x和y轴方向具有相等的折射本领。在图14中,y轴在图示平面内,而x轴垂直于图示平面。透镜408使来自光源的光在两轴方向准直。但是,本发明所属领域普通技术人员应当知道,半导体激光器发射端输出的光在横轴(x或y)方向的发散比其方向的大,且是象散光束。准直这种激光器输出光束并使其扩束到所需尺寸的装置在光学领域是公知的,且可要求一个或多个球面、非球面、复曲面或柱面(球面和非球面)透镜元件。透镜408被用来代表一组一个或多个这样的元件。
来自对称发光光源404的发散光410透过透镜408,并在x轴和y轴方向准直。然后,双轴准直光412透过柱透镜414。本文中“柱”透镜定义为仅仅在一个轴方向(这里为y方向)具有折射本领的透镜414。光学领域的普通技术人员应当知道,透镜414的表面可以是非圆柱的其他形状的。透镜414的功能是使双轴准直光412透过其中后,在y轴方向发散(图14中的416)而在x方向保持准直(图15中的418)。应当注意,这里透镜414也可以由如上所述的一或多个光学元件构成,而且已知简单是一个元件。
GLV阵列402位于距柱透镜414大约为该透镜焦距长度(f1)的位置。在对应于透镜408和414光轴的系统光轴z上,GLV阵列402沿x轴方向对准。GLV的工作表面(长条元件200)倾向于z轴。在图14中,GLV阵列402相对于该轴倾斜45度,由此将z轴有效地折叠了90度。这里选择这样倾斜GLV阵列402,是为了便于说明,其不应当将其视为限制。
图15表示了图14所示光学显示系统沿着c-c’线截得的侧视图。参考图15,入射到工作中的GLV阵列402上的光产生反射光束(418)和分别表示为D+1和D-1的±第一级衍射光束。在x轴方向上,这些衍射光束向z轴倾斜。沿着y轴方向,衍射光和反射光是均衡发散的。然后这些反射光和衍射光透过放大(正)透镜420,该透镜与GLV阵列402的间隔为该透镜的焦距长度f2。为简单起见,透镜420表示为单透镜,但实际上透镜420可以包括两个或更多的元件。透镜420在系统400中起目镜的作用,且适宜采用公知的目镜类型,包括惠更斯目镜,冉斯登型目镜,克尔纳型目镜,皮尔松型目镜,阿贝型目镜,Knig型目镜,以及Erfle型目镜。
在x轴方向,反射光束422向z轴上的焦点会聚,该焦点位于围绕透镜420的远心出瞳P2周围的长条光阑423处。此外,遮挡426位于透镜420的该出瞳P2区域,以遮挡GLV阵列402的长条元件200中每个长条元件的近似平面中心部分202衍射光之外的其他衍射光。于是,该遮挡具有一个优选尺寸的狭缝,以使得仅仅让由每个长条元件200约25微米的中心部分202衍射的(D+1,D-1)光通过。
系统400的纹影光学可以限定为包括LGV阵列402放大目镜420和光阑424,的远心光学结构428,以及在透镜420出瞳周围的透镜420和光阑424物方位置附近的GLV阵列402。远心系统是一个入瞳和/或出瞳位于无穷远的系统。它广泛地用于为测量学而设计的光学系统中,因为其可减小因系统轻微离焦而引起的测量和位置误差。一般地,这种特点允许光阑和系统其他组件的位置存在一些公差,并在下文继续讨论的本发明某些实施例中加以利用。
在y轴方向(图14),发散的反射光430(和衍射光)有透镜420准直。光阑424在y方向对准,且阻断反射光。遮挡426吸收GLV阵列402近似平面中心部分402所衍射光之外的其他衍射光。光阑424可以选择为吸收或反射型的。如果光阑424是反射型的,从其上反射的光将返回到GLV阵列420。但是,向z轴方向倾斜的衍射光束D+1和D-1以及相应的入射与反射光束,将会聚到光阑424和遮挡狭缝426的附近和下面的焦点,从而不受阻挡地通过出瞳P2。
将扫描反射镜432定位,以便阻挡衍射光束并将其引导到观看者的眼睛434。观看者所看到的是GLV阵列402放大的虚象。该图象在图5中用线段436表示,当然很明白,这里没有实象。应当清楚,GLV阵列402的线可以表示一行或一列待显示图象。剩余的相应行或列在扫描过程中随后形成。可以采用其他的扫描方式,如对角方式等。
GLV阵列402的长条元件200)工作时,依次代表M×N个显示的不同行,其中M是每行显示单元的数量,而N是显示的行数。如上所述,每个显示单元300包括多个长条元件200。通常,可以将GLV阵列402定义为代表光阀的一维阵列,或一行显示单元或象素。在放大的虚象中,由GLV阵列10的条形区12的工作状态确定的这些象素将会比较亮。
驱动单元436使扫描反射镜432绕轴438转动,如(图14)箭头A所示,对衍射光束进行扫描,于是放大的虚象成行地步入观看者的视野,如箭头B所示,表示逐行显示。足够快地移动反射镜432,以是扫描的虚象在观看者面前呈现为二维图象。转动扫描反射镜432可以用其他类型的反射镜装置代替,如多面转镜反射镜。
设置用于接收视频数据的基于微处理器的电子控制电路440,并将其与GLV阵列402耦合,以便用视频信号使GLV阵列402的长条元件200工作,进而调制其上的衍射光。设置该电路440,以调制衍射光束D+1和D-1的光,使其表现为视频数据的二维图象逐行显示出来,如前所述。控制电路440也与扫描反射镜驱动单元436耦合,以同步地逐行显示,并提供在扫描反射镜432角振幅范围的端头开始下一帧图象。扫描的速度可以控制成正弦的,锯齿的或任何其他简单的速度规则的。所有这些控制都必须使扫描速度与GLV阵列402的数据图象同步。
控制电路432还与光源404R,404G和404B连接,以便依次开关这些光源,与GLV阵列402的操作相配合依次提供阵列的红,绿和兰色分解图象,这些图象共同表示彩色二维图象的分解行。在这个方案中,每个显示单元300的长条元件200受到适当的调制,同时每个光源404R,404G和404B依次被激活,以为显示单元300提供适当比例的红、绿和兰色衍射光,于是在观看者面前显示出图象相应的行。按足够高的速度进行这种调制,观看者可观看到每个显示单元300的恰当合成颜色。
在另一个方案中,光源404R,404G和404B同时被激活,通过位于透镜420与三个GLV阵列之间的二向色棱镜块(未示出)照射GLV阵列402和两个附加阵列(未示出)。然后,布置每个GLV阵列,以调制三基色成分红、绿和兰色图象中的一个。二向色棱镜块可以是任意公知类型的,如前述的菲利浦棱镜等,而且在此情况下可以布置成每个GLV阵列距透镜420距离相等,并向其倾斜。在此方案中,为了提供彩色图象,光源404R,404G和404B可以用单个白光光源代替,并省略二向色棱镜406。
这里请注意,在图14中,观看者的眼睛434未被表示在适合观看系统400显示的放大虚象的理想位置上。为了观看这种图象,观看者的眼睛应该位于出瞳P2附近较为理想。做到这一点是有困难的,因为反射镜也适宜放置在该出瞳附近。通过将出瞳图象光学转象离开反射镜到易于观看者眼睛定位的地方,可以克服这一困难,从而使扫描反射镜432和观看者眼睛都位于一个出瞳位置。
对出瞳P2图象进行转象的一个装置表示在图16中,在其中该光学装置表示为与透镜420出瞳P2处的一条线表示的扫描反射镜432之间光学“未折叠”,那是扫描反射镜432的一个优选位置。此外,遮挡426位于出瞳P2的区域中。这里,是通过两个焦距长度相同的透镜442和444完成出瞳转象的,且两透镜彼此隔开一个两倍于该焦距长度的距离,以形成一个放大远心转象器,这个转向器将出瞳P2的图象P3置于距透镜444等于该透镜444一倍焦长处,提供透镜444的足够人眼体视距离。当然,本领域普通技术人员应当知道,透镜442和444可以包括多于一个的透镜元件,而且,图16所示的远心转象装置并不仅仅是对出瞳图象进行转象的光学装置。
现在参考图17,(其中光学系统又表示为与透镜420出瞳P2处的一条线表示的扫描反射镜432之间光学“未折叠”的形式,也即扫描反射镜432的一个优选位置)。遮挡426也位于出瞳P2的区域中。目镜420可以采用一个元件或元件组,以将GLV阵列402的一个放大实象投影到屏幕上或记录介质上,如根据需要提供投影显示或记录、打印图象等等所用的器件。这里,定位透镜(或透镜元件组)446,以使GLV阵列402的放大实象448(这里为宽度)聚焦在距透镜446无穷远处。该图象可以聚焦在可以是投影(可观看的)二维图象时供观看的屏幕的平面450中,或者感光胶片或纸等等记录介质上。在记录或打印图象的情况下,扫描反射镜432可以不要,并且通过在扫描方向上移动记录或打印介质完成扫描,在图17中个扫描方向垂直于图示平面,即垂直于图象的取向。当然,这个机械扫描运动需要与系统400中的一样,借助于电子电路440与图象的产生同步。
在另一个实施例中,没有采用图14-17中所示的遮挡426,来阻止GLV阵列402的每个长条元件200的近似平面中心部分202(图12)衍射光之外的衍射光到达观看者的眼睛,而是在每个长条元件200的最外侧部分的上方放置反射元件500。图18中表示了这种反射元件500的侧视图,它放置在变形长条元件200的上方。从图18中可以看出,长条元件200的近似平面中心部分202(图12)仍然暴露在入射光下,而外侧部分被反射元件500所覆盖。反射元件500反射入射光。所以,该反射光不会照射到观看者,也不会影响观看者看到的图象。图18所示的反射元件500适宜足够地薄,以致它与每个长条元件200(未变形状态)的近似平面中心部分202基本在同一平面上。反射元件500也可以位于离开长条元件200(未变形状态)反射表面一个距离d3且与之平行的平面上,该距离d3等于预期入射光半波长的整数N倍(即d3=0,λ1/2,λ1,3λ1/2,2λ1,…,Nλ1/2)。
为了便于理解本发明的结构和工作原理,已经结合一些具体实施例对本发明进行了详细说明。本文中这些具体实施例和对其的详细说明,不是构成对所附权利要求书的限制。本领域的普通技术人员应当清楚,对选出用于说明的实施例可以作出改变,而不会背离本发明的构思与范围。
上述作出原理性说明的实施例是形成供人观看的显示图象的。其他类型的“显示”也可以用本发明实现。如在打印过程中,可以在转鼓上形成图象,再转印到纸上。作这种应用时,光源可以是紫外或红外光。这样图象人眼不能看到,但是同样是有用的。
本领域普通技术人员尤其应当知道,本发明的器件可以按几种不同的方法实现,且上述公开装置仅仅是本发明优选实施例的说明,而不限定任何方法。
权利要求
1.一种用于调制具有一个波长入射光束的调制器,该调制器包括a.多个长条元件,其每个都具有位于两端之间的近似平面的反射表面,这些元件彼此平行布置且通过其位于一基板上方的端部而悬空;以及b.用于使选出的长条元件向着基板变形从而进入变形状态的装置,其中每个选出长条元件的近似平面反射表面向着基板移动一个光栅振幅,而该选出长条元件不与基板接触。
2.根据权利要求1的调制器,其中光在一个波长范围内。
3.根据权利要求1的调制器,其中光在一个可见光波长范围内。
4.根据权利要求1的调制器,其中光在一个紫外光波长范围内。
5.根据权利要求1的调制器,其中光在一个红外光波长范围内。
6.根据权利要求1的调制器,其中选出的长条元件移动大约四分之一光波长。
7.根据权利要求1的调制器,其中选出的长条元件移动一个可控的选出距离,以提供所需亮度的调制光。
8.根据权利要求1的调制器,其中光栅振幅近似为未变形长条元件与基板之间距离的四分之一至三分之一。
9.根据权利要求1的调制器,其中近似平面反射表面大约为相应长条元件长度的三分之一。
10.根据权利要求1的调制器,其中长条元件根据布置在一条直线阵列中的多个显示单元进行分组,其中当对应于一个显示单元的长条元件不变形时,该显示单元反射入射光束,而当对应于该显示单元的另一些长条元件被选出变形时,该显示单元使入射光束发生衍射。
11.根据权利要求10的调制器,其中扫描来自一条直线阵列的图象以形成二维图象。
12.根据权利要求11的调制器,其中足够快地扫描来自一条直线阵列的图象,以用人眼合成一个无闪烁的图象。
13.根据权利要求12的调制器,其中当为了形成无色散图象而进行图象扫描时,一组彩色光中的每一个依次入射到该调制器上。
14.根据权利要求12的调制器,其中二维图象是非象素的。
15.根据权利要求10的调制器,其中选出长条元件的移动距离确定了相应显示单元的光强。
16.根据权利要求10的调制器,其中反射周期与衍射周期的比率确定了相应显示单元的光强。
17.根据权利要求15的调制器,进一步包括一个用于根据每个显示单元形成的相应光强而形成图象的光学系统。
18.根据权利要求17的调制器,进一步包括仅仅让光束照射近似平面中心部分的装置。
19.根据权利要求17的调制器,进一步包括防止近似平面中心部分之外部分衍射的光被光学系统显示的装置。
20.根据权利要求19的调制器,其中该防止装置包括一光遮挡,它具有可透过近似平面中心部分所衍射光并阻挡近似平面中心部分之外部分所衍射光的狭缝。
21.根据权利要求19的调制器,其中该防止装置包括一反射元件,它平行于未变形长条元件反射表面平面地布置在每个长条元件两端上方一个等于整数或零倍入射光半波长的距离处。
22.根据权利要求10的调制器,其中当机械扫描用于打印的介质时,该介质通过该条直线阵列,在其上形成打印图象。
23.一种用于调制具有可见波长范围内一波长入射光束的调制器,该调制器包括a.多个长条元件,其每个都具有位于两端之间的近似平面的反射表面,这些元件彼此平行布置且通过其位于一基板上方的端部而悬空;以及b.用于使选出的长条元件向着基板表面变形从而进入变形状态的装置,其中每个选出长条元件的近似平面反射表面向着基板移动一个光栅振幅,该光栅振幅是整数或零倍入射光半波长加上四分之一入射光波长,而该选出长条元件不与基板接触。
24.根据权利要求23的调制器,其中光栅振幅近似为未变形长条元件与基板之间距离的四分之一至三分之一。
25.根据权利要求23的调制器,近似平面的反射表面近似为相应长条元件长度三分之一。
26.根据权利要求23的调制器,其中长条元件根据布置在一列中的多个显示单元进行分组,其中当对应于一个显示单元的长条元件不变形时,该显示单元反射入射光束,而当对应于该显示单元的另一些长条元件被选出变形时,该显示单元使入射光束发生衍射。
27.根据权利要求26的调制器,其中选出长条元件的移动距离确定了相应显示单元的光强。
28.根据权利要求26的调制器,其中反射周期与衍射周期的比率确定了相应显示单元的光强。
29.根据权利要求28的调制器,进一步包括一个用于根据每个显示单元形成的相应光强而形成图象的光学系统。
30.根据权利要求29的调制器,进一步包括防止近似平面中心部分之外部分所衍射的光被光学系统显示的装置。
31.根据权利要求30的调制器,其中该防止装置包括一光遮挡,它具有可透过近似平面中心部分所衍射光,并阻挡近似平面中心部分之外部分所衍射光的狭缝。
32.根据权利要求30的调制器,其中该防止装置包括一反射元件,它平行于未变形长条元件反射表面平面地布置在每个长条元件两端上方一个等于整数或零倍入射光半波长的距离处。
33.一种用于调制入射光束的调制器,该调制器包括a.多个长条元件,其每个都具有位于两端之间近似平面的反射表面,这些元件彼此平行布置且通过其各自位于一基板上方的端部而悬空一个距离;以及b.用于使选出的长条元件定位从而进入变形状态的装置,其中通过向着基板将所选近似平面反射表面移动一个光栅振幅从而衍射入射光,该光栅振幅近似为四分之一至三分之一的所述距离,且该装置也使选出的长条元件返回到反射入射光的未变形状态。
34.根据权利要求33的调制器,其中近似平面的反射表面大约为相应长条元件长度的三分之一。
35.根据权利要求33的调制器,其中长条元件根据布置在一列中的多个显示单元进行分组,其中反射周期与衍射周期的比率确定了相应显示单元的光强。
36.根据权利要求33的调制器,其中长条元件根据布置在一列中的多个显示单元进行分组,且其中选出长条元件移动的距离确定了相应显示单元的光强。
37.根据权利要求35的调制器,进一步包括根据每个显示单元形成的各自光强形成图象的光学系统。
38.根据权利要求37的调制器,进一步包括防止近似平面中心部分之外部分所衍射光被光学系统显示的装置。
39.根据权利要求38的调制器,其中该防止装置包括一光遮挡,它具有可透过近似平面中心部分所衍射光并阻挡近似平面中心部分之外部分所衍射光的狭缝。
40.根据权利要求38的调制器,其中该防止装置包括一反射元件,它平行于未变形长条元件反射表面平面地布置在每个长条元件两端上方一个等于整数或零倍入射光半波长的距离处。
41.一种调制具有一波长的入射光的方法,该方法包括如下步骤a.使光束入射到多个长条元件上,其每个元件都具有位于两端之间近似平面的反射表面,这些元件彼此平行布置且通过其各自位于一基板上方的端部而悬空一个距离;b.通过使选出长条元件的近似平面反射表面向着基板移动一个近似为四分之一至三分之一所述距离的光栅振幅,而使选出的长条元件向着基板变形,从而使选出的长条元件进入变形状态,其中入射光受到衍射;以及c.使选出的长条元件返回未变形状态,其中入射光被反射。
42.根据权利要求41的方法,其中光栅振幅近似为未变形长条元件与基板之间距离的四分之一至三分之一。
43.根据权利要求41的方法,其中近似平面的反射表面大约相应长条元件长度的为三分之一。
44.根据权利要求41的方法,其中长条元件根据布置在一列中的多个显示单元进行分组,其中反射周期与衍射周期的比率确定了相应显示单元的光强。
45.根据权利要求41的方法,其中长条元件根据布置在一列中的多个显示单元进行分组,且其中选出长条元件移动的距离确定了相应显示单元的光强。
46.根据权利要求44的方法,进一步包括根据每个显示单元形成的各自光强形成图象的光学系统。
47.根据权利要求46的方法,进一步包括防止近似平面中心部分之外部分所衍射光被光学系统显示的装置。
48.根据权利要求47的方法,其中该防止装置包括一光遮挡,它具有可透过近似平面中心部分所衍射光并阻挡近似平面中心部分之外部分所衍射光的狭缝。
49.根据权利要求47的方法,其中该防止装置包括一反射元件,它平行于未变形长条元件反射表面平面地布置在每个长条元件两端上方一个等于整数或零倍入射光半波长的距离处。
50.一种调制具有一波长的入射光的方法,该方法包括如下步骤a.使光束入射到多个长条元件上,其每个元件都具有位于两端之间近似平面的反射表面,这些元件彼此平行布置且通过其各自位于一基板上方的端部而悬空;以及b.使选出长条元件向着基板表面变形,从而使选出的长条元件进入变形状态,其中每个选出元件的近似平面反射表面向着基板移动光栅振幅,该振幅是整数或零倍入射光半波长加上入射光四分之一波长,选出的长条元件与基板表面不接触。
51.根据权利要求50的方法,其中光栅振幅约为未变形长条元件与基板之间距离的四分之一至三分之一
52.根据权利要求50的方法,其中近似平面反射表面约为相应长条元件长度的三分之一。
53.根据权利要求50的方法,其中长条元件根据布置在一列中的多个显示单元进行分组,其中当对应于显示单元的长条元件未变形时,该显示单元反射入射光,而当对应于显示单元的另一些长条元件被选出变形时,该显示单元衍射入射光
54.根据权利要求53的方法,其中选出长条元件移动的距离确定了相应显示单元的光强。
55.根据权利要求53的方法,其中反射周期与衍射周期的比率确定了相应显示单元的光强。
56.根据权利要求55的方法,进一步包括根据每个显示单元形成的各自光强形成图象的光学系统。
57.根据权利要求56的方法,进一步包括防止近似平面中心部分之外部分所衍射光被光学系统显示的装置。
58.根据权利要求57的方法,其中该防止装置包括一光遮挡,它具有可透过近似平面中心部分所衍射光并阻挡近似平面中心部分之外部分所衍射光的狭缝。
59.根据权利要求57的方法,其中该防止装置包括一反射元件,它平行于未变形长条元件反射表面平面地布置在每个长条元件两端上方一个等于整数或零倍入射光半波长的距离处。
60.一种在基板上形成光调制器的方法,该光调制器用于调制具有可见光波长范围内一波长的入射光,该方法包括如下步骤a.在基板上形成去除层,其中该去除层具有近似等于入射光波长的厚度,其中去除层被曝光;b.在去除层上形成至少两个长条元件,每个长条元件耦合到基板上四个位置中的两个处,且每个长条元件具有一反射表面;以及c.除去去除层。
61.根据权利要求60的方法,其中的厚度在200至2000nm的范围内。
全文摘要
一种调制形成二维图象的入射光束的方法和装置。该装置包括多个具有反射表面的长条元件。这些元件通过其各自的受支撑端点而彼此平行地悬浮在基板上方,形成一列按显示单元分组的相邻反射表面。通过在基板上施加电压,每组中有交替的反射表面是变形的。每个变形元件其近似平面的中心区段与每个未变形元件的中心区段相互平行,且有预定的距离。入射到一列相邻反射表面上的光束,遇到交替未变形反射表面时将从一组长条元件反射回来;而遇到交替变形反射表面时将受到其衍射。移动的距离是受控的,或者说反射和衍射周期之间的比率确定了相应显示单元的显示强度。
文档编号G02B5/18GK1313957SQ99809972
公开日2001年9月19日 申请日期1999年6月18日 优先权日1998年6月24日
发明者D·M·布洛姆, A·戈蒂尔 申请人:硅光机器公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1