等离子体处理装置的制作方法

文档序号:2936130阅读:76来源:国知局
专利名称:等离子体处理装置的制作方法
技术领域
本发明涉及一种等离子体处理装置,更特别是涉及能够实施均匀的等离子体处理的等离子体处理装置。
目前,在液晶显示装置或半导体装置等的制造工序中,在成膜工序、蚀刻工序及灰化工序等中,使用等离子体处理装置,该装置利用等离子体。为了对作为处理对象的基板的整个被处理面均匀地进行成膜等的处理,在这种等离子体处理装置中有必要对整个被处理面发生均匀的等离子体。
近年来,在以半导体存储装置等为代表的半导体器件或液晶等的领域中,推进基板的大型化。特别是,在TFT(Thin Film Transistor薄膜晶体管)液晶显示装置的情况下,存在着使用从500mm见方到1m见方那样大的、进而至更大尺寸的基板的可能性。人们要求得到通过对这样大型基板的整个被处理面发生均匀的等离子体,可提高对被处理面内的处理均匀性的等离子体处理装置。
为了实现对上述那样大型基板的均匀的等离子体处理,本发明人提出了如图9所示的等离子体处理装置。图9是示出成为本发明基础的等离子体处理装置的断面模式图。参照图9,说明等离子体处理装置。
参照图9,等离子体处理装置具备容器盖101;容器本体102;微波导入窗104a、104b;簇射板105;基板支架107;以及波导管端部103a、103b。在容器本体102的上部开口上设置容器盖101。把基板支架107设置到容器内部119内,该基板支架107保持作为被处理材料的基板108。在对着基板108的容器盖101的表面上设置簇射板105,该簇射板105由陶瓷等电介质构成。簇射板105由簇射板保持构件106固定到容器盖101的下表面上。
容器盖101上设置微波导入窗104a、104b,微波导入窗贯通容器盖101,且与簇射板105接触。微波导入窗104a、104b由陶瓷等电介质构成。在容器盖101的上部表面上,在位于微波导入窗104a、104b上的区域内设置波导管端部103a、103b。该波导管端部103a、103b分别连接波导管113a、113b,该波导管将微波传输到等离子体处理装置内。分别在波导管端部103a、103b上形成保温通路112a、112b。该保温通路112a、112b用于保温材料的流动,以便使波导管端部103a、103b的周围的温度保持为规定的温度。
在簇射板105上形成气体导入孔121,该气体导入孔121用于将在等离子体处理中被使用的反应气体供给到容器内部119。在容器盖101的对着簇射板105的下表面上形成了深度约为0.1-1mm的槽。从该槽和对着簇射板105的容器盖101的面构成反应气体流路115。在容器盖101上形成供给反应气体的反应气体导入口114,该导入口114与该反应气体流路115连接。反应气体导入口114,反应气体流路115和气体导入孔121连接,反应气体从该反应气体导入口114经反应气体流路115及气体导入孔121供给到容器内部119。
在容器本体102上与容器盖101的连接部上形成O型环槽117。O型环109设置在该O型环槽117内部。另外,在该容器盖101和微波导入窗104a、104b的连接部上,把O型环110设置在容器盖101上形成的O型环槽118内部。利用该O型环109、110使容器内部119与部空气隔离,可保持密闭。
下面,简单说明图9所示的等离子体处理装置的工作。
首先,利用真空排气装置(图中未示出)从容器内部119将氛围气排出。结果,容器内部119保持为真空状态。然后,反应气体从反应气体导入口114经反应气体流路115及气体导入孔121供给到容器内部119。因为气体导入孔121以分布在簇射板105的整个表面上的方式被形成,所以能够使反应气体基本均匀地供给到对着基板108的整个面上的区域内。另一方面,由微波发生装置(图未示出)发生的微波从与微波发生装置连接的波导管113a、113b传输到波导管端部103a、103b。而且,微波分别从该波导管端部103a、103b的开口部111a、111b传输到微波导入窗104a、104b。微波进一步从该微波导入窗104a、104b传输到簇射板105。而且,微波基本上均匀地从该簇射板105向容器内部119中的对着基板108的整个面的区域发射。向容器内部119发射的微波激励反应气体,发生等离子体。利用所发生的等离子体,对于基板108的表面进行成膜或灰化等的等离子体处理。这样,通过向基板108的整个面均匀供给地反应气体、同时从簇射板105均匀地发射微波,可在对着基板108的整个面的区域中形成基本均匀的等离子体。
但是,图9所示的等离子体处理装置中,存在以下的问题。
即,用于向容器内部119供给应该成为等离子体的反应气体的反应气体流路115的一部分侧壁,由簇射板105的上表面构成。该簇射板105具有把从微波导入窗104a、104b供给的微波向容器内部119发射用的、作为微波发射构件的作用。因此,存在着一部分微波从该簇射板105向反应气体流路(115)发射的情况。这样,在微波向反应气体流路115内部发射时,在该反应气体流路115的内部发生异常放电,激励反应气体,存在着在该反应气体流路115的内部发生异常等离子体的情况。发生了由于这样的异常等离子体、反应气体流路115的侧壁面受到损伤这样的问题。另外,把图9所示的等离子体处理装置用于CVD装置时,发生了因异常等离子体引起的反应生成物粘着在反应气体流路115的侧壁面上问题。这样,在反应气体流路115的侧壁受到损伤或反应生成物粘附到侧壁上时,反应气体流路115上的反应气体的流量和压力在规定值左右变动。在容器内部119中,本来应该有助于等离子化的、在基板108上的成膜等处理的反应气体及微波的能量随着异常等离子体的发生在反应气体流路115内被消耗掉了,因而,向容器内部119以规定量供给反应气体和微波能量成为困难,结果发生了不能稳定地实施均匀的等离子处理这样的问题。
另外,如上所述,在反应气体流路115内发生异常等离子体时,会出现因该异常等离子体所致簇射板105的温度局部上升的情况。因该局部温度上升,在簇射板105中发生热应力,因该热应力,导致簇射板105出现变形,或者簇射板105发生损伤的现象。这样,在簇射板105变形、或者损伤等时,因为难以将处理条件保持为规定的状态,所以稳定地进行等离子体处理也是困难的。
在作为向容器内部19均匀地供给反应气体用的缓冲室利用反应气体流路115的情况下,最好增加反应气体流路115的高度,即扩大反应气体流路115的体积。但是,若这样来增加反应气体流路115的高度,则在图9所示的等离子体处理装置中,因从簇射板105发射出的微波而在反应气体流路115内部发生异常等离子体变得容易了。因此,足够地增大反应气体流路115的体积是困难的,从而进一步提高向容器内部119供给的反应气体的均匀性、更加提高等离子体处理的均匀性将是困难的。
本发明的目的在于提供一种通过防止异常等离子体的发生,能够稳定地实施均匀的等离子体处理的等离子体处理装置。
本发明一个方面的等离子体处理装置具备处理室;微波发射构件;反应气体供给装置;以及防微波透射构件。处理室具有内壁面,在内部进行使用了等离子体的处理。微波发射构件具有面朝处理室内部的一个壁面和位于与该壁面相反侧上、对着处理室内壁面的另一壁面,配置该构件使得在该另一壁面和处理室的内壁面的一部之间形成一空间,该构件向处理室内部传输、发射微波。反应气体供给装置向处理室内部供给被微波制成等离子体状态的反应气体。反应气体供给装置包含反应气体供给路,该供给路具有在微波发射构件的另一壁面和处理室内壁面的一部之间形成的空间。防微波透射构件被配置在微波发射构件的另一壁面上的面对反应气体供给路的区域上。
如果这样做,能够把使微波不透射的防微波透射构件配置在微波发射构件和反应气体供给路间。因此,能够防止从微波发射构件向反应气体供给路传输微波。因此,能够防止因传向反应气体供给路的微波在反应气体供给路内发生异常等离子体。由此,能够防止由该异常等离子体引起反应气体供给路侧壁受到损伤或者防止该异常等离子体引起反应生成物淀积在反应气体供给路内部。结果由于能够经反应气体供给路向处理室内部稳定地供给反应气体,故能够形成均匀的等离子体。由此,可对作为被处理材料的基板的表面稳定进行地均匀的等离子体处理。
由于可防止在反应气体供给路内的异常等离子体的发生,故可防止配置在反应气体供给路周围的构件(构成反应气体供给路的构件或微波发射构件)中异常微波引起的局部温度上升的发生。因此,在微波发射构件等的配置在反应气体供给路周围的构件中,能够防止因上述局部温度上升导致的变形出现或发生损伤。其结果,可稳定地进行等离子体处理。
由于能够可靠地防止微波从微波发射构件向反应气体供给路的侵入,故即使为了利用反应气体供给路作为使供给到处理室内部的反应气体的压力等均匀化用的缓冲室,而增大反应气体供给路的体积,也能够防止在反应气体供给路内部发生异常等离子体。因此,由于能够不发生异常等离子体地充分增大反应气体供给路的体积并作为缓冲室使用,故能够以更为均匀的条件向处理室内部供给反应气体。其结果,可实施更为均匀的等离子体处理。
在上述本发明一个方向的等离子体处理装置中,防微波透射构件的表面最好具有导电性。
此时,因为导电体不会泄漏微波,若防微波透射构件的表面具有导电性,则能够可靠地防止从微波发射构件发射的微波传输到反应气体供给路内。
在上述本发明的一个方面的等离子体处理装置中,最好防微波透射构件是导电体板。
此时,因为如上所述导电体不泄漏微波,所以能够可靠地防止从微波发射构件发射的微波传输到反应气体供给路内。另外,作为导电体板使用金属板等时,因为金属可比较容易加工,所以能够容易得到确定形状的防微波透射构件。因此,能够防止防微波透射构件的制造成本的增大。其结果,能够防止本发明的等离子体处理装置的制造成本的增大。
若作为导电体板使用导热率高的金属板,并使该金属板和微波发射构件接触,则即使在微波发射构件上因异常等离子体等原因发生局部温度上升,通过该金属板也能够将这样的温度上升区域的热量迅速地传输给另外的区域。其结果,能够防止因局部温度上升对微波发射构件引起的变形或损伤的发生。
在上述本发明一个方面的等离子体处理装置中,在微波发射构件的另一壁面和处理室内壁面的一部之间形成的空间最好是由在处理室内壁面上形成的槽和防微波透射构件所围成的空间。
此时,通过在处理室内壁面上形成槽,能够在微波发射构件的另一壁面和处理室内壁面的一部之间容易地形成空间。另外,由于防微波透射构件位于该反应气体供给路所包含的空间的微波发射构件侧的壁面上,故能够由该防微波透射构件可靠地防止微波从微波发射构件向反应气体供给路传输。
在上述本发明一个方面的等离子体处理装置中,最好防微波透射构件具有一个与反应气体供给路连接的连接孔,该连接孔以从面对反应气体供给路的防微波透射构件一个表面到位于与该表面相反侧的、面对微波发射构件的防微波透射构件的另一表面贯穿该防微波透射构件的方式被形成,微波发射构件最好具有与上述连接孔连接的反应气体供给孔,该供给孔从微波发射构件的另一壁面到一个壁面贯通微波发射构件。
此时,能够从反应气体供给路经连接孔及反应气体供给孔向处理室内部供给反应气体。而且,如果连接孔及反应气体供给孔以分布在微波发射构件的整个面上的方式形成,则能够向处理室内部的大范围内均匀地供给反应气体。因此,由于能够基本均匀地向配置在处理室内的被处理材料,即基板等的整个表面供给反应气体,故可实现均匀的等离子体处理。
通过改变连接孔的直径或反应气体供给孔的直径的至少一个,就能够容易地改变供给处理室内部的反应气体的流量等。通常,作为微波发射构件使用陶瓷等电介质,如上所述,作为防微波透射构件使用金属板等导电板。在现有的等离子体处理装置中,因为没有设置防微波透射构件,所以为了改变各反应气体供给孔中的反应气体的流量等,有必要进行改变反应气体供给孔的直径那样的加工。一般来说,金属比陶瓷等的加工更为容易,所以变更在作为防微波透射构件的金属板上形成的连接孔的直径的加工比变更在由陶瓷构成的防微波透射构件上形成的反应气体供给孔的直径的加工更为容易。因此,在本发明的等离子体处理装置中,就能够比现有的更容易地通过变更连接孔的直径来改变反应气体的流量。其结果,由于可容易地准备多个连接孔直径不同的防微波透射构件,故可适合于反应气体的种类或处理的种类来更换该多个防微波透射构件,可容易地实现最佳的处理条件。
在上述发明的一方面的等离子体处理装置中,连接孔的直径最好比反应气体供给孔的直径小。
此时,通过变更连接孔的直径,就能够大大地改变反应气体的流量。即,能够使连接孔的直径成为变更反应气体流量的支配因素。而且,若用金属板作为形成连接孔的防微波透射构件,则由于金属的加工比陶瓷更为容易,故能够容易且高精度地变更连接孔的直径。其结果,通过改变连接的直径,能够容易且可靠地改变从各反应气体供给孔向处理室内部供给的反应气体的流量等。
在上述一方面的等离子体处理装置中,最好防微波透射构件用与构成处理室的材料相同的材料形成。
此时,能够使防微波透射构件和构成处理室的构件的热膨胀比例大致相同。其结果,在防微波透射构件及构成其附近的处理室的构件的温度随着等离子体处理而上升时,能够防止随着温度上升因防微波透射构件和构成处理室的材料的热膨胀的区别而在防止防微波透射构件中发生变形或损伤。
图1是示出本发明等离子体处理装置的实施例1的断面示意图。
图2是图1所示的等离子体处理装置的沿线II-II的断面示意图。
图3是从图1的箭头方向看的容器盖内壁面的示意图。
图4是从图1的箭头23方向看的、除去了簇射板和簇射板保持构件的容器盖的内壁面的示意图。
图5是示出从图4中还除去金属制板的容器盖内壁面的示意图。
图6是示出本发明等离子体处理装置实施例1的变形例的断面示意图。
图7是示出本发明的等离子体处理装置的实施例4的容器盖内壁面的示意图。
图8是从图7中还除去金属制板后的容器盖内壁面的示意图。
图9是示出成为本发明基础的等离子体处理装置的断面示意图。
下面,根据


本发明的实施例。在以下的附图中,对于相同或相当的部分标以相同的参照号码,且不重复其说明。
(实施例1)参照图1及图2,说明本发明等离子体处理装置的实施例1。
参照图1及图2,等离子体处理装置具备容器本体2;容器盖1;作为微波发射构件的簇射板5;微波导入窗4a、4b;波导管端部3a、3b;以及基板支架7。作为壁构件的容器盖1配置在容器本体2的上部开口部上。作为处理室的容器由容器盖1和容器本体2构成。在容器盖1和容器本体2的连接部上,在容器本体2上形成O型环槽17。O型环9设置在O型环槽17的内部。由O型环9密封容器盖1和容器本体2的连接部。基板支架7设置在容器内部19,支架7保持作为进行等离子体处理的对象的基板8。把作为微波发射构件的簇射板5设置在容器盖1的内壁面上,且对着被设置在基板支架7上的基板8。
簇射板5具有面朝容器内部19的一个壁面和位于与该一个壁面的相反侧上的、对着容器内壁面(容器盖1的内壁面)的另一壁面。该簇射板5由作为固定构件的簇射板保持构件6以顶着容器盖1内壁面的状态固定着。簇射板保持构件6是金属制的。簇射板5由电介质构成,最好以氮化铝或氧化铝为主要成分。
在簇射板5上的区域内,在容器盖1上形成贯通容器盖1的开口部20a、20b。该开口20a、20b如可从图1及图2所知,具有垂直于图1纸面的方向延伸的缝状。该开口20a、20b上分别设置微波导入窗4a、4b。该微波导入窗4a、4b的断面形状如可从图1所知为反凸起状。微波导入窗4a、4b由电介质构成,最好以氮化铝或氧化铝为主要成分。微波导入窗4a、4b分别接触簇射板5的另一壁面(上表面)上。
在位于微波导入窗4a、4b上的区域内,波导管端部3a、3b设置在容器盖1的上部表面上。在该波导管端部3a、3b上形成保温流路12a、12b。该保温流路12a、12b是为使保温材料从其内部流过而设置的,这些保温材料用于将波导管端部3a、3b附近的温度保持为一定的温度。波导管13a、13b分别连接波导管端部3a、3b,波导管13a、13b用于将由微波发生构件(图中未示出)发生的微波传输给波导管端部3a、3b。在微波导入窗4a、4b与容器盖1的连接部上形成O型环槽18。O型环10设置在该O型环槽18内。由该O型环10,密封微波导入窗4a、4b和容器盖1的连接部。O型环9、10可将容器内部19与外部空气隔离。
在簇射板5上形成作为反应气体供给孔的多个气体导入孔21。气体导入孔21以从簇射板5的一个壁面至另一壁面贯通簇射板5的方式被形成。如图3所示,气体导入孔21以分布在簇射板5的整个表面上的方式被配置。
如从图3可知,2块簇射板5设置在等离子体处理装置中。作为防微波透射构件的为导电体板的金属制板16配置在簇射板5和容器盖1之间。在面对金属制板16的一个表面的容器盖1的内壁面上形成作为空间的槽。由该槽和金属制板16的一个表面构成作为反应气体供给路的反应气体流路15。金属制板16被插入在容器盖1内壁面上形成的插用槽内,且被固定住。金属制板16也可被簇射板5顶紧在容器盖1内壁面上而被固定,也可用螺钉等固定到容器盖1的内壁面。
如从图4及图5也可知,在容器盖1上于12个地方上形成作为反应气体流路15的槽。而且,设置金属制板16以覆盖各槽。在金属制板16上形成多个连接孔22,以便连接反应气体流路15和气体导入孔21。连接孔22以从金属制板16的一个表面到位于与该表面的相反侧的、接触簇射板5的另一表面贯通金属制板16的方式被形成。
在容器盖1上形成反应气体导入口14,该导入口14与反应气体流路15连接。反应气体供给装置由与反应气体导入口14连接的反应气体供给源(图未示出);反应气体导入口14;反应气体流路15;连接孔22;以及气体导入孔21构成。反应气体流路15的侧壁面包含金属制板16的一个表面(上表面),金属制板16位于反应气体流路15和簇射板5之间。金属制板16的厚度最好设定成比微波的表层厚度厚。
下面,把图1及图2所示的等离子体处理装置例如作为等离子体CVD(Chemica Vapor Desposition化学汽相淀积)装置使用时的工作进行说明。
首先,使用真空泵(图未示出)使容器内部19保持为真空状态。然后,作为成膜原料的反应气体从反应气体导入口14经反应气体流路15、连接孔22及气体导入孔21供给到容器内部19内。由于连接孔22及气体导入孔21以对着基板8的整个面分布的方式被形成,故能够在对着基板8的被处理面的整个面的位置上均匀地供给反应气体。通过调整该反应气体的压力及流量,可使容器内部19保持为规定的压力。在此状态下,从波导管13a、13b供给的微波经波导管端部3a、3b;波导管开口11a、11b;微波导入窗4a、4b;以及簇射板5传输给容器内部19并被发射。
导入容器内部19的反应气体受该微波激励而发生等离子体。可由该等离子体在设置在基板支架7上的基板8的表面上淀积规定材料的薄膜。微波导入窗4a、4b以及簇射板5分别由电介质构成,因此,微波经该微波导入窗4a、4b以及簇射板5传输到容器内部19。
此时,如上所述,金属制板16配置在反应气体流路15和簇射板5之间。该金属制板16是导电体,不会让微波透射。因此,传输给簇射板5的微波因为该金属制板16的存在而不会向反应气体流路15发射。其结果,能够防止在反应气体流路15内部,因微波引起的异常等离子体的发生。由此,能够防止因异常等离子体使反应气体流路15的内壁受到损伤。另外,还能够防止因该异常等离子体在反应气体流路15内部发生淀积物这样的问题。其结果,由于能够防止从反应气体流路15经连接孔22及气体导入孔21供给容器内部19的反应气体流量偏离规定流量,所以能够稳定地发生均匀的等离子体。从而可实现均匀的等离子体处理。
由于在簇射板5的另一壁面(上表面)上配置导热率比较高的金属制板16,故能够谋求簇射板5的表面内温度的均匀化。因此,在簇射板5上,局部因等离子体引起温度上升时,能够将出现这样的温度上升的区域的热量迅速地传输给另外的区域。其结果,能够防止簇射板5的局部温度上升引起的变形或损伤的发生。
由于能够可靠地防止微波从簇射板5侵入到反应气体流路15,故即使为了利用反应气体流路15作为使供给到容器内部19的反应气体的压力等均匀化用的缓冲室,而增大反应气体流路15的体积,也能够防止反应气体流路15内部发生异常等离子体。其结果,由于能够不发生异常等离子体地充分增大反应气体流路15的体积并作为缓冲室使用,故能够以更为均匀的条件向容器内部19供给反应气体。
因为金属能够比较容易地加工,所以能够比较容易地得到规定形状的作为防微波透射构件的金属性板16。因此,能够防止增大本发明的等离子体处理装置的制造成本。
如上所述,通过在容器盖1的内壁面上形成槽,能够容易地在簇射板5的另一壁面和容器盖1的内壁面的一部之间形成空间。因而,由于使金属制板16位于该反应气体流路15所包含的空间的在簇射板5侧的壁面上,故能够由金属制板16可靠地防止微波从簇射板5传输给反应气体流路15。
通过变更加工比较容易的金属制板16的连接孔22的直径,能够容易地变更供给到容器内部19的反应气体的流量等。
虽然簇射板5由电介质构成,但通过使用这样的微波能够透射的电介质来形成簇射板5,能可靠地将微波传输给容器内部19。
参照图1及图5,与反应气体流路15连接地形成的反应气体导入口14在偏离反应气体流路15的中央部的位置上形成。但是,因该反应气体流路15起到作为缓冲室的功能,所以对于从气体导入孔21导入到容器内部19的反应气体,可以充分的精度控制反应气体的流量等。
参照图6,说明本发明的等离子体处理装置的实施例1的变形例。
参照图6,等离子体处理装置基本上具备与图1-图5所示的等离子体处理装置相同的结构。但是,图6所示的等离子体处理装置中,对微波导入窗4a、4b和容器盖1的接合部处进行密封的O型环26、27的设置位置与图1-图5所示的等离子体处理装置不同。即,在图6所示的等离子体处理装置中,O型槽24、25在位于微波导入窗4a、4b上的波导管端部3a、3b下部表面上形成。在该O型环槽24、25内分别设置O型环26、27。这里,从波导管13a、13b供给的微波从波导管端部3a、3b的开口11a、11b分别经微波导入窗4a、4b传输给簇射板5。
在图6所示的等离子体处理装置中,能够得到与图1-图5所示的本发明的实施例1的等离子体处理装置所产生的效果相同的效果,而且,把O型环26、27设置在图6所示的位置上,因此,也可以把O型环26、27设置在距离从该微波导入窗4a、4b传输给簇射板5的微波的传输路经更远的位置上。因此,能够降低由微波对O型环26、27所产生的损伤。由此,最终可谋求O型环26、27的长寿命化。其结果,能够实现等离子体处理装置长期稳定的操作。
图6所示那样结构的O型环26、27也适用于后述的本发明的实施例2-4,可得到同样的效果。另外,考虑到金属制板16与供给的反应气体可能产生反应的情况下,对金属制板表面需要进行阳极氧化处理等表面处理。
(实施例2)参照图1及图3,在本发明的等离子体处理装置的实施例2中,把由氧化铝或氮化铝等的电介质构成的簇射板5的气体导入孔21的直径制作成例如1.0mm。为了变更供给到容器内部19的反应气体的流量等,而变更金属制板16的连接孔22的直径。具体地说,准备具有不同直径的多块金属制板16。由于这样的金属制板16的加工比簇射板5的加工更为容易,因此,能够更容易地得到本发明的等离子体处理装置。
如图3及图4所示,连接孔22的直径设定成比气体导入孔21的直径小。此时,能够使连接孔22的直径成为改变反应气体流量的支配因素。形成连接孔22的金属制板16的加工是比较容易,可进行高精度的加工。因此,通过变更连接孔22的直径,能够容易且可靠地变更经连接孔22及气体导入孔21供给到容器内部19的反应气体的流量。考虑到金属制板16与供给的反应气体可能产生反应的情况,对金属制板表面需要进行阳极氧化处理等表面处理。
(实施例3)本发明的等离子体处理装置的实施例3具有与图1-图6所示的本发明的实施例1的等离子体处理装置同样的结构,而且,金属制板16和容器盖1用相同的材料形成。如果这样做,基本上能够使金属制板16和容器盖1的热膨胀比例相等。因此,在金属制板16和容器盖1的温度随着等离子体处理而上升时,能够防止因金属制板16和容器盖1的热膨胀不同引起的金属制板16中发生变形或损伤。而且,考虑到用与容器盖1相同的材料制成的金属制板16与供给的反应气体可能产生反应的情况,对金属制板表面需要进行阳极氧化处理等表面处理。
(实施例4)本发明的等离子体处理装置的实施例4具有与图1-图6所示的本发明实施例1的等离子体处理装置基本相同的结构,但如图7及图8所示,反应气体流路15及金属制板16的形状与实施例1的不同。参照图7及图8,说明本发明的等离子处理装置的实施例4。图7与图4相对应,图8与图5相对应。
参照图7及图8,在等离子体处理装置中,成为将图5的反应气体流路15的3个相连结的结构。即,在容器盖1的内壁面上形成共计4个的成为反应气体流路15的槽(参照图8),这些槽分别夹着开口部20a、20b。而且,如图7所示,配置4块金属制板16用以覆盖这些槽。
此时,能够得到与本发明实施例1的等离子体处理装置相同的效果,且能够比实施例1的等离子体处理装置的金属制板16的构件数少,因此,可更容易地进行等离子体处理装置的维护。
本发明的实施例1-4示出的等离子体处理装置不限于CVD装置,例如在适用于蚀刻装置或灰化装置等情况下,也能得到上述的效果。
权利要求
1.一种等离子体处理装置,其特征在于具备处理室,具有内壁面,在内部进行使用了等离子体的处理;微波发射构件,具有面朝上述处理室内部的一个壁面和位于与该壁面相反侧上、对着上述处理室内壁面的另一壁面,配置该构件使得在该另一壁面和上述处理室的内壁面的一部之间形成一空间,该构件向上述处理室内部传输、发射微波;以及反应气体供给装置,向上述处理室内部供给被上述微波制成等离子体状态的反应气体,上述反应气体供给装置包含反应气体供给路,该供给路具有在上述微波发射构件的另一壁面和上述处理室内壁面的一部之间形成的空间,还具备防微波透射构件,被配置在上述微波发射构件的另一壁面上的面对上述反应气体供给路的区域上。
2.根据权利要求1所述的等离子体处理装置,其特征在于上述防微波透射构件的表面具有导电性。
3.根据权利要求2所述的等离子体处理装置,其特征在于上述防微波透射构件是导电体板。
4.根据权利要求1所述的等离子体处理装置,其特征在于在上述微波发射构件的另一壁面和上述处理室内壁面的一部之间形成的空间是由在上述处理室内壁面上形成的槽和上述防微波透射构件所围成的空间。
5.根据权利要求1所述的等离子体处理装置,其特征在于上述防微波透射构件具有一个与上述反应气体供给路连接的连接孔,该连接孔以从面对上述反应气体供给路的上述防微波透射构件的一个表面到位于与上述表面相反侧的、面对上述微波发射构件的上述防微波透射构件的另一表面贯穿上述防微波透射构件的方式被形成,上述微波发射构件具有与上述连接孔连接的反应气体供给孔,该供给孔以从上述微波发射构件的另一壁面到一个壁面贯通上述微波发射构件的方式被形成。
6.根据权利要求5所述的等离子体处理装置,其特征在于上述连接孔的直径比上述反应气体供给孔的直径小。
7.根据权利要求1所述的等离子体处理装置,其特征在于上述防微波透射构件用与构成上述处理室的材料相同的材料形成。
全文摘要
本发明提供一种能够防止异常等离子体的发生、可稳定地实施均匀的等离子体处理的等离子体处理装置。该等离子体处理装置具备:处理室(1、2);微波发射构件(5);以及反应气体供给装置(14、15、21、22),反应气体供给装置包含反应气体供给路(15),该供给路具有在微波发射构件的另一壁面和处理室内壁面的一部之间形成的空间,还具备防微波透射构件(16),该防微波透射构件被配置在微波发射构件的另一壁面上的面对反应气体供给路的区域上。
文档编号H01J37/32GK1322007SQ01120789
公开日2001年11月14日 申请日期2001年3月21日 优先权日2000年3月21日
发明者钟筑律夫, 田寺孝光, 山本达志, 平山昌树, 大见忠弘 申请人:夏普公司, 大见忠弘
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1