异构电机共定子多驱动宏微一体化高速精密运动二维平台的制作方法

文档序号:3161531阅读:191来源:国知局
异构电机共定子多驱动宏微一体化高速精密运动二维平台的制作方法
【专利摘要】本实用新型提出一种异构电机共定子多驱动宏微一体化高速精密运动二维平台,包括X/Y向基座、X/Y向导轨、滑块、U型直线电机、平板电机、U型直线电机定子、宏动动子、微动动子和宏微一体化平台。所述宏动平台与所述微动平台通过弹性构件联接形成一体化平台,安装在X向基座的定子为宏动平台的动子与控制微动平台X向微运动的动子共用,Y向通过压电陶瓷或解耦音圈电机进行精密位移补偿,当宏微动子同时驱动时,可实现整体大范围的高速运动;当出现运动偏差时,微动平台由于惯量小、无摩擦、通过弹性变形实现精密位移输出,可单独驱动实现高频运动偏差补偿。通过复合运动控制,可实现二维高速精密运动,安装使用方式与传统平台一致,方便推广应用。
【专利说明】异构电机共定子多驱动宏微一体化高速精密运动二维平台

【技术领域】
[0001]本实用新型涉及精密运动平台,尤其涉及异构电机共定子多驱动宏微一体化高速精密运动二维平台。

【背景技术】
[0002]随着科技的进步,人们对产品的要求越来越高,促使生产商对产品的加工精度要求也越来越高,现有设备中高精度进给运动平台的行程普遍较短,而大行程的普通宏运动设备的精度又无法满足实际需求,如果采用专用的大行程高精度运动设备,产品的制造成本将大幅增加。针对上述现状,一种能将大行程一般精度的宏运动和高精度小行程的微运动相复合的可以实现大行程高精度进给,且具有多方向的运动平台越来越受到行业的青睐。
实用新型内容
[0003]本实用新型的目的在于提出异构电机共定子多驱动宏微一体化高速精密运动二维平台,采用共用定子实现二维宏微运动的大行程高精度的进给。
[0004]为达此目的,本实用新型采用以下技术方案:
[0005]异构电机共定子多驱动宏微一体化高速精密运动二维平台,包括X向基座、Y向基座和一体化平台;
[0006]所述一体化平台包括宏动外框架和微动平台,所述微动平台包括X向微平台、X向弹片组、Y向微平台、Y向弹片组和Y向微驱动,具有弹性的所述X向弹片组设置于所述X向微平台的两侧,其一端连接于所述宏动外框架的内侧壁,另一端连接于所述X向微平台;具有弹性的所述Y向弹片组设置于所述Y向微平台的两侧,其一端连接于所述X向微平台的内侧壁,另一端连接于所述Y向微平台;所述X向弹片组和Y向弹片组相互垂直,用于放置工件的工作平台刚性连接于所述Y向微平台;
[0007]所述X向基座设置有X向导轨、X向滑块和X向U型直线电机,所述X向滑块可滑动于所述X向导轨,所述X向U型直线电机包括X向定子、宏动外框架动子、X向微动平台动子和连接件,X向运动和X向微运动共用同一个所述X向定子;
[0008]所述宏动外框架固定安装于所述X向滑块,并通过所述连接件连接于所述宏动外框架动子,由所述宏动外框架动子、所述X向微动平台动子和所述X向定子控制其滑动于所述X向导轨实现X向宏运动;
[0009]所述Y向微驱动包括Y向微音圈电机和Y向微连接板,所述Y向微音圈电机固定于所述Y向微连接板,所述Y向微连接板固定于所述X向微平台的底部,所述Y向微平台由所述Y向微音圈电机控制其在Y向的微运动;
[0010]所述Y向微连接板的底部通过连接件于所述X向微动平台动子,并由所述X向微动平台动子控制其在所述X向定子在X向的微运动;
[0011]所述Y向基座设置有Y向导轨、Y向滑块和Y向平板直线电机,所述Y向导轨设置在所述Y向基座表面上的两侧,所述Y向滑块可滑动于所述Y向导轨,所述Y向平板直线电机安装于任一侧的所述Y向导轨上,所述X向基座在X方向上的两侧通过固定于所述Y向滑块,并通过宏动连接件连接于所述Y向平板直线电机的动子,并由所述Y向平板直线电机控制其滑动于所述Y向导轨实现Y向宏运动。
[0012]更进一步说明,所述宏动外框架动子设置有两个,分别设置在所述宏动外框架的进给方向的两端。
[0013]更进一步说明,所述X向微平台、所述X向弹片组、所述Y向微平台、所述Y向弹片组、所述工作平台和所述宏动外框架为一体式结构。
[0014]更进一步说明,所述的X向弹片组和Y向弹片组中各自的弹片均为平行布置,且弹片的长度方向分别垂直于X向微平台和Y向微平台的进给方向。
[0015]更进一步说明,所述宏动外框架在其与所述X向弹片组的相连接处设置有X向槽,使所述宏动外框架的内侧形成较薄的可变形的X向微平台弹性件。
[0016]更进一步说明,所述宏动外框架31设有调节X向微平台弹性件变形度的X向频率调节机构。
[0017]更进一步说明,所述X向频率调节机构为穿过所述X向槽的螺栓,其两端分别连接于所述X向槽的两侧。
[0018]更进一步说明,所述Y向微平台在其内侧转角处设置有圆弧形内嵌式孔槽。
[0019]更进一步说明,在所述X向微平台和所述Y向微平台的进给方向的端部分别设置有X向位移传感器和Y向位移传感器。
[0020]更进一步说明,所述X向位移传感器或所述Y向位移传感器为差动电容传感器或光电传感器。
[0021]本实用新型提出一种异构电机共定子多驱动宏微一体化高速精密运动二维平台,包括X/Y向基座、X/Y向导轨、滑块、U型直线电机、平板电机、U型直线电机定子、宏动动子、微动动子和宏微一体化平台。所述宏动平台与所述微动平台通过弹性构件联接形成一体化平台,安装在X向基座的定子为宏动平台的动子与控制微动平台X向微运动的动子共用,Y向通过压电陶瓷或解耦音圈电机进行精密位移补偿,当宏微动子同时驱动时,可实现整体大范围的高速运动;当出现运动偏差时,微动平台由于惯量小、无摩擦、通过弹性变形实现精密位移输出,可单独驱动实现高频运动偏差补偿。通过复合运动控制,可实现二维高速精密运动,安装使用方式与传统平台一致,方便推广应用。
[0022]本实用新型的有益效果:1、X向宏运动和X向微运动共用同一个定子,结构简单,提供的驱动力更大,负载能力也更大,更为企业接受;2、宏动外框架与微动平台为一体化平台,由整块材料经过铣削、电火花加工等方式获取,避免了零件的装配误差,可以提高平台运动精度;4、适用于大范围的工作空间。

【专利附图】

【附图说明】
[0023]图1是本实用新型的一个实施例的结构示意图;
[0024]图2是本实用新型的一个实施例的拆分结构示意图;
[0025]图3是本实用新型的一个实施例的微动平台的结构示意图;
[0026]图4是图3中AA方向的剖面结构示意图;
[0027]图5是本实用新型的一个实施例的微动平台的结构示意图。
[0028]其中:X向基座1、Y向基座2、一体化平台3、宏动外框架31、微动平台4、Χ向微平台41、X向弹片组42、Y向微平台43、Y向弹片组44、Y向微驱动45、X向位移传感器46、Y向位移传感器47、X向导轨11、X向滑块12、Χ向U型直线电机13、X向定子131、宏动外框架动子132、X向微动平台动子133、连接件134、Y向导轨21、Y向滑块22、Y向平板直线电机23、宏动连接件24、X向槽311、X向微平台弹性件312、孔槽431、Y向微音圈电机451、Y向微连接板452。

【具体实施方式】
[0029]下面结合附图并通过【具体实施方式】来进一步说明本实用新型的技术方案。
[0030]如图1或图2所示,异构电机共定子多驱动宏微一体化高速精密运动二维平台,包括X向基座1、Y向基座2和一体化平台3 ;
[0031]所述一体化平台3包括宏动外框架31和微动平台4,如图3或图4所示,所述微动平台4包括X向微平台41、Χ向弹片组42、Υ向微平台43、Υ向弹片组44和Y向微驱动45,具有弹性的所述X向弹片组42设置于所述X向微平台41的两侧,其一端连接于所述宏动外框架31的内侧壁,另一端连接于所述X向微平台41 ;具有弹性的所述Y向弹片组44设置于所述Y向微平台43的两侧,其一端连接于所述X向微平台41的内侧壁,另一端连接于所述Y向微平台43 ;所述X向弹片组42和Y向弹片组44相互垂直,用于放置工件的工作平台刚性连接于所述Y向微平台43 ;
[0032]如图2所示,所述X向基座I设置有X向导轨11、X向滑块12和X向U型直线电机13,所述X向滑块12可滑动于所述X向导轨11,所述X向U型直线电机13包括X向定子131、宏动外框架动子132、X向微动平台动子133和连接件134,X向运动和X向微运动共用同一个所述X向定子131 ;
[0033]所述宏动外框架31固定安装于所述X向滑块12,并通过所述连接件134连接于所述宏动外框架动子132,由所述宏动外框架动子132、所述X向微动平台动子133和所述X向定子121控制其滑动于所述X向导轨11实现X向宏运动;
[0034]如图3所示,所述Y向微驱动45包括Y向微音圈电机451和Y向微连接板452,所述Y向微音圈电机451固定于所述Y向微连接板452,所述Y向微连接板452固定于所述X向微平台41的底部,所述Y向微平台43由所述Y向微音圈电机451控制其在Y向的微运动;
[0035]所述Y向微连接板452的底部通过连接件134于所述X向微动平台动子133,并由所述X向微动平台动子133控制其在所述X向定子131在X向的微运动;
[0036]如图1或图2所示,所述Y向基座2设置有Y向导轨21、Y向滑块22和Y向平板直线电机23,所述Y向导轨21设置在所述Y向基座2表面上的两侧,所述Y向滑块22可滑动于所述Y向导轨21,所述Y向平板直线电机23安装于任一侧的所述Y向导轨21上,所述X向基座I在X方向上的两侧通过固定于所述Y向滑块22,并通过宏动连接件24连接于所述Y向平板直线电机23的动子,并由所述Y向平板直线电机23控制其滑动于所述Y向导轨21实现Y向宏运动。Y向平板直线电机23安装于任一侧的Y向导轨21上,采用单边驱动,适用于大范围的工作空间。
[0037]基于U型直线电机和平板直线电机实现的二维宏微运动,可大行程的运动范围,惯量小,响应速度快,其中包括对宏动外框架31的宏运动大行程的调节,同时也包括对微动平台4在微运动上实现精密定位,使本实用新型二维宏微一体化平台可实现大范围且精准的移动定位。控制器向宏动外框架31和微动平台4发出位移指令,宏动外框架31与微动平台4的一体化设计,使宏动外框架31在X向基座I和Y向基座2的U型直线电机的带动下实现在X向和Y向的二维宏运动的同时带动微动平台4 一起向预期位置移动,由多个动子一起提供动力实现高速运动,提供的驱动力更大,负载能力也更大,当微动平台4到达预期位置时,控制器向X向微动平台动子133和Y向微驱动45发出信号,驱动微动平台4主动实时补偿宏动外框架31相对预期位置X向和Y向位移的波动,直至放置在工作平台的工件到达预期位置,实现二维宏微一体化平台的高动态精度。
[0038]宏动外框架动子132和X向微动平台动子133共用同一个定子131,结构简单,提供的驱动力更大,负载能力也更大,更为企业接受。宏动外框架31与所述微动平台4形成一体化平台,由整块材料经过铣削、电火花加工等方式获取,避免了零件的装配误差,可以提高平台运动精度。
[0039]如图5所示,Y向微驱动45可以是U型直线电机包括Y向微驱动动子和Y向微驱动定子,Y向微驱动定子固定于X向微平台41,Y向微驱动动子连接Y向微平台43,Y向微平台43由Y向微驱动45控制其在Y向的微运动。
[0040]更进一步说明,所述宏动外框架动子132设置有两个,分别设置在所述宏动外框架31的进给方向的两端。微动平台4设置在宏动外框架31的框架中部,因此设置有两个宏动外框架动子132,分别设置在宏动外框架31的进给方向的两端,使宏动外框架31的受力更均衡,响应更快,更稳定。
[0041]更进一步说明,所述X向微平台41、所述X向弹片组42、所述Y向微平台43、所述Y向弹片组44、所述工作平台和所述宏动外框架31为一体式结构。宏动外框架31与微动平台4的一体化设计,结构紧凑,是由整块材料经过铣削、电火花加工等方式获取,避免了零件的装配误差,可以提高平台运动精度。
[0042]更进一步说明,所述的X向弹片组42和Y向弹片组44中各自的弹片均为平行布置,且弹片的长度方向分别垂直于X向微平台42和Y向微平台43的进给方向。各自平行布置的X向弹片组42和Y向弹片组44有效的限位微动平台4在二维上的运动,在所述X向弹片组42和Y向弹片组44的牵制作用下,所述微动平台4上的工作平台在非进给方向的运动被抑制。
[0043]更进一步说明,所述宏动外框架31在其与所述X向弹片组42的相连接处设置有X向槽311,使所述宏动外框架31的内侧形成较薄的可变形的X向微平台弹性件312。设置有可变形的X向微平台弹性件312,使微动平台4在结构固有频率的具有动态可调整性。
[0044]更进一步说明,所述宏动外框架31设有调节X向微平台弹性件312变形度的X向频率调节机构313。通过X向频率调节机构313改变X向弹片组42的松紧程度可以改变上述微运动中的机构固有频率,从而改变微动平台4的运动特性。
[0045]更进一步说明,所述X向频率调节机构313为穿过所述X向槽311的螺栓,其两端分别连接于所述X向槽311的两侧。所述螺栓可手动调节长度方向产生位移,改变X向微平台弹性件312的变形度,进而改变X向弹片组42的弹片张紧力,实现对微动平台4的结构固有频率的动态调整。
[0046]更进一步说明,如图5所示,所述Y向微平台43在其内侧转角处设置有圆弧形内嵌式孔槽431。上述孔槽431设置目的在于保证本实用新型中的频率调节装置可以较好地调节Y向弹片组44的弹片张紧力。
[0047]更进一步说明,在所述X向微平台42和所述Y向微平台43的进给方向的端部分别设置有X向位移传感器45和Y向位移传感器46。用于所述检测X向微平台42和Y向微平台43的在X向和Y向的微位移。
[0048]更进一步说明,所述X向位移传感器45或所述Y向位移传感器46为差动电容传感器或光电传感器。差动电容传感器机械位移少,精度高,抗干扰性更好,光电传感器具有精度高、反应快、非接触等优点,结构简单,体积小,都可作为位移传感器的选择。
[0049]以上结合具体实施例描述了本实用新型的技术原理。这些描述只是为了解释本实用新型的原理,而不能以任何方式解释为对本实用新型保护范围的限制。基于此处的解释,本领域的技术人员不需要付出创造性的劳动即可联想到本实用新型的其它【具体实施方式】,这些方式都将落入本实用新型的保护范围之内。
【权利要求】
1.异构电机共定子多驱动宏微一体化高速精密运动二维平台,其特征在于:包括X向基座、V向基座和一体化平台; 所述一体化平台包括宏动外框架和微动平台,所述微动平台包括X向微平台、X向弹片组、V向微平台、V向弹片组和V向微驱动,具有弹性的所述X向弹片组设置于所述X向微平台的两侧,其一端连接于所述宏动外框架的内侧壁,另一端连接于所述X向微平台;具有弹性的所述V向弹片组设置于所述V向微平台的两侧,其一端连接于所述X向微平台的内侧壁,另一端连接于所述V向微平台;所述X向弹片组和V向弹片组相互垂直,用于放置工件的工作平台刚性连接于所述V向微平台; 所述X向基座设置有X向导轨、X向滑块和X向I型直线电机,所述X向滑块可滑动于所述X向导轨,所述X向I型直线电机包括X向定子、宏动外框架动子、X向微动平台动子和连接件,X向运动和X向微运动共用同一个所述X向定子; 所述宏动外框架固定安装于所述X向滑块,并通过所述连接件连接于所述宏动外框架动子,由所述宏动外框架动子、所述X向微动平台动子和所述X向定子控制其滑动于所述X向导轨实现X向宏运动; 所述V向微驱动包括V向微音圈电机和^向微连接板,所述V向微音圈电机固定于所述V向微连接板,所述V向微连接板固定于所述X向微平台的底部,所述V向微平台由所述X向微音圈电机控制其在X向的微运动; 所述V向微连接板的底部通过连接件于所述X向微动平台动子,并由所述X向微动平台动子控制其在所述X向定子在X向的微运动; 所述V向基座设置有V向导轨、V向滑块和V向平板直线电机,所述V向导轨设置在所述V向基座表面上的两侧,所述V向滑块可滑动于所述V向导轨,所述V向平板直线电机安装于任一侧的所述V向导轨上,所述X向基座在X方向上的两侧通过固定于所述V向滑块,并通过宏动连接件连接于所述V向平板直线电机的动子,并由所述V向平板直线电机控制其滑动于所述V向导轨实现V向宏运动。
2.根据权利要求1所述的异构电机共定子多驱动宏微一体化高速精密运动二维平台,其特征在于:所述宏动外框架动子设置有两个,分别设置在所述宏动外框架的进给方向的两端。
3.根据权利要求1所述的异构电机共定子多驱动宏微一体化高速精密运动二维平台,其特征在于:所述X向微平台、所述X向弹片组、所述V向微平台、所述V向弹片组、所述工作平台和所述宏动外框架为一体式结构。
4.根据权利要求1所述的异构电机共定子多驱动宏微一体化高速精密运动二维平台,其特征在于:所述的X向弹片组和V向弹片组中各自的弹片均为平行布置,且弹片的长度方向分别垂直于X向微平台和X向微平台的进给方向。
5.根据权利要求1所述的异构电机共定子多驱动宏微一体化高速精密运动二维平台,其特征在于:所述宏动外框架在其与所述X向弹片组的相连接处设置有X向槽,使所述宏动外框架的内侧形成较薄的可变形的X向微平台弹性件。
6.根据权利要求5所述的异构电机共定子多驱动宏微一体化高速精密运动二维平台,其特征在于:所述宏动外框架设有调节X向微平台弹性件变形度的X向频率调节机构。
7.根据权利要求6所述的异构电机共定子多驱动宏微一体化高速精密运动二维平台,其特征在于:所述X向频率调节机构为穿过所述X向槽的螺栓,其两端分别连接于所述X向槽的两侧。
8.根据权利要求1所述的异构电机共定子多驱动宏微一体化高速精密运动二维平台,其特征在于:所述V向微平台在其内侧转角处设置有圆弧形内嵌式孔槽。
9.根据权利要求1所述的异构电机共定子多驱动宏微一体化高速精密运动二维平台,其特征在于:在所述X向微平台和所述V向微平台的进给方向的端部分别设置有X向位移传感器和X向位移传感器。
10.根据权利要求9所述的异构电机共定子多驱动宏微一体化高速精密运动二维平台,其特征在于:所述X向位移传感器或所述V向位移传感器为差动电容传感器或光电传感器。
【文档编号】B23Q5/28GK204248537SQ201420723955
【公开日】2015年4月8日 申请日期:2014年11月26日 优先权日:2014年11月26日
【发明者】王梦, 杨志军, 陈新, 白有盾, 高健, 李涵雄, 黄宇涵, 李成祥, 王江龙, 余明峰, 刘浩文, 李振新, 钟裕导, 刘伟光, 杨海东, 管贻生, 陈新度 申请人:广东工业大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1