成膜方法、清洁方法和成膜装置的制作方法

文档序号:3249389阅读:307来源:国知局
专利名称:成膜方法、清洁方法和成膜装置的制作方法
技术领域
本发明涉及在腔室内、从喷淋头喷出包含TiCU气体这样的氯化金 属化合物气体的处理气体,在腔室内配置的被处理基板的表面上形成 金属膜或金属化合物膜的成膜方法,实施这种成膜方法的腔室内的清 洁方法和成膜装置。
背景技术
在半导体器件的制造工序中,在作为被处理基板的半导体晶片(以 下简称为晶片)上进行成膜处理、蚀刻处理等各种气体处理。这种气 体处理通过将晶片收容在腔室内,使腔室内减压,并从设置在腔室上 部的喷淋头,供给反应性气体(腐蚀性气体)、例如包含C1、 F等卤素 的处理气体进行。例如,在Ti、 TiN等的Ti系膜的CVD成膜处理中, 将晶片加热至例如450 70(TC左右,根据需要,使处理气体等离子体 化,在规定的减压下,将作为处理气体(成膜气体)的TiCU气体和还 原气体等导入腔室内,进行成膜处理。
当反复进行这种成膜处理时,副生成物附着在喷淋头和腔室壁等 上,当这种附着的副生成物剥落时,就成为颗粒,因此通过定期地或 根据需要将清洁气体供给至腔室内,进行干清洁。作为这种清洁气体, 因为不用等离子体,能够几乎完全地清洁腔室内,因此多使用C1F3气 体(特开平10-189488号公报)。
然而,由于C1F3气体容易与作为处理装置的腔室材料的Al或Ni、 Ni系合金和作为基板的载置台或加热器材料的碳、SiN、AlN等都反应, 不得不将清洁温度降低至20(TC左右。由于这样,在成膜和清洁时,需 要时间使腔室内升降温,成为在半导体器件的制造工序中,生产率大 大降低的原因。
相对于此,在特开平10-189488号公报中,公开了Cl2气体作为清 洁气体,因为记载此时的温度为625r,所以清洁温度比C1F3气体高,能够在成膜温度附近进行清洁,不产生生产率降低的问题。
然而,在特开平10-189488号公报所公开的技术中,对清洁时的详
细条件未必清楚,实际上副生成物不能充分地除去,在腔室壁或腔室
内部件上产生损伤等,不管该文献的存在,现状是使用Cl2气体等氯系
气体的清洁还未实用化。

发明内容
本发明的目的在于提供一种使用TiCU这样的氯化金属化合物气体 作为处理气体、形成金属膜或金属化合物膜时,对腔室壁等不产生损 伤,可以可靠地对清洁对象部位进行清洁的成膜方法、清洁方法和成
膜装置。
根据本发明的第一观点,提供一种成膜方法,其包括在腔室内
的基板载置台上载置被处理基板,对上述腔室内进行排气,并在将上 述基板载置台的温度设定为规定温度的状态下,从设置在上述腔室内
的气体喷出部件喷出包含氯化金属化合物气体的处理气体,利用CVD
在被处理体的表面上形成金属膜或金属化合物膜的工序;和在上述腔
室内不存在被处理基板的状态下,从上述气体喷出部件向上述腔室内
喷出包含Cl2气体的清洁气体,对上述腔室内进行清洁的工序,上述清
洁工序分别独立地控制上述基板载置台的温度、上述喷出部件的温度
和上述腔室壁部的温度,使清洁对象部位的温度为Cl2气体的分解开始
温度以上,并且使非清洁对象部位的温度低于分解开始温度。
在上述第一观点中,可以使用TiCU气体作为上述氯化金属化合物 气体,使用Ti作为上述金属。
另外,在上述第一观点中,可以使用包含TiCU气体和含氮气体的 气体作为上述处理气体,在上述成膜工序中,将上述基板载置台的温 度设定为400 700°C,将上述气体喷出部件和上述腔室壁部的温度设 定为副生成物难以附着的150 250。C,利用热CVD在被处理基板的表 面形成TiN膜作为金属化合物膜,在上述清洁工序中,上述基板载置 台为上述清洁对象部位,进行控制,使其温度为Cl2气体的分解开始温 度以上;上述气体喷出部件和上述腔室的壁部为上述非清洁对象部位, 进行控制,使其温度为分解开始温度以下,并且为上述成膜工序时的温度附近的温度。
另外,可以使用包含TiCU气体和还原气体的气体作为上述处理气 体,在上述成膜工序中,将上述基板载置台的温度设定为400 70(TC, 将上述气体喷出部件的温度设定为400 500°C,将上述腔室壁部的温 度设定为150 250°C,利用等离子体CVD在被处理基板的表面形成 Ti膜作为金属膜,在上述清洁工序中,上述基板载置台和上述气体喷 出部件为上述清洁对象部位,进行控制,使它们的温度为Cl2气体的分 解开始温度以上;上述腔室的壁部为h述非清洁对象部位,进行控制, 使其温度为分解开始温度以下。
另外,在上述清洁工序中,可以控制上述腔室内的压力,控制Cl2 气体的分解开始温度,可以根据上述清洁对象部位的温度,控制上述 腔室内的压力,使Cl2气体的分解开始温度为规定的温度。
另外,在上述清洁工序中,可以通过使清洁气体等离子体化,辅 助丄:述腔室壁部的清洁。在这种情况下,上述清洁气体的等离子体化 利用远程等离子体进行。另外,上述清洁气体还可以包含还原剂,还 可以包含C1F3气体。上述清洁工序,优选使清洁对象部位的温度为成 膜时的温度附近的温度而进行。
根据本发明的第二观点,提供一种清洁方法,其在腔室内的基板 载置台上载置被处理基板,对上述腔室内进行排气,并在将上述基板 载置台的温度设定为规定温度的状态下,从设置在腔室内的气体喷出 部件喷出包含氯化金属化合物气体的处理气体,在上述基板载置台上 的被处理体表面上形成金属膜或金属化合物膜后,对上述腔室内进行
清洁,该清洁方法,使用包含Cl2气体的清洁气体,在上述腔室内不存
在被处理基板的状态下,分别独立地控制上述基板载置台的温度、上 述喷出部件的温度和上述腔室壁部的温度,使清洁对象部位的温度为 Cb气体的分解开始温度以上,并且使非清洁对象部位的温度低于分解 开始温度,同时向上述腔室内导入清洁气体。
在上述第二观点中,可以使用TiCU气体作为上述氯化金属化合物 气体,使用Ti作为上述金属。
另外,可以控制上述腔室内的压力,控制Cl2气体的分解开始温度, 可以根据上述清洁对象部位的温度,控制上述腔室内的压力,使Cl2气体的分解开始温度为规定的温度。
另外,可以通过使上述清洁气体等离子体化,辅助上述腔室壁部 的清洁,在这种情况下,上述清洁气体的等离子体化利用远程等离子 体进行。另外,上述清洁气体还可以包含还原剂。另外,还可以包含 C1F3气体,优选使清洁对象部位的温度为成膜时的温度附近的温度。
根据本发明的第三观点,提供一种成膜装置,其在被处理基板的 表面上形成金属膜或金属化合物膜,具有腔室,收容被处理基板; 基板载置台,在上述腔室内载置被处理基板;处理气体供给机构,将 包含氯化金属化合物气体的处理气体供给至上述腔室内;清洁气体供 给机构,将包含Cl2气体的清洁气体供给至上述腔室内;气体喷出机构,
设置在上述腔室内,将上述处理气体和上述清洁气体喷出至上述腔室
内;排气机构,对上述腔室内进行排气;加热机构,分别独立地加热 上述基板载置台、上述气体喷出部件、上述腔室的壁部;和控制机构, 在供给上述清洁气体时,分别独立地控制上述基板载置台的温度、上 述喷出部件的温度和上述腔室壁部的温度,使清洁对象部位的温度为 Cl2气体的分解开始温度以上,并且使非清洁对象部位的温度低于分解 开始温度。
在上述第三观点中,上述处理气体供给机构供给TiCU气体作为上 述氯化金属化合物气体,形成Ti膜成Ti化合物膜。
另外,上述控制机构可以控制上述腔室内的压力,控制Cl2气体的 分解开始温度。可以根据上述清洁对象部位的温度,控制上述腔室内
的压力,使Cl2气体的分解开始温度为规定的温度。
还可以具有使上述处理气体等离子体化的等离子体生成机构。还 可以具有使上述清洁气体等离子体化、辅助清洁的等离子体化机构, 在这种情况下,上述等离子体化机构可以具有远程等离子体源。另外, 上述清洁对象部位可以由Al化合物或者Ni或Ni化合物构成。另外, 上述清洁气体供给机构可以供给还包含还原剂的清洁气体,可以供给 还包含C1F3气体的清洁气体。上述控制机构优选将清洁对象部位的温 度控制在成膜时的温度附近的温度。
根据本发明的第四观点,提供一种存储介质,其存储有用于在计 算机上动作、控制成膜装置的程序,上述程序执行时,使计算机控制上述成膜装置,使得进行成膜方法,该成膜方法包括在腔室内的基 板载置台上载置被处理基板,对上述腔室内进行排气,并在将上述基 板载置台的温度设定为规定温度的状态下,从设置在上述腔室内的气 体喷出部件喷出包含氯化金属化合物气体的处理气体,利用CVD在被 处理体的表面上形成金属膜或金属化合物膜的工序;和在上述腔室内 不存在被处理基板的状态下,从上述气体喷出部件向上述腔室内喷出 包含Cl2气体的清洁气体,对上述腔室内进行清洁的工序,上述清洁工 序分别独立地控制上述基板载置台的温度、上述喷出部件的温度和上 述腔室壁部的温度,使清洁对象部位的温度为Cl2气体的分解开始温度
以上,并且使非清洁对象部位的温度低于分解开始温度。
采用本发明,由于作为清洁气体使用活性比现有的C1F3气体低、 与附着在腔室内的材料的反应性高的Cb气体,分别独立地控制基板载
置台的温度、喷出部件的温度和腔室壁部的温度,使清洁对象部分的
温度为Cl2气体的分解开始温度以上,其以外的非清洁对象部位的温度
为分解开始温度以下的难以受损伤的温度,从而进行清洁,因此对腔 室壁等不产生损伤,能够可靠地对清洁对象部位进行清洁。


图1为表示本发明一个实施方式的Ti系膜的成膜方法实施中使用 的Ti膜成膜装置一个例子的大致截面图。
图2为表示本发明一个实施方式的Ti系膜的成膜方法的流程图。 图3为表示基座温度与Cl2气体引起的TiN膜蚀刻速度的关系的图形。
图4为表示在使腔室内压力变化的情况下,各压力下的基座温度 与Cl2气体引起的TiN膜蚀刻速度的关系的图形。
图5为表示在使腔室内压力变化的情况下,Cl2气体流量与TiN膜 的蚀刻速度的关系的图形。
图6为表示在使基座温度和Cl2气体流量变化的情况下,腔室内压 力与Cl2气体引起的TiN膜蚀刻速度的关系的图形。
图7为在清洁气体中暴露之前的A1N测试片的表面的2000倍扫描 型电子显微镜(SEM)照片。图8为使用Cl2气体在700°C下暴露后的A1N测试片的表面的2000 倍扫描型电子显微镜(SEM)照片。
图9为使用C1F3气体在70(TC下暴露后的A1N测试片的表面的 2000倍扫描型电子显微镜(SEM)照片。
图10A为表示使用现有的C1F3气体作为清洁气体时的清洁工序时 间表的图。
图10B为表示使用本发明的Cl2气体作为清洁气体时的清洁工序 的时间表的图。
图11为表示形成TiN膜时的温度与附着物的形式等的关系的图。 图12为说明调查本发明的Cl2气体清洁对成膜的影响的实验顺序
的流程图。
图13为表示ClF3清洁+预涂后的25块晶片上形成的Ti膜的电阻 值和偏差,以及Cl2清洁+预涂后的25块晶片上形成的Ti膜的电阻值 和偏差的图形。
具体实施例方式
以下,参照附图,具体地说明本发明的实施方式。
图1为表示本发明一个实施方式的Ti系膜的成膜方法实施中使用 的成膜装置一个例子的大致截面图。因为TiN膜成膜装置和Ti膜成膜 装置一般具有相互极其类似的结构,因此在这里,作为成膜装置,说 明在TiN成膜和在Ti膜成膜中都可以使用的装置。
该Ti膜成膜装置100具有大致圆筒状的腔室1。该腔室1例如由 铝或铝合金(例如JISA5052)构成。用于水平地支撑作为被处理基板 的晶片W的基座(载置台)2,在由设在其中央下部的圆筒状支撑部 件3支撑的状态下,配置在腔室l的内部。基座2例如由A1N等陶瓷 构成,在内部埋有加热器5。该加热器5通过从加热器电源6供电,将 作为被处理基板的晶片W加热至规定的温度。作为加热温度,可以例 示400 700°C 。在基座2的外缘部上设置有用于引导晶片W的导向环 4。该导向环4例如由八1203构成。另外,在基座2的表面附近埋设有 作为平行平板电极的下部电极起作用的电极8。该电极8接地。
腔室1的顶壁la隔着绝缘部件9设置有作为平行平板电极的上部电极起作用的喷淋头10。该喷淋头10由上层块体10a、中层块体10b、 下层块体10c构成,为大致圆盘状。上层块体10a具有与中层块体
10b和下层块体10c —起构成喷淋头本体部的水平部10d;和与该水平
部10d的外周上方连接的环状支撑部10e,并形成为凹状。全体喷淋头 10由该环状支撑部10e支撑。在使用成膜装置100作为热CVD的TiN 膜成膜装置的情况下,喷淋头10由Al或Al合金构成;在使用成膜装 置100作为等离子体CVD的Ti膜成膜装置的情况下,喷淋头10由包 含Ni的材料、典型地由纯Ni或Ni基合金构成。在下层块体10c中交 替形成喷出气体的喷出孔17和18。在上层块体10a的上表面形成第一 气体导入口 11和第二气体导入口 12。在上层块体10a中,从第一气体 导入口 11分支出多个气体通路13。在中层块体10b中形成有气体通路 15。上述气体通路13通过水平延伸的连通路13a与这些气体通路15 连通。另外,该气体通路15与下层块体10c的喷出孔17连通。另外, 在上层块体10a中,从第二气体导入口 12分支出多个气体通路14。在 中层块体10b中形成有气体通路16。上述气体通路14与这些气体通路 16连通。该气体通路16与在中层块体10b内水平延伸的连通路16a连 接。该连通路16a与下层块体10c的多个喷出孔18连通。另外,上述 第一和第二气体导入口 11、 12与气体供给机构20的气体管线连接。
气体供给机构20具有供给作为清洁气体的Cl2气体的Cl2气体供给 源21、供给作为Ti化合物气体的TiCU气体的TiCU气体供给源22、 供给载气的载气供给源23、供给作为还原气体的H2气体的H2气体供 给源24、供给作为氮化气体的NH3气体的NH3气体供给源25、供给 N2气体的N2气体供给源26。而且,Cb气体供给管线27和30c与Cl2 气体供给源21连接,TiCU气体供给管线28与TiCU气体供给源22连 接,载气供给管线29与载气供给源23连接,H2气体供给管线30与 &气体供给源24连接,NH3气体供给管线30a与NH3气体供给源25 连接,N2气体供给管线30b与N2气体供给管线26连接。在各气体管 线上设置有质量流量控制器32和夹着质量流量控制器32的二个阀31。 在Cl2气体供给管线27和30c上分别设置有远程等离子体源51和52, 利用这些,使在Cl2气体供给管线27和30c中流动的作为清洁气体的
Cl2气体等离子体化。从TiCU气体供给源22延伸的TiCU气体供给管线28与上述第一气体导入口 11连接。从Cl2气体供给源21延伸的Cl2气体供给管线27和从载气供给源23延伸的载气供给管线29与该TiCl4气体供给管线28连接。另外,从H2气体供给源24延伸的H2气体供给管线30与上述第二气体导入口 12连接。从NH3气体供给源25延伸的NH3气体供给管线30a、从N2气体供给源26延伸的N2气体管线30b和从012气体供给源21延伸的Cl2气体供给管线30c与该H2气体供给管线30连接。另外,载气供给源23在形成TiN膜的情况下使用N2气体,在形成Ti膜的情况下使用Ar气体。
在TiN成膜处理时,来自TiCU气体供给源22的TiCU气体,与作为载气的N2气体一起,通过TiCU气体供给管线28,从喷淋头10的第一气体导入口 11到达喷淋头10内,再经过气体通路13、 15,从喷出孔17向腔室1内喷出。另一方面,来自NH3气体供给源25的皿3气体,通过NH3气体供给管线30a和H2气体供给管线30,从喷淋头10的第二气体导入口 12到达喷淋头10内,再经过气体通路14、 16,从喷出孔18向腔室1内喷出。
在Ti成膜处理时,TiCU气体与来自载气供给源23的作为载气的Ar气体一起,通过TiCU气体供给管线28,与TiN成膜处理时同样,从喷淋头10向腔室1内喷出。另一方面,来自H2气体供给源24的H2,通过H2气体供给管线30,从喷淋头10的第二气体导入口 12到达喷淋头10内,再经过气体通路14、 16从喷出孔18向腔室1内喷出。
艮口,喷淋头10成为TiCU气体和NH3气体或H2气体全部独立地供给至腔室1内的后混合形式,在喷出这些气体后混合、发生反应。不限于此,也可以是在TiCU气体和NH3气体或H2气体混合的状态下,将这些气体供给至腔室1内的预混合形式。
在清洁时,Cl2气体从Cl2气体供给管线27和30c,通过管线28、30,从第一和第二气体导入口 11、 12导入至喷淋头10中,从喷出孔17、 18喷出至腔室1内。
另外,气体供给机构20的管线(配管)由Ni系不锈钢(例如,SUS316L)构成。
高频电源34通过匹配器33与喷淋头10连接,从该高频电源34向喷淋头IO供给高频电力。通过从高频电源34供给高频电力,可以使通过喷淋头IO供给至腔室1内的气体等离子体化,进行成膜处理。
由于在TiN膜成膜时,能够利用热能充分地进行成膜,因此基本上不需要来自高频电源34的高频电力,但在Ti膜成膜吋,从高频电源34供给高频电力,使处理气体等离子体化。
另外,在喷淋头10的上层板10a的水平部10d上设置有用于加热喷淋头10的加热器45。加热器电源46与该加热器45连接,通过从加热器电源46向加热器45供电,将喷淋头IO加热至所希望的温度。为了提高加热器45的加热效率,在上层板10a的凹部上设置有绝热部件47。喷淋头10的加热温度在TiN膜成膜时为150 25(TC左右,在Ti膜成膜时为40(TC以上。
在腔室1的底壁lb的中央部形成有圆形的孔35,在底壁lb上以覆盖该孔35的方式设置有向下方突出的例如由A1或A1合金构成的排气室36。排气管37与排气室36的侧面连接,排气装置38与该排气管37连接。而且,通过使该排气装置38动作,可以将腔室l内减压至规定的真空度。
在基座2上,用于支撑晶片W进行升降的三根(图中只表示二根)晶片支撑销39可以突出或没入地设置在基座2的表面上。这些晶片支撑销39被固定在支撑板40上。另外,晶片支撑销39利用气缸等驱动机构41通过支撑板40升降。晶片支撑销例如由A1203等陶瓷构成。
在腔室1的侧壁上设置有在与腔室1邻接设置的图中没有示出的晶片搬送室之间进行晶片W的搬入搬出用的搬入搬出口 42和开闭该搬入搬出口42的闸阀43。另外,在腔室1的壁部中埋设有加热器48。加热电源49与该加热器48连接,通过从加热器电源49向加热器48供电,将腔室1的壁部加热至所希望的温度、例如150 25(TC左右。
Ti膜成膜装置100的各构成部构成为连接在由计算机构成的控制部60上而进行控制。另外,工序管理者为了管理Ti膜成膜装置100而进行指令的输入操作等的键盘、由可视化显示Ti膜成膜装置100的工作状况的显示器等构成的用户接口 61与控制部60连接。另外,存储用于由控制部60的控制实现由Ti膜成膜装置100执行的各种处理的控制程序、和根据处理条件在Ti膜成膜装置100的各构成部中进行处理的程序即方案等信息的存储部62与控制部60连接。方案可以存储
在硬盘或半导体存储器中,被收容在CDROM、 DVD等可移动性存储 介质中的状态下,可以安装在存储部62的规定位置。另外,可以从其
/丄;Br単 扛,l —t .:tS 2vf 土 m厶A 口々2-虫乂土 -、主七古 卡曰牵面 二S 二vf" te昭ffl ±1
接口 61发出的指示等从存储部62调出任意方案,在控制部60上执行, 在控制部60的控制下,利用Ti膜成膜装置100进行所希望的处理。另 外,控制部60根据图中没有示出的热电偶的信号,将指令送给加热器 电源5、 46、 49,独立地进行加热器5进行的基座2的温度控制、加热 器45进行的喷淋头10的温度控制和加热器48进行的腔室1的壁部的 温度控制。
接着,说明以上的成膜装置100的本实施方式的成膜方法。 如图2所示,本实施方式的成膜方法具有预涂工序(步骤l)、成 膜工序(步骤2)和清洁工序(步骤3),依次执行这些工序。这里, 分开说明在各工序中,作为Ti系膜形成TiN膜的情况和形成Ti膜的情况。
首先,说明步骤1的预涂工序。
利用控制部60控制加热器电源6、 46、 49,利用加热器5、 45、 48分别独立地控制基座2、喷淋头IO、腔室l的壁部的温度,设定为 大致与后述的成膜工序相同的温度。
在这个状态下,在形成TiN膜时,在不存在晶片W的状态下,通 过喷淋头10,以规定流量,将N2气体、NH3气体和TiCU气体导入腔 室1内,通过加热器5等的加热,在腔室1内壁、排气室36内壁、喷 淋头10的表面和基座2的表面上预涂TiN膜。
形成Ti膜时,同样在不存在晶片W的状态下,通过喷淋头10, 以规定流量,将Ar气体、H/气体、TiCU气体导入腔室1内,在利用 加热器5等加热的同时,利用来自高频电源34的高频电力,使这些气 体等离子体化,在腔室1内壁、排气室36内壁、喷淋头10的表面和 基座2的表面上形成Ti膜,然后,原样维持等离子体,导入NH3气体, 由此使Ti膜氮化,进行TiN膜的预涂。
另外,这些预涂的条件基本上是与以下说明的TiN膜的成膜和Ti 膜的成膜+氮化处理的条件相同的条件。接着说明步骤2的成膜工序。
在成膜工序中,与通过闸阀43连接的图中没有示出的搬送室同样,
调整预涂后的腔室l内,打开闸阀43,从晶片搬送室通过搬入搬出口
a o 、i々曰i_l 、、 r柏r 、 n^r , * —、卄々二 a n贫"k T-田
4z, 1寸日日门 W 3服/、/K芏i h」,虹ij Ax^夭^u:丄至。首先,说明TiN膜的成膜工序。
利用控制部60控制加热器电源6、 46、 49,利用加热器5、 45、48分别独立地控制基座2、喷淋头10、腔室l的壁部的温度,在将基座2保持为400 700°C,将喷淋头10保持为150 250°C,将腔室1的壁部保持为150 25(TC的规定温度的状态下,如上所述,将晶片W搬入腔室1内,将N2气体供给至腔室1内,预备加热晶片W。在晶片的温度大致稳定的时刻,以规定流量,使N2气体、NH3气体和TiCU气体在图中没有示出的预流管线中流动,进行预流。然后,原样保持气体流量和压力相同,切换至成膜用的管线,通过喷淋头10将这些气体导入腔室l内。然后,在由加热器5加热至规定温度的晶片W上,NHb气体和TiCU气体反应,在晶片W上堆积TiN,在经过规定时间后,形成规定厚度的TiN膜。
TiN成膜处理的其他条件的优选范围如下。
i ) TiCU流量20 200mL/min (sccm)
ii ) N2气体流量50 1000mL / min (sccm)
iii) NH3气体流量10 500mL/min (sccm)
iv) 腔室内压力133 1333Pa (1 10Torr)
在形成TiN膜后,停止NH3气体和TiCU气体,作为吹扫气体使N2气体流动,进行腔室1内的吹扫,然后,使N2气体和NH3气体流动,进行在晶片W上形成的TiN薄膜的表面的氮化处理。此时的基座2、喷淋头10、腔室1的壁部的温度与成膜时同样。另外,该氮化处理不是必需的。
在经过规定时间后,慢慢地停止N2气体和NH3气体,在这些气体的供给完全停止的时刻,结束成膜工序。然后,打开闸阀43,将图中没有示出的晶片搬送装置插入腔室1内,将晶片W搬出至装置外。
接着,说明Ti膜的成膜工序。
利用控制部60控制加热器电源6、 46、 49,利用加热器5、 45、48分别独立地控制基座2、喷淋头IO、腔室l的壁部的温度,在将基
座2保持为400 700°C,将喷淋头10保持为400 500°C,将腔室1
的壁部保持为150 250。C的规定温度的状态下,如上所述,将晶片W ■wr 、 口66 i r+nm^々,r+n i 、 i+m 6 、、,力乂古 \ ,-h 乂+u ^ 乂+壬n t;厂i
j服乂、"i主丄r」,tn;&i芏丄n, ^a7^/^iMti里'i叉Ai 匸i外、、H2 丄i^4
气体在图中没有示出的预流管线中流动,进行预流。然后,原样保持 气体流量和压力相同,切换至成膜用的管线,通过喷淋头io,将这些
气体导入腔室1内。此时,从高频电源34向喷淋头IO施加高频电力, 这样,导入腔室1内的Ar气体、H2气体和TiCU气体被等离子体化。 然后,在由加热器5加热至规定温度的晶片W上,被等离子体化的气 体发生反应,在晶片W上堆积Ti,在经过规定时间后,形成规定厚度 的Ti膜。
Ti成膜处理的其他条件的优选范围如下
i )来自高频电源64的高频电力 频率300kHz 27MHz
功率100 1500W
ii ) TiCU流量1 20mL/min (sccm)
iii) Ar气体流量500 2000mL / min (sccm)
iv) H2气体流量1000 5000mL / min (sccm) V)腔室内压力133 1333 Pa (1 10Torr) 在形成Ti膜后,停止112气体和TiCU气体,作为吹扫气体使Ar
或N2气体流动,进行腔室1内的吹扫。然后,使N2气体和NH3气体 流动,从高频电源34施加高频电力,使这些气体等离子体化,进行在 晶片W上形成的Ti薄膜的表面的氮化处理。此时的基座2、喷淋头10、 腔室1的壁部的温度与成膜时相同。另外,该氮化处理不是必需的。 接着,说明步骤3的清洁工序。
清洁工序在对规定块的晶片进行以上的成膜工序后实施。清洁工 序可以定期地进行,也可以根据需要进行。
在该工序中,在腔室1内不存在晶片的状态下,将作为清洁气体 的Cl2气体导入腔室l内,基本上不用等离子体进行干清洁。其中,如 后所述,可以辅助地通过远程等离子体源51和52使Cl2气体等离子体 化。因为Cb气体与在形成Ti系膜时,在腔室1内的基座2或喷淋头10、腔室1的壁部上形成或附着的作为Ti系材料的Ti、 TiN、 TiSi2、 Ti02等的反应性高,所以适合作为形成Ti系膜后的清洁气体。
然而,在清洁工序中,必须与使用的清洁气体对应,成为保持清 洁对象部位的材质的耐蚀性的温度。现有使用的C1F3气体即使在低温 (室温)下也分解、为极其容易分解的气体,具有不论腔室内的各部 的温度如何,都能够清洁到腔室内的各个角落的特点,但是在低温下 容易分解,即使在低温下,清洁对象部位的腐蚀也进行,由于这样, 清洁时,必需将腔室内的全部部位维持为300。C以下、例如20(TC这样 的低温。
与此相对,在本实施方式中使用的Cl2气体的情况下,由于分解温
度为250。C以上,比C1F3高,通过控制腔室内的各部位的温度,可以 形成进行清洁的部位和不进行清洁的部位。即,可以进行选择的清洁。
在图3中表示Cl2气体的清洁特性。该图表示基座温度和Cl2气体 引起的堆积在基座上的TiN膜的蚀刻速度的关系。此时的条件为腔室 内压力133Pa, Cl2气体流量2000mL/min (sccm), Ar气体流量 100mL/min (sccm), N2气体流量100mL/min (sccm)。如该图所 示,在超过40(TC后,进行TiN膜的蚀刻,伴随着温度上升,蚀刻速度 急剧上升。即,可以理解为在该条件下,Cl2气体的分解开始温度为400 'C附近,蚀刻反应的控速过程为由02气体分解产生的Cl原子和TiN 膜的反应控速。因此,在作为基座2的加热温度的400 70(TC下能够 清洁。特别是在550 70(TC下,能够得到高的蚀刻速度,能够得到良 好的清洁性。该倾向在Ti的情况下也同样。
Cl2气体的清洁特性因压力而变化。参照图4说明这点。图4为表 示在腔室内压力为133Pa、 666Pa、 1320Pa的情况下,基座温度和由 Cl2气体引起的在基座上堆积的TiN膜的蚀刻速度的关系的图。从该图 可以看出,通过提高腔室内压力,在更低温侧蚀刻种增加,在1320Pa 下,超过25(TC后进行蚀刻。即,当压力从133Pa上升至1320Pa时, Cl2的分解开始温度降低至250°C,在25(TC以上可以清洁。由此可以 导出,通过控制腔室内压力,可以控制Cl2气体的分解开始温度。因此, 可以根据清洁对象部位的温度,控制腔室内的压力,使Cl2气体的分解 开始温度达到规定的温度。具体地讲,在想要对35(TC的部位进行清洁的情况下,腔室内压力为133Pa,由于35(TC为Cl2气体的分解开始温 度以下,不能清洁,但当上升至1320Pa时,成为分解开始温度以上,
可以进行清洁。
图5为表示将基座温度设定为65(TC,在变化腔室内压力的情况 下,Cl2气体流量和TiN膜的蚀刻速度的关系的图形。在腔室内压力为 133Pa的条件下,Cl2气体流量约为1500mL / min (sccm)以下,为TiN
膜的蚀刻速度与Cl2气体流量成比例地增加的供给控速的区域,但在其
以上,TiN膜的蚀刻速度饱和,向TiN膜的蚀刻速度只依存于温度的 反应控速的区域移动。
在比133Pa高的压力条件下,Cl2气体流量约为1000mL/min (sccm)以下,为TiN膜的蚀刻速度与Cl2气体流量成比例地增加的供 给控速的区域。在这些压力条件下,流量多于1000mL/min (sccm) 的数据不存在,但可以推测在与133Pa同样的流量以上,存在TiN膜 的蚀刻速度饱和的反应控速的区域。
如上所述,在C1F3清洁中,基座温度为200。C,在该温度下,TiN 膜蚀刻速度约为1.2pm/min。为了得到与其同样的蚀刻速度所必要的 Cl2气体流量在133Pa下为800mL/min (sccm)以上,在其他条件下 为500mL/min (sccm)以上。如果为该流量,则清洁所要的时间不比 现有技术长。
在供给控速的区域中,由Cl2的热分解产生的蚀刻种(Cl原子) 全部与TiN膜反应,可以进行高效率的清洁,相反,蚀刻种难以到达, 例如难以除去基座的背面侧的成膜和附着物等。当在反应控速区域中 进行清洁时,由于在腔室内蚀刻种在过剩的状态下存在,蚀刻种可以 到达腔室内的各个角落,可以完全清洁附着物。即,根据成膜处理后 的腔室内的附着物的状况,可以选择供给控速的区域和反应控速的区 域中的任-个区域。另外,可以在最初步骤中,在供给控速区域的条 件下进行清洁,将该步骤中没有除去的附着物,在下一个步骤中切换 到反应控速区域的条件进行除去。
接着,说明在使基座温度和Cl2气体流量变化的情况下,腔室内压
力与Cl2气体引起的TiN膜的蚀刻速度的关系。图6表示在温度55CTC 下、Cl2气体流量为2000mL/min (sccm)的条件,在温度650。C下、Cl2气体流量为800mL/min (sccm)的条件,在温度65(TC下、(312气体流量为1000mL/min (sccm)的条件下,腔室内压力与由Cl2气体引起的TiN膜的蚀刻速度的关系的图。从这个图可以看出,在任何一种条件下,在某压力下,TiN膜的蚀刻速度都饱和。而且,有基座温度越高,Cl2气体流量越多,从低压侧饱和的倾向。从清洁稳定性出发,优选在饱和的压力下进行,从防止腐蚀的观点出发,优选在蚀刻速度大致饱和的范围内,尽量在低压下进行。另外,通过基座温度和Cl2气体流量使TiN膜的蚀刻速度饱和的压力变化,因此优选根据清洁时
的温度和Cl2气体流量,控制腔室内压力。
如上所述,能够得到Cl2气体可以选择地清洁的优点,但难以得到分解温度比C1F3高,可以清洁到腔室的各个角落的C1F3气体的效果。由于这样,在将Cl/气体使用于清洁气体的情况下,成膜时清洁对象部位以外的部位设定为可以尽量防止成膜或副生成物的附着的温度是很重要的。
关于清洁时的上限温度,除了与清洁气体的分解难易有关,还与对象部位的材质有关。因为清洁的目的是为了蚀刻对象部位上形成的Ti系膜,所以需要能够得到现实的蚀刻速度的量的蚀刻种(气体分解后的原子)。在使用Cl2气体作为清洁气体的情况下,为了得到能够得到现实的蚀刻速度的量的蚀刻种,与使用C1F3气体作为清洁气体的情况相比,需要使清洁对象部位的温度成为高温。越成为高温,蚀刻速度越上升,但清洁对象部位的温度的上限由其材质的耐蚀性决定。
严格地讲,材料的耐蚀性依存于清洁气体和对象部位的材料的反应生成物的蒸气压。例如,在对象部位的材料为A1N的情况下,使用C1F3气体作为清洁气体时,通过A1N和F原子的反应生成蒸气压低而稳定的A1F、 (x=l 3),保护对象部位表面,不进行腐蚀。然而,A1N为陶瓷材料,不是理想的均质材料,是将A1N颗粒烧固而得到的物质,因此实际上不能均匀地形成AlFx, 一部分成为粉状,就变成颗粒。另一方面,在使用Cl2气体作为清洁气体的情况下,通过在A1N表面上与C1的反应,生成不稳定的AlClx (x=l 3),但因为AlClx的蒸气压高,所以气化、不能成为颗粒。由于这样,在腔室内,对用A1N陶瓷构成的部件来说,优选使用Cl2气体作为清洁气体。这点可以被如下事实证明颗粒成分通常为A1FX, TiCU气体或者TiCU气体与H2、 NH3等还原剂的反应生成的HC1与A1N,在成膜的高温下反应,应该生成的AlClJ乍为颗粒成分没有检测出。
即,在使用Cl2气体作为清洁气体的情况下,与使用TiCU气体和H2、 NH3等还原剂的成膜处理时同样,进行生成AlClx的反应,所以耐受高温的成膜处理的对象部位在相同温度下,可以耐受Cl2气体进行的清洁。由此可以推出,在用Cl2气体进行清洁的情况下,在与成膜温度大致相同的温度下,可以进行清洁。另外,不限于A1N,如果在成膜处理中,对象部位的材质不产生因腐蚀引起的颗粒,则可以在相同的温度下进行Cb气体的清洁。例如,如果对象部位的材质为Ni或Ni合金,在表面上不会不均匀地残存NiF2那样的保护膜,生成蒸气压高的NiCb、气化,因此表面可以维持清洁。
不限于A1N、 Ni或Ni合金,即使是现有使用的不锈钢、氧化铝等A1N以外的A1化合物、碳、Si3N4、 SiC等,在使用Cl2气体作为清洁气体的情况下,同样可以在与成膜温度相同的温度下进行清洁。与此相对,现有的C1F3气体由于有在成膜温度下与上述构成材料反应,产生损伤的可能性,因此难以适用于成膜温度下的清洁。
根据实验结果说明这点。
这里,假定使Cl2气体作为清洁气体在腔室内流动的情况和使C1F3气体流动的情况,确认在将作为基座材质的A1N的测试片暴露在清洁气体时的耐蚀性。此时,为了使70(TC的TiN膜的蚀刻速度大致相同,关于C1F3气体,流量为10mL/min(sccm),并且使N2气体以1000mL/ min(sccm)的流量流动,关于012气体,流量为100mL / min(sccm),并且使N2气体以1000mL/min (sccm)的流量流动,使腔室内压力为133Pa,在700。C和55(TC下保持60分钟,测定重量变化。作为A1N测试片使用15mmX15mmXlmm的片。其结果可以确认,暴露在Cl2气体中的情况下,在55(TC、 70(TC下都没有重量变化,相对于此,暴露在C1F3气体中的情况下,在55(TC下,重量减少0.0003g,仅是微小的,在700。C下,重量减少大到0.0122g。
图7 9为A1N测试片的表面的2000倍扫描型电子显微镜(SEM)照片。图7为暴露在清洁气体前的照片,图8为使用Cl2气体在70(TC下暴露后的照片,图9为使用C1F3气体在70(TC下暴露后的照片。从这些SEM照片可以看出,在Cl2气体的情况下,在70(TC下暴露后,A1N测试片的表面的状态与暴露前几乎没有变化,相对于此,在C1F3气体的情况下,在暴露前后,表面有大的变质。
从这些结果可以确认,在作为成膜温度的上限附近的700。C下,在Cl2气体中,作为基座材料的A1N几乎不腐蚀,相对于此,在C1F3气体中,A1N腐蚀。
这样,现有作为清洁气体使用的C1F3气体,在成膜温度下,由于有可能与腔室内部件的构成材料反应产生损伤,所以在清洁时不得不将温度降低至30(TC以下、例如20(TC左右,在成膜后一旦使清洁温度降低至20(TC左右,在清洁结束后,再上升至成膜温度的顺序是必要的,其成为使生产率降低的原因。与此相对,在使用Cl2气体作为清洁气体的情况下,如上所述,由于其分解温度高为25(TC以上,即使在成膜温度附近,不腐蚀作为主要清洁对象的基座2,因此可以使基座2的温度为成膜温度或其附近而进行清洁,可以减少这样的降温和升温所需要的时间。因此,可以飞跃地提高Ti系膜的成膜装置的生产率。
具体地讲,在用现有的C1F3气体进行清洁的情况下,其时间表例如图10A所示,从成膜结束至开始清洁的降温时间为150分钟,从清洁结束至预涂开始的升温时间为45分钟,升降温合计花费195分钟,但在成膜温度下进行清洁的理想的情况下,如图10B所示,可以完全没有这些降温和升温的时间,可以縮短装置的停机时间3小时以上。在实际的处理中,有时使清洁温度和成膜温度完全一致很困难,即使在这种情况下,也可以使升降温时间比现有技术短,提高生产率。
以上说明了清洁工序的基本条件,但在TiN膜和Ti膜中,由于成膜工序的条件不同,在腔室1内的各部上形成或附着的物质和附着状态不同,因此在清洁工序中,必需根据这些膜设定条件。
首先,说明TiN膜成膜后的清洁。
TiN膜成膜利用纯粹的热反应进行,与温度相对应,附着物的形式等大致如图11所示那样变化。即,低于5(TC为TiCU固化的温度,50 150'C的范围为在低温下作为副生成物的NH4C1附着的温度,150 250i:的范围为附着物不附着的温度,250 45(TC的范围为TiN、Cly堆积的温度。另外,450 700。C的范围为TiN的成膜温度,即TiN生成的温度。另外,根据条件,400 45(TC为能够形成TiN膜的温度。
如上所述,在TiN膜的成膜中,在将基座2保持在400 70(TC,将喷淋头iO保持为i50 25(TC,将腔室i的壁部保持为150 25(TC的各温度范围的状态下进行。参照图11,根据该温度设定,附着物几乎不附着在喷淋头10和腔室1的壁部上,TiN、Cly或TiN只附着在基座2上。
因此,在TiN膜成膜后的清洁工序中,由于将基座2的温度加热至与成膜工序时的温度相同的温度,附着物几乎不附着在喷淋头10和腔室1的壁部上,因此作为与成膜时同样的150 25(TC和分解温度以下,不对构成材料产生损伤而进行清洁。由于这样,喷淋头10或腔室1的壁部的材料为上述的Al系材料,耐蚀性充分,如果只是基座2为耐蚀性高的材料也可以。在本实施方式中,基座2为A1N制,耐蚀性很好。另外,可以使用Ni、 Ni合金、不锈钢、Si3N4、 SiC等。清洁时的喷淋头IO或腔室1的壁部的温度可以设定为与成膜时的温度相同的温度,如果为上述范围内,即使不是相同温度,如果是成膜时的附近温度也可以。
接着,说明Ti膜成膜后的清洁。
由于Ti膜的成膜使用等离子体,因此在等离子体区域中不论温度如何,都附着Ti或TiCU未分解物。特别是,在晶片正上方的喷淋头上附着大量的这些物质。因此,不能如TiN膜成膜那样,使喷淋头IO为低温,不产生附着物。但是,由于喷淋头10低于400。C,附着的膜容易剥离,因此成膜时,使喷淋头10为40(TC以上。成膜后,由于在喷淋头的设定温度以上进行氮化处理,因此Ti或TiCU未分解物变换为TiN膜。
因此,在清洁时,与基座2同样,需要使喷淋头10为Cb气体的分解温度以上,由于这样,设定为成膜时的喷淋头10的温度(400 500°C)附近的温度。因此,喷淋头10的材料需要为可以耐受高温的Cl2气体的材料。在本实施方式中使用的Ni或Ni合金可以充分地耐受高温的Cb气体。此外,可以使用Si3N4、 SiC和C等。在需要使喷淋头10的温度更低的情况下,如上所述,提高腔室内的压力,降低Cl2气体的分解开始温度是有效的。
在使用等离子体的Ti膜成膜工序中,如上所述,在腔室l的壁部
等的低温部上也附着作为副生成物的TiCU未分解物。因此,例如,可
!w /十n&6 , 一a fi血^Vr 一A 、、,n nV !_亇! r ^/1 iVn / V在"、、/R liPlW L+ =f山,f主、/门
wi3t:;j!ri芏i 口、j'至司。口iH血/叉丄刀土 u平口u'力用千恤/叉w丄。江仏rn冃t^
下,必须使腔室i的壁部的温度上升,需要其升温和以后的降温的时
间。但是,由于Cl2气体在250。C以上分解,不需要大幅度的温度变更, 不会有大的时间延长。
可是,在Cl2气体的分解温度以上,在作为现有的腔室材料的Al 系材料中,会产生腐蚀。考虑利用Ni、 Ni合金等耐热材料构成腔室1, 但价格极高,不现实。另外,作为腔室l,考虑利用电镀等将这样的耐 热材料覆盖在腔室1的内壁上,但热膨胀差会产生剥离等。因为这个
问题,要求在清洁时不使Cl2气体的温度上升至其分解温度以上而分
解,进行清洁的方法(选择性缓和)。作为这种方法,可以举出使Cl2 气体等离子体化。在本实施方式中,设置远程等离子体源51、 52,由 此,使Cl2气体等离子体化。因此,可以在作为腔室1的壁部成膜时的 温度的150 250。C下进行清洁。由于等离子体产生的分解效率提高1 个数量级,为了达到与热分解相同水平的效率,可以设定分解效率为 10%以下的条件和功率,生成等离子体。
另外,除了这种等离子体辅助外,通过在Cl2气体中添加还原剂,
可以辅助Cl2气体的分解。通过在作为强氧化剂的Cb中添加H2、 NH3
等还原剂,可以促进Cl2的分解。
如等离子体CVD进行的Ti膜成膜处理那样,即使在温度控制进 行的选择性防止附着不充分的情况下,通过如以上那样,等离子体化 或添加还原剂,辅助Cl2气体的分解,可以提高Cb气体的分解比例, 可以清洁腔室内的更低温部位,可以实现更完全的清洁。S卩,这样通 过辅助Cl2气体的分解,可以利用温度控制以外的方法缓和清洁时的选 择性,可以有效地清洁腔室内全体。
在这种情况下,通过适当调整腔室内的温度设定、施加的等离子 体的功率或添加的还原剂的流量,可以精密地控制Cl2在各部位的分 解,可以控制腔室内的清洁选择性,同时可以实现损伤少的清洁。
为了实现适当的分解辅助,优选等离子体的功率为100 300W的范围。另外,还原剂的量由还原剂的种类决定,但优选为全体清洁气 体的10 50%左右。
这种Cl2气体的分解辅助,在等离子体CVD的Ti膜成膜时特别有
AL I U I、 I 4"+t 八l rT^ r^'、 T口苗A 口丝/士 CD
双,Qi W住^ U VU 丄i丄、肤^乂肤口,J 'iX/tl o
为了实现更完全的清洁,优选在C12气体中添加微量的C1F3气体。 由于清洁对象部位保持为高温,利用Cl2气体能够充分地清洁,但不能
防止在清洁对象部位以外的部位(非清洁对象部位)附着、残存附着
物的情况下,有不能完全地进行清洁的倾向。例如,在用Cl2气体清洁 后,在腔室壁上残存变色的附着物。在这种情况下,通过辅助地添加 在低温下分解的微量的C1F;气体,可以充分地清洁除去不能防止在非 清洁对象部位上附着而残存的附着物。在这种情况下,因为不是像现 有那样,使用C1F3气体作为主要的清洁气体,而是辅助地微量添加,
因此高温下分解生成的蚀刻种(F原子)少,高温下的腐蚀少,在腔室 内造成损伤的担心小。从不产生腔室内损伤的观点出发,优选C1F3气 体的添加量为全体清洁气体的5%以下。
另外,在利用Cl2气体清洁后,通过辅助地进行C1F3气体的清洁,
可以充分地清洁除去附着在非清洁对象部位的附着物。在这种情况下,
优选将C1F3气体的流量设定得低,使得不会由C1F3气体产生腐蚀。
如以上那样,由于通过使用Cl2气体作为清洁气体,可以在比现有
的C1F3气体的情况更高温下进行清洁,可以在成膜温度附近进行清洁,
因此生产率的降低少,并且,对腔室壁等不产生损伤,可以可靠地对 清洁对象部位进行清洁。
接着,说明调查本发明的Cl2气体清洁对成膜的影响的实验结果。
如图12所示,在基座温度650。C下,Ti膜成膜处理(步骤A)后, 将基座温度从Ti膜成膜时的温度降低至200°C ,进行C1F3气体清洁(步 骤B)。然后,使基座温度上升至650。C,进行腔室内的预涂(步骤C), 接着,将基座温度原样维持为65(TC,对25块晶片连续进行Ti膜成膜 (步骤D)。然后,将基座温度维持为65(TC,进行Cl2气体清洁(步 骤E),接着,将基座温度原样维持为650°C,进行腔室内的预涂(步 骤F)。然后,在基座温度65(TC下,对25块晶片连续地进行Ti膜的 成膜(步骤G)。关于步骤D和G的Ti膜的成膜,在Si和Si02的两者上进行。
另外,在步骤E的Cl2气体清洁中,选择能够得到与步骤B的C1F3 气体清洁中Ti系膜的蚀刻速度相同的蚀刻速度的条件。具体地为以下
■Vi々/小 口'J眾'IT。
压力133Pa
Cl2气体流量800mL/min (sccm) Ar气体流量700mL / min (sccm) N2气体流量700mL/min (sccm)
另外,将清洁时间设定为可以完全除去在Ti成膜处理的步骤中, 堆积在基座表面和导向环表面上的Ti膜的时间。
在图13中表示步骤D和G的膜的电阻值及其偏差。如图13所示,
可以确认在Cl2气体清洁后的成膜中,在Si和Si02的任一个上表现出
与C1F3气体清洁后相同的电阻值和偏差,为良好结果。
另外,本发明不限于上述实验方式,可以有各种变形。例如,在 上述实施方式中,表示在热CVD的TiN膜成膜、等离子体CVD的Ti 膜成膜中使用本发明的情况,但本发明不限于此。另外,在上述实施 方式中表示利用TiCU气体作为氯化金属化合物气体形成Ti膜和TiN 膜的例子,但在使用其他氯化金属化合物气体,形成其他金属膜或金 属化合物膜的情况下也可以使用。例如,在利用TaCls气体和NH3气体, 通过热CVD形成作为屏蔽膜使用的TaN膜的情况下,在使用TaCls气 体和H2气体,通过等离子体CVD仍形成作为屏蔽膜使用的Ta膜的情 况下都可以适用。
另外,作为被处理基板,不限于半导体晶体,例如可以是液晶显 示装置(LCD)用基板为代表的平板显示器(FPD)用基板等其他基板。
权利要求
1. 一种成膜方法,其特征在于,包括在腔室内的基板载置台上载置被处理基板,对所述腔室内进行排气,并在将所述基板载置台的温度设定为规定温度的状态下,从设置在所述腔室内的气体喷出部件喷出包含氯化金属化合物气体的处理气体,利用CVD在被处理体的表面上形成金属膜或金属化合物膜的工序;和在所述腔室内不存在被处理基板的状态下,从所述气体喷出部件向所述腔室内喷出包含Cl2气体的清洁气体,对所述腔室内进行清洁的工序,所述清洁工序分别独立地控制所述基板载置台的温度、所述喷出部件的温度和所述腔室壁部的温度,使清洁对象部位的温度为Cl2气体的分解开始温度以上,并且使非清洁对象部位的温度低于分解开始温度。
2. 如权利要求1所述的成膜方法,其特征在于, 所述氯化金属化合物气体为TiCl4气体,所述金属为Ti。
3. 如权利要求2所述的成膜方法,其特征在于, 所述处理气体包含TiCl/气体和含氮气体,在所述成膜工序中,将所述基板载置台的温度设定为400 700°C, 将所述气体喷出部件和所述腔室壁部的温度设定为副生成物难以附着 的150 250°C,利用热CVD在被处理基板的表面形成TiN膜作为金 属化合物膜,在所述清洁工序中,所述基板载置台为所述清洁对象部位,进行 控制,使其温度为Cl2气体的分解开始温度以上;所述气体喷出部件和 所述腔室的壁部为所述非清洁对象部位,进行控制,使其温度为分解 开始温度以下,并且为所述成膜工序时的温度附近的温度。
4. 如权利要求2所述的成膜方法,其特征在于, 所述处理气体包含TiCU气体和还原气体,在所述成膜工序中,将所述基板载置台的温度设定为400 700°C, 将所述气体喷出部件的温度设定为400 500°C,将所述腔室壁部的温 度设定为150 250°C,利用等离子体CVD在被处理基板的表面形成 Ti膜作为金属膜,在所述清洁工序中,所述基板载置台和所述气体喷出部件为所述清洁对象部位,进行控制,使它们的温度为Cl2气体的分解开始温度以 上;所述腔室的壁部为所述非清洁对象部位,进行控制,使其温度为 分解开始温度以下。
5. 如权利要求1所述的成膜方法,其特征在于, 在所述清洁工序中,控制所述腔室内的压力,控制Cl2气体的分解开始温度。
6. 如权利要求1所述的成膜方法,其特征在于, 在所述清洁工序中,根据所述清洁对象部位的温度,控制所述腔室内的压力,使Cl2气体的分解开始温度为规定的温度。
7. 如权利要求1所述的成膜方法,其特征在于, 在所述清洁工序中,通过使清洁气体等离子体化,辅助所述腔室壁部的清洁。
8. 如权利要求7所述的成膜方法,其特征在于, 所述清洁气体的等离子体化利用远程等离子体进行。
9. 如权利要求1所述的成膜方法,其特征在于, 所述清洁气体还包含还原剂。
10. 如权利要求1所述的成膜方法,其特征在于, 所述清洁气体还包含C1F3气体。
11. 如权利要求1所述的成膜方法,其特征在于,所述清洁工序,使清洁对象部位的温度为成膜时的温度附近的温 度而进行。
12. —种清洁方法,其特征在于,该清洁方法,在腔室内的基板载置台上载置被处理基板,对所述 腔室内进行排气,并在将所述基板载置台的温度设定为规定温度的状 态下,从设置在腔室内的气体喷出部件喷出包含氯化金属化合物气体 的处理气体,在所述基板载置台上的被处理体表面上形成金属膜或金 属化合物膜后,对所述腔室内进行清洁,该清洁方法,使用包含Cl2气体的清洁气体,在所述腔室内不存在 被处理基板的状态下,分别独立地控制所述基板载置台的温度、所述 喷出部件的温度和所述腔室壁部的温度,使清洁对象部位的温度为Cl2 气体的分解开始温度以上,并且使非清洁对象部位的温度低于分解开 始温度,同时向所述腔室内导入清洁气体。
13. 如权利要求12所述的清洁方法,其特征在于, 所述氯化金属化合物气体为TiCU气体,所述金属为Ti。
14. 如权利要求12所述的清洁方法,其特征在于, 控制所述腔室内的压力,控制Cl2气体的分解开始温度。
15. 如权利要求12所述的清洁方法,其特征在于, 根据所述清洁对象部位的温度,控制所述腔室内的压力,使Cl2气体的分解开始温度为规定的温度。
16. 如权利要求12所述的清洁方法,其特征在于, 通过使所述清洁气体等离子体化,辅助所述腔室壁部的清洁。
17. 如权利要求16所述的清洁方法,其特征在于, 所述清洁气体的等离子体化利用远程等离子体进行。
18. 如权利要求12所述的清洁方法,其特征在于, 所述清洁气体还包含还原剂。
19. 如权利要求12所述的清洁方法,其特征在于, 所述清洁气体还包含C1F3气体。
20. 如权利要求12所述的清洁方法,其特征在于, 使清洁对象部位的温度为成膜时的温度附近的温度。
21. —种成膜装置,其在被处理基板的表面上形成金属膜或金属化 合物膜,该成膜装置的特征在于,具有腔室,收容被处理基板;基板载置台,在所述腔室内载置被处理基板;处理气体供给机构,将包含氯化金属化合物气体的处理气体供给 至所述腔室内;清洁气体供给机构,将包含Cl2气体的清洁气体供给至所述腔室内;气体喷出机构,设置在所述腔室内,将所述处理气体和所述清洁 气体喷出至所述腔室内;排气机构,对所述腔室内进行排气;加热机构,分别独立地加热所述基板载置台、所述气体喷出部件、 所述腔室的壁部;和控制机构,在供给所述清洁气体时,分别独立地控制所述基板载 置台的温度、所述喷出部件的温度和所述腔室壁部的温度,使清洁对 象部位的温度为Cl/气体的分解开始温度以上,并且使非清洁对象部位 的温度低于分解开始温度。
22. 如权利要求21所述成膜装置,其特征在于, 所述处理气体供给机构供给TiCU气体作为所述氯化金属化合物气体,形成Ti膜或Ti化合物膜。
23. 如权利要求21所述的成膜装置,其特征在于,所述控制机构控制所述腔室内的压力,控制Cl2气体的分解开始温度。
24. 如权利要求21所述的成膜装置,其特征在于, 所述控制机构根据所述清洁对象部位的温度,控制所述腔室内的H;:力,使Cl2气体的分解开始温度为规定的温度。
25. 如权利要求21所述的成膜装置,其特征在于, 还具有使所述处理气体等离子体化的等离子体生成机构。
26. 如权利要求21所述的成膜装置,其特征在于, 还具有使所述清洁气体等离子体化、辅助清洁的等离子体化机构。
27. 如权利要求26所述的成膜装置,其特征在于, 所述等离子体化机构具有远程等离子体源。
28. 如权利要求21所述的成膜装置,其特征在于, 所述清洁对象部位由Al化合物或者Ni或Ni化合物构成。
29. 如权利要求21所述的成膜装置,其特征在于, 所述清洁气体供给机构供给还包含还原剂的清洁气体。
30. 如权利要求21所述的成膜装置,其特征在于, 所述清洁气体供给机构供给还包含C1F3气体的清洁气体。
31. 如权利要求21所述的成膜装置,其特征在于, 所述控制机构将清洁对象部位的温度控制在成膜时的温度附近的温度。
32. —种存储介质,存储有用于在计算机上动作、控制成膜装置的 程序,其特征在于,所述程序执行时,使计算机控制所述成膜装置,使得进行成膜方 法,该成膜方法包括在腔室内的基板载置台上载置被处理基板,对所述腔室内进行排 气,并在将所述基板载置台的温度设定为规定温度的状态下,从设置 在所述腔室内的气体喷出部件喷出包含氯化金属化合物气体的处理气 体,利用CVD在被处理体的表面上形成金属膜或金属化合物膜的工序; 禾口在所述腔室内不存在被处理基板的状态下,从所述气体喷出部件 向所述腔室内喷出包含Cl/气体的清洁气体,对所述腔室内进行清洁的 工序,所述清洁工序分别独立地控制所述基板载置台的温度、所述喷出 部件的温度和所述腔室壁部的温度,使清洁对象部位的温度为Cl2气体 的分解开始温度以上,并且使非清洁对象部位的温度低于分解开始温度。
全文摘要
将腔室(1)内的基座(2)的温度设定为规定温度,并供给处理气体,对规定块数的晶片(W)形成Ti系膜,然后,在腔室(1)内不存在晶片(W)的状态下,从喷淋头(10)向腔室(1)内喷出Cl<sub>2</sub>气体作为清洁气体,对腔室(1)内进行清洁,此时分别独立地控制基座(2)、喷淋头(10)和腔室(1)壁部的温度,使基座(2)的温度为Cl<sub>2</sub>气体的分解开始温度以上,并且使喷淋头(10)和腔室(1)壁部的温度为分解开始温度以下。
文档编号C23C16/44GK101490307SQ200780026409
公开日2009年7月22日 申请日期2007年7月10日 优先权日2006年7月11日
发明者小泉正树, 小泉雅人, 村上诚志, 芦泽宏明 申请人:东京毅力科创株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1