内生韧性相增强Ti基非晶复合材料及其制备方法

文档序号:3363693阅读:135来源:国知局
专利名称:内生韧性相增强Ti基非晶复合材料及其制备方法
技术领域
本发明涉及Ti基非晶复合材料领域,具体为一种内生韧性β-Ti固溶体增强Ti 基非晶复合材料的设计及其制备方法。
背景技术
Ti基非晶合金具有优异的力学性能,密度较低,成本相对低廉,是目前非晶领域研究的热点之一。在过去的几十年里,各国学者对Ti基非晶合金进行了大量的研究,在非晶形成能力方面的研究取得了长足的进步。但是非晶态合金的变形是一种高度局域化的变形,变形主要集中在有限的几条剪切带内,虽然剪切带内的相对变形量很大,但非晶态合金整体的塑性变形量却非常有限,这种本征脆性极大地限制了 Ti基非晶态合金的实际应用。为了改善非晶态合金的塑韧性能,非晶复合材料提供了一条简便而有效的解决途径。迄今,研究者们采用内生或者外加的手段获得了不同类型的非晶复合材料,增强相的类型有脆性或者韧性颗粒、纤维、金属丝等。其中,韧性固溶体相增强非晶复合材料在拉伸载荷下表现出明显的塑性变形行为,极大地改善非晶合金的性能,因而受到了研究者广泛关注。研究者从理论上分析性能和组织结构之间的关系,进而对增强相的尺寸和形态进行合理的调控,并提出了一种半固态加工技术,进一步推动了该材料的应用。因而开发大尺寸、 高性能的Ti基非晶复合材料对于Ti基非晶材料作为结构材料的应用具有极大的推动作用。

发明内容
本发明的目的在于提供一种内生韧性β -Ti固溶体增强Ti基非晶复合材料的设计及其制备方法,解决Ti基非晶合金存在的塑韧性能较差等问题。本发明的技术方案是一种内生韧性相增强Ti基非晶复合材料,该复合材料为能够提供不同体积分数内生韧性β-Ti固溶体增强Ti基的非晶复合材料。该复合材料主要由Ti基非晶合金和 β -Ti固溶体复合而成。复合材料成分为(原子百分比)TiaAbB。Bed,其中,A为Zr、Nb、Ta、 Mo、V、W元素的一种或者几种,B为Cu、Ni、佝、Co元素中的一种或者几种,a = 30 65 ;b =沈 38 ;c = 1 25 ;d = 0 25 (优选为0. 5 。通过合金成分的调整获得不同体积分数韧性β "Ti固溶体增强Ti基非晶复合材料,β -Ti固溶体的尺寸为1-200 μ m(优选2-50 μ m),体积分数为0-100 % (优选为0. 5-98 %,较佳为10-98 % )。本发明中,固溶体的尺寸具体是指树枝状β -Ti固溶体的枝晶臂尺寸。本发明中不同体积分数内生韧性β -Ti固溶体增强Ti基非晶复合材料的制备方法,原材料中的Ti和ττ采用工业纯度的海绵Ti和海绵ττ,其余元素的纯度高于99. 8wt %。本发明中可采用电弧熔炼和感应熔炼喷铸两种常规的制备技术,具体工艺参数如下一、电弧熔炼制备技术
(1)针对不同体积分数β "Ti固溶体增强Ti基非晶复合材料,调控非晶相和增强相的比例,获得复合材料的合金成分。(2)按照复合材料的成分配比,称取元素进行混合,在惰性气氛保护下,采用电弧熔炼技术获得韧性β-Ti固溶体增强Ti基非晶复合材料,合金锭反复熔炼至少四次。二、铜模喷铸技术(1)针对不同体积分数β -Ti固溶体增强Ti基非晶复合材料,调控非晶相和增强相的比例,获得复合材料的合金成分。(2)按照复合材料的成分配比,称取元素进行混合,在惰性气氛保护下,采用电弧熔炼技术获得成分均勻的母合金锭。(3)将适量复合材料合金锭在惰性气体气氛中感应熔化,并喷铸到不同尺寸铜模中,获得韧性β -Ti固溶体增强Ti基非晶复合材料。本发明中,内生韧性β -Ti固溶体增强Ti基非晶复合材料性能压缩屈服强度为 1000-1900MPa,压缩断裂强度为1200_2300MPa,压缩应变为2_20% ;复合材料的拉伸屈服强度为1000-1900MPa,拉伸断裂强度为1200_2000MPa,拉伸应变为2-20%。本发明具有以下优点1、本发明β-Ti固溶体和Ti基非晶相在复合材料制备过程中比较稳定,易于获得大尺寸的韧性β -Ti固溶体增强Ti基非晶复合材料。2、本发明通过合金成分调整,即可获得不同体积分数韧性β-Ti固溶体增强Ti基非晶复合材料。3、本发明通过电弧熔炼或者铜模喷铸技术,即可获得韧性β-Ti固溶体增强Ti基非晶复合材料。无需后续处理工艺,制备工艺简单。总之,本发明通过合金成分的调整获得不同体积分数韧性β-Ti固溶体增强Ti基非晶复合材料,β-Ti固溶体的尺寸为1-200 μ m,体积分数为0.5-98%。该复合材料表现出优异的综合力学性能,在具有高强度的同时,还具有一定程度的塑性变形行为。压缩屈服强度为1000-1900MPa,压缩断裂强度为1200-2300MPa,压缩应变为2-20% ;复合材料的拉伸屈服强度为1000-1900MPa,拉伸断裂强度为1200_2000MPa,拉伸应变为2-20%。


图1为直径5mm的AT3系列Ti基非晶复合材料样品的XRD图。图2为直径5mm的AT3系列Ti基非晶复合材料样品的DSC图。图3为质量20g的AT3系列Ti基非晶复合材料合金锭的SEM图。其中,(a)图为 AT320 ; (b)图为 AT330 ; (c)图为 AT340 ; (d)图为 AT360 ; (e)图为 AT365 ; (f)图为 AT370。图4-图6分别为直径2mm、5mm和8mm的AT345合金的压缩拉伸曲线及拉伸断口形貌。其中,图4为直径2mm和5mm的AT345合金的压缩应力-应变曲线;图5为直径8mm 的AT345合金的拉伸应力-应变曲线;图6为AT345合金的拉伸断口形貌,(a)图为宏观断口,(b)图为局部断口放大图片,(c)图为局部断口放大图片。
具体实施例方式以下通过实施例详述本发明。
实施例1Ti基非晶复合材料的合金成分为Ti44.3Zi~32.7Ni3.2Cu6.2Be13.6(原子百分比),记为 AT340。原材料中的Ti和rLr为工业纯度的海绵Ti和海绵Zr,其余元素Cu、Ni和Be的纯度高于99. 8wt%,按原子百分比配好一定质量的原料后,在氩气保护下,经电弧熔炼制备出母合金锭,为了保证所炼合金锭均勻,合金锭反复熔炼四次。将IOg母合金锭在惰性气体气氛中感应熔化,并喷铸到铜模中直径为5mm的孔中,获得直径为5mm的淬态试样。由图1和图2可见,Ti44.3Zr32.7Ni3.2Cu6.2Be13.6为β -Ti固溶体增强Ti基非晶复合材料,晶化焓值-32. 77J/g。本实施例β -Ti固溶体增强Ti基非晶复合材料中,β -Ti固溶体的尺寸为2-5 μ m,体积分数约为40%。 图1为直径5mm的AT3系列Ti基非晶复合材料样品的XRD。由图可见,在XRD衍射的灵敏度范围内,AT310合金的XRD曲线表现出纯非晶合金所具有的典型漫散射峰。随着增强相体积分数增多,AT320合金的衍射曲线出现了较小的尖锐的晶体衍射峰,叠加在非晶相的漫散射峰上。当增强相比例分数为0. 25-0. 95时,可以明显看到一些尖锐的晶体相布拉格衍射峰,通过对比衍射卡片,确定其为β-Ti。图2为直径5mm的AT3系列Ti基非晶复合材料样品的DSC。由图可见,AT310和 AT320合金的DSC曲线首先出现了玻璃化转变行为的吸热峰,随后是晶化放热峰。但随着增强相比例分数的逐步增加,晶化放热峰的面积逐渐减小,间接说明非晶相的含量逐步减少。本实施例中,内生韧性β -Ti固溶体增强Ti基非晶复合材料性能压缩屈服强度为1617MPa,压缩断裂强度为1812MPa,压缩应变为6%。实施例2与实施例1不同的是,Ti基非晶复合材料合金成分为Tia7Zr3itlNi2.9Cu5.9Be12.5(原子百分比),记为AT345。Ti45.7Zr33.QNi2.9Cu5.9Be12.5合金为β-Ti固溶体增强Ti基非晶复合材料。本实施例β-Ti固溶体增强Ti基非晶复合材料中,β-Ti固溶体的尺寸为2-5 μ m,体积分数约为 45%。复合材料的压缩屈服强度为1500-1600MPa,压缩断裂强度为1700_2100MPa,压缩应变为5士2%,拉伸屈服强度为1400MPa,拉伸断裂强度为1500MPa,拉伸应变为4士2%。实施例3与实施例1不同的是,Ti基非晶复合材料合金成分为Th5.7Zi~3a8Ni4.8Cu8.3Be2a4(原子百分比),记为AT310。由图1可见,直径为5mm的淬态Ti35.7Zi~3(1.8Ni4.8Cu8. 4合金结构为纯非晶结构,晶化焓值为-56. 54J/go本实施例中,Ti基非晶复合材料合金性能压缩屈服强度为1780MPa,压缩断裂强度为1790MPa,压缩应变约为2%。实施例4与实施例1不同的是,Ti基非晶复合材料合金成分为Ti41.4Zr32.Pi^Cu6.9Be15.9(原子百分比),记为AT330。由图1和图2可见,Ti41.4Zr32.!Ni3.7Cu6.9Be15.9为β -Ti固溶体增强Ti基非晶复合材料,晶化焓值-47. 08J/g。本实施例β -Ti固溶体增强Ti基非晶复合材料中,β -Ti固溶体的尺寸为2-10 μ m,体积分数约为30%。本实施例中,内生韧性β -Ti固溶体增强Ti基非晶复合材料性能压缩屈服强度为1720MPa,压缩断裂强度为1750MPa,压缩应变约为2%。实施例5与实施例1不同的是,Ti基非晶复合材料的合金成分为 Ti52. Ji^5NiuCu42Bk8 (原子百分比),记为 AT370。由图1和图2可见,Ti5I9Zr345NiL6Cu42Bea8为β -Ti固溶体增强Ti基非晶复合材料,晶化焓值-18. 46J/g。本实施例β -Ti固溶体增强Ti基非晶复合材料中,β -Ti固溶体的尺寸为15-80 μ m,体积分数为70%。本实施例中,内生韧性β -Ti固溶体增强Ti基非晶复合材料性能压缩屈服强度为1207MPa,压缩断裂强度为1913MPa,压缩应变为14%。图3为质量20g的AT3系列Ti基非晶复合材料合金锭的SEM。从图中可以明显看出,合金主要由β-Ti固溶体和非晶相组成,β-Ti固溶体析出形态为典型的树枝晶。随着增强相比例分数的增加,树枝晶形貌和尺寸发生变化,枝晶臂明显粗化,由最初典型柱状树枝晶形貌逐渐演化为自由树枝晶形貌,体积分数增加,与DSC结果一致。图4、5和6为直径2mm、5mm和8mm的AT345合金的压缩拉伸曲线及拉伸断口形貌。从图中可以看出,对于冷速较快的2mm样品,变形过程中表现出明显的加工硬化行为, 其断裂强度达到2000MPa以上。随着冷却速率的降低,5mm样品的屈服强度没有明显变化, 但是断裂强度有所降低,为ISOOMI^左右。在拉伸载荷作用下,AT345合金的断裂强度为 1600MPa,并呈现出明显的塑性变形行为。拉伸断口中出现了塑性变形特征的韧窝形貌。表1 AT3系列Ti基非晶复合材料合金成分_Ti基非晶复合材料序号合金成分(原子百分比)
权利要求
1.一种内生韧性相增强Ti基非晶复合材料,其特征在于该复合材料为Ti基非晶合金和β-Ti固溶体复合而成。
2.按照权利要求1所述的内生韧性相增强Ti基非晶复合材料,其特征在于通过合金成分的调整获得不同体积分数韧性β "Ti固溶体增强Ti基非晶复合材料,β -Ti固溶体的尺寸为1-200 μ m,体积分数为0-100%。
3.按照权利要求1所述的内生韧性相增强Ti基非晶复合材料,其特征在于β-Ti固溶体的体积分数为10-98%。
4.按照权利要求1所述的内生韧性相增强Ti基非晶复合材料,其特征在于按原子百分比计,复合材料成分为TiaAbBeBi5d,其中,A为&、Nb、Ta、Mo、V、W元素的一种或者几种,B 为CiuNiJejo元素中的一种或者几种,a = 30 65 ;b =洸 38 ;c = 1 25 ;d = 0 25。
5.按照权利要求1所述的内生韧性相增强Ti基非晶复合材料,其特征在于d= 0.5 24。
6.按照权利要求1所述的内生韧性相增强Ti基非晶复合材料,其特征在于复合材料的压缩屈服强度为1000-1900MPa,压缩断裂强度为1200_2300MPa,压缩应变为2-20%。
7.按照权利要求1所述的内生韧性相增强Ti基非晶复合材料,其特征在于复合材料的拉伸屈服强度为1000-1900MPa,拉伸断裂强度为1200-2000MPa,拉伸应变为2-20%。
8.按照权利要求1所述的内生韧性相增强Ti基非晶复合材料的制备方法,其特征在于采用电弧熔炼,具体步骤如下(1)针对不同体积分数β-Ti固溶体增强Ti基非晶复合材料,调控非晶相和增强相的比例,获得复合材料的合金成分;(2)按照复合材料的成分配比,称取元素进行混合,在惰性气氛保护下,采用电弧熔炼技术获得韧性β-Ti固溶体增强Ti基非晶复合材料,合金锭反复熔炼至少四次。
9.按照权利要求1所述的内生韧性相增强Ti基非晶复合材料的制备方法,其特征在于采用铜模喷铸,具体步骤如下(1)针对不同体积分数β-Ti固溶体增强Ti基非晶复合材料,调控非晶相和增强相的比例,获得复合材料的合金成分;(2)按照复合材料的成分配比,称取元素进行混合,在惰性气氛保护下,采用电弧熔炼技术获得成分均勻的母合金锭;(3)将复合材料合金锭在惰性气体气氛中感应熔化,并喷铸到不同尺寸铜模中,获得韧性β "Ti固溶体增强Ti基非晶复合材料。
全文摘要
本发明涉及Ti基非晶复合材料领域,具体为一种内生韧性β-Ti固溶体增强Ti基非晶复合材料的设计及其制备方法。该复合材料成分为(原子百分比)TiaAbBcBed,其中A为Zr、Nb、Ta、Mo、V、W元素的一种或者几种,B为Cu、Ni、Fe、Co元素中的一种或者几种,a=30~65;b=26~38;c=1~25;d=0~25。通过合金成分的调整获得不同体积分数韧性β-Ti固溶体增强Ti基非晶复合材料,β-Ti固溶体的尺寸为1-200μm,体积分数为0-100。该复合材料表现出优异的综合力学性能,在具有高强度的同时,还具有一定程度的塑性变形行为。压缩屈服强度为1000-1900MPa,压缩断裂强度为1200-2300MPa,压缩应变为2-20%;复合材料的拉伸屈服强度为1000-1900MPa,拉伸断裂强度为1200-2000MPa,拉伸应变为2-20%。对于Ti基非晶复合材料的应用具有重要作用。
文档编号C22C45/10GK102296253SQ20101020687
公开日2011年12月28日 申请日期2010年6月23日 优先权日2010年6月23日
发明者付华萌, 唐明强, 张海峰, 朱正旺, 李宏, 王爱民, 胡壮麒 申请人:中国科学院金属研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1