高纯度钼粉末及其制造方法

文档序号:3411073阅读:372来源:国知局
专利名称:高纯度钼粉末及其制造方法
技术领域
本发明涉及一种高纯度钼粉末及其制造方法,特别是涉及一种纯度为99. 99%以上GN以上)的高纯度钼粉末及其制造方法。
背景技术
以往一直利用各种精制方法来制造高纯度的金属粉末。但是,如果对刚制造后的金属粒子材料进行观察,其结果是刚制造后的金属粒子材料并非是仅由微细的1次粒子构成的材料,而是金属粒子彼此相互附着、凝聚并粗大化而成的2次粒子的比例较多,即使是由单一的金属成分构成的制品,其特性因制品部位的不同而不同的不良情况也较多。高纯度钼粉末通过熔炼和烧结处理而作为溅射靶的原材料使用的用途也较多。关于在用于形成半导体的微细电路等布线膜的溅射靶中使用的原料粉末,其杂质管理不断严格化,需要将纯度为99. 99% (4N)至99. 999% (5N)左右的高纯度Mo粉末作为原料。另一方面,溅射靶不仅要求纯度高,而且要求晶体粒径微细,晶体取向也均勻。在通过熔炼法制造具有这样的均勻组织的靶时,原料粉末一旦被熔炼,1次粒子和2次粒子的存在在某种程度上可忽视,因而原料粉中的粒径的偏差(不均勻性)的影响小。但是,为了实施熔炼法,需要巨大的熔炼炉,存在设备的初期投资增大的缺点。另外,为了实施烧结法,小规模的烧成炉就足够,因此,制造设备的初期投资比熔炼法少,具有经济方面的优点。但是,为了使得到的靶的组织均勻化,需要反复进行多次热处理来实施,存在制造成本提高、生产效率也大幅度降低的问题。本发明者探究了阻碍上述金属组织的均勻化的主要原因(即不均勻的原因),结果判明了受原料粉末的2次粒子的比例的多少的影响较大。2次粒子是数个1次粒子、根据情况是数十个1次粒子相互附着、凝聚而形成粗大的1个粒子。在原料粉末中2次粒子的比例大时,烧结时2次粒子固化的部分与1次粒子固化的部分产生组织的不均勻,成为引起作为靶的组织的不均勻的一大原因。这样的制品组织的不均勻的问题不限于溅射靶,在高温环境下作为烧成模具使用的钼舟或作为烧成容器使用的坩埚等中也会发生。作为以往的高纯度钼粉末的制造方法,一般使用像日本特公平6-10317号公报 (专利文献1)中公开的下述制造方法,该方法具备用过氧化氢水将钼原料粉末分解的工序、用阳离子交换树脂对得到的水溶液进行处理的工序、和将经处理的水溶液浓缩后进行氢还原的工序。并记载了 通过这样的制造方法能得到4N以上的高纯度钼粉末。以往已经得到了像上述那样的高纯度化的钼粉末,但是在得到的粒子中粗大的2 次粒子的比例大,在由该粗大的2次粒子形成烧结体时,产生了烧结体组织的不均勻和作为粉末用途所需要的表面积未增大的问题。现有技术文献专利文献专利文献1 日本特公平6-10317号公报

发明内容
发明所要解决的课题如上所述,以往的高纯度钼粉末虽然可得到高纯度且平均粒径小的钼粉末,但是, 由于大量含有通过1次粒子彼此附着并粗大化而成的2次粒子,因此,在使用该粉末来制成制品时,具有其特性因制品部位的不同而不同的不良情况多发的问题。本发明是为了解决上述问题而完成的,其目的在于提供高纯度钼粉末、特别是在 4N(99. 99% )以上的高纯度钼粉末中粒径均勻且微细的1次粒子的比例大的高纯度钼粉末。此外,还在于提供通过简单的处理工序来有效地得到这样的高纯度钼粉末的制造方法。用于解决课题的手段本发明的高纯度钼粉末的特征在于,平均粒径为0. 5 100 μ m,1次粒子的比例为 50%以上,而且纯度为99. 99%以上。并且,优选全部的高纯度钼粉末的粒径为平均粒径的 2倍以下。此外,纯度优选为99. 999%以上。此外,1次粒子的比例优选为90%以上。此外, 优选高纯度钼粉末的粒度分布曲线的峰仅存在1个。此外,本发明的高纯度钼粉末的制造方法的特征在于,其具备通过对钼酸铵盐粉末进行氢还原而调制第1钼粉末的工序、通过使上述第1钼粉末与过氧化氢反应而调制包含钼化合物的第1水溶液的工序、通过使上述第1水溶液与阳离子交换树脂接触而调制包含钼化合物的第2水溶液的工序、通过使上述第2水溶液干燥而调制氧化钼粉末的工序、在用钼覆盖了内壁的容器中投入上述氧化钼粉末并在温度为400 600°C下进行热处理的工序、将得到的氧化钼粉末进行粉碎的工序、和在用钼覆盖了内壁的容器中投入上述粉碎后的氧化钼粉末并在温度为950 1100°C下进行还原的工序,通过所述高纯度钼粉末的制造方法得到纯度为99. 99%以上的钼粉末。此外,在上述高纯度钼粉末的制造方法中,作为通过使上述包含钼化合物的第2 水溶液干燥而调制氧化钼粉末的工序,优选使用在树脂容器中投入第2水溶液后于50°C 100°C的温度下进行干燥的工序。进而,在上述制造方法中,作为通过使上述包含钼化合物的第2水溶液干燥而调制氧化钼粉末的工序,优选使用将第2水溶液喷射到旋转板上而形成微细的液滴,在包含钼化合物的液滴从旋转板上弹起而落下的途中,通过喷雾干燥器进行干燥的工序。此外,在上述制造方法中,上述用钼覆盖了内壁的容器优选为用纯度为99. 99%以上的钼覆盖了内壁的容器。进而,在上述制造方法中,上述用钼覆盖了内壁的容器的构成优选是在纯度为 99. 99%以上的钼舟上载置以纯度为99. 99%以上的钼作为内部装饰材料而得到的盖部件。此外,在上述制造方法中,优选得到纯度为99. 999%以上的高纯度钼粉末。进而, 优选得到的高纯度钼粉末中的1次粒子的比例为50%以上。此外,优选得到的高纯度钼粉末的平均粒径为0. 5 100 μ m。发明效果根据上述本发明的高纯度钼粉末,能提供虽然是平均粒径为0. 5 100 μ m的微粉末但1次粒子的比例也大的高纯度钼粉末。此外,根据本发明的高纯度钼粉末的制造方法, 能使用简单的制造设备以高的制造成品率有效地制造微细且粒径一致的高纯度钼粉末。


图1是表示实施在本发明方法中所实施的干燥工序的装置的一例的截面图。图2是表示实施在本发明方法中所实施的干燥工序的装置的另一例的截面图。
具体实施例方式本发明的高纯度钼粉末的特征在于,平均粒径为0. 5 100 μ m的范围,而且,1次粒子的比例为50质量%以上,纯度为99. 99%以上。上述平均粒径低于0. 5 μ m而过小时或平均粒径超过100 μ m而过大时,难以通过后述的高纯度钼粉末的制造方法进行制造。该平均粒径优选为1 30 μ m的范围。该高纯度钼粉末的平均粒径通过粒度分布测定器进行测定。此外,钼粉末的纯度为99. 99%以上,优选为99. 999%以上。纯度的求算方法是 以质量%计分别求出铀(U)、钍(Th)、钠(Na)、K(钾)、铁0 ),Cr (铬)、Ni (镍)、镁(Mg)、 钙(Ca)、铜(Cu)、锰(Mn)、锌(Zn)、钨(W)、铝(Al)的含量,将从100%中减去它们的合计值, 将所得到的值作为钼的纯度。在本发明中,可以将钼粉末中的铀(U)含量设定为0. Ippb以下、将钍(Th)含量设定为0. Ippb以下。并且,可以使钠(Na)含量低至0. 5ppm以下、使K(钾)含量低至0. 5ppm 以下、使铁(Fe)含量低至0. 5ppm以下、使Cr(铬)含量低至0. 5ppm以下、使Ni (镍)含量低至0. 5ppm以下、使镁(Mg)含量低至0. 5ppm以下、使钙(Ca)含量低至0. 5ppm以下、使铜 (Cu)含量低至0. 5ppm以下、使锰(Mn)含量低至0. 5ppm以下、使锌(Zn)含量低至0. 5ppm 以下、使钨(W)含量低至0. 5ppm以下、使铝(Al)含量低至0. 5ppm以下。进而,可以进行精制使钠(Na)含量低至0. 05ppm以下、使K(钾)含量低至0. 05ppm 以下、使铁(Fe)含量低至0. 05ppm以下、使Cr(铬)含量低至0. 05ppm以下、使Ni (镍)含量低至0. 05ppm以下、使镁(Mg)含量低至0. 05ppm以下、使钙(Ca)含量低至0. 05ppm以下、 使铜(Cu)含量低至0. 05ppm以下、使锰(Mn)含量低至0. 05ppm以下、使锌(Zn)含量低至 0. 05ppm以下、使钨(W)含量低至0. 05ppm以下、使铝(Al)含量低至0. 05ppm以下。对于本发明的高纯度钼粉末,在可以维持钼纯度为99. 99%以上0N)、进而为 99. 999% (5N)以上的高纯度、且平均粒径为0. 5 100 μ m的微细粒径的基础上,使其1次粒子的比例为50%以上、进而为90%以上。这里,上述1次粒子是指微细粒子未凝聚而处于各自分离的状态的粒子。1次粒子彼此相互附着、凝聚而成的粒子成为2次粒子。上述1次粒子的比例的测定方法是在粒子为200个的拍摄视野中分别对1次粒子的个数和2次粒子的个数进行计数。然后,根据下述计算式计算1次粒子的比例。[1次粒子的个数/(1次粒子的个数+2次粒子的个数)]X 100%= 1次粒子的比例在本发明中,1次粒子的比例多达50%以上,附着、凝聚在一起的2次粒子少,因此,将该高纯度钼粉末作为原材料使用而制作像溅射靶或烧结部件等烧结体时,能得到具有均勻的组织状态的制品。此外,由于在高纯度钼粉末中1次粒子的比例大,所以能使全部的钼粉末粒子成为平均粒径的2倍以下。也就是说,能提供在制成了粉末的粒度分布的情况下不存在具有平均粒径的2倍以上的粒径的粒子、且粒径的偏差小、粒径一致的粒子。进而,由于粗大的2次粒子的比例少,因此在测定粒度分布时,粒度分布的峰只存在1个,因此,没有极大或极小的粒子群出现多个的情况,所以可得到粒径一致的高纯度钼粉末。还能够提供下述的粉末,该粉末具有其粒度分布的峰的半值幅也为峰值的50%以下的尖锐的粒度分布。本发明的高纯度钼粉末可以适用于溅射靶、用于烧结炉的板部件(舟形器皿等)、 冷阴极管用电极等烧结部件、钼箔、各种粉末状催化剂等各种领域中。本发明的高纯度钼粉末由于1次粒子的比例大,因此在形成烧结体时能消除组织的不均勻。并且由于纯度也高,因此,也能有效地防止向同时使用的其他制品中混入杂质。接着,对本发明的高纯度钼粉末的制造方法进行说明。本发明的高纯度钼粉末的制造方法没有特别限定,但是,作为有效获得的制造方法,可采用下面的方法。本发明的高纯度钼粉末的制造方法的主旨在于,其具备通过对钼酸铵盐粉末进行氢还原而调制第1钼粉末的工序、通过使上述第1钼粉末与过氧化氢反应而调制包含钼化合物的第1水溶液的工序、通过使上述第1水溶液与阳离子交换树脂接触而调制包含钼化合物的第2水溶液的工序、通过使上述第2水溶液干燥而调制氧化钼粉末的工序、在用钼覆盖了内壁的容器中投入上述氧化钼粉末并在温度为400 600°C下进行热处理的工序、 将得到的氧化钼粉末进行粉碎的工序、和在用钼覆盖了内壁的容器中投入上述粉碎后的氧化钼粉末并在温度为950 1100°C下进行还原的工序,由此,得到纯度为99. 99%以上的钼粉末。在上述高纯度钼粉末的制造方法中,首先,进行通过将钼酸铵盐粉末进行氢还原而调制第1钼粉末的工序。作为钼酸铵盐粉末,可以举出二钼酸铵((NH4)2Mo2O7 · IiH2O)粉末,其平均粒径优选为50 300 μ m的范围。若上述平均粒径低于50 μ m或平均粒径超过 300 μ m,则最终得到的粉末的平均粒径难以达到0. 5 100 μ m的范围。此外,从价格上考虑,具有50 300 μ m的平均粒径的钼酸铵盐粉末在市场中更容易获得。此外,上述氢还原操作优选为在530 600°C的温度下进行2 4小时、并在氢气流速度为1升/分钟 10升/分钟的氢还原气氛中实施。通过该还原工序,可得到第1 钼粉末。该阶段的钼粉末的纯度低,粒径也粗。接着,实施通过使第1钼粉末与过氧化氢反应而调制包含钼化合物的第1水溶液的工序。通过与该过氧化氢水的反应,进行基于下述反应式的反应。2Mo+7H202 — 2HMo04+6H20通过上述反应,调制包含钼化合物的第1水溶液。此外,与过氧化氢水的反应优选在温度为80°C以下的条件下实施。即,若该反应温度超过80°C,则过氧化氢水有可能发生爆炸,因此应当注意。接着,实施通过使上述第1水溶液与阳离子交换树脂接触而使杂质作为阳离子吸附到阳离子交换树脂上,并调制包含成为络离子的Mo成分的第2水溶液的工序。对于包含钼化合物的第1水溶液,由于杂质金属以阳离子的形式存在,因此通过使其与阳离子交换树脂接触,可除去阳离子杂质,将Moo4—阴离子等钼酸根阴离子分离。阳离子交换树脂的材质没有特别限定,例如可以适当地使用商品名为Diaion SK, Amberlite等。
对于阳离子交换树脂,使用平均粒径为50 100 μ m左右的阳离子交换树脂,其被填充在圆筒状的柱中。在填充了阳离子交换树脂的柱中通过包含钼化合物的第1水溶液而将杂质阳离子分离除去。对于使上述阳离子交换树脂与包含钼化合物的第1水溶液接触的工序,在直径 30 50mmX长度350mm以上的柱内填充平均粒径为50 100 μ m的阳离子交换树脂,将柱沿着纵向配置,使包含钼化合物的第1水溶液通过。在作为最终制品的纯度为99. 99%以上且低于99. 999%时,上述柱的长度为350 450mm左右是充分的。此外,在实现99. 999% 以上的纯度的情况下,优选将上述柱的长度设为450mm以上。上述柱的长度的上限没有特别限定,但考虑到处理操作的作业性,优选为800mm 以下。此外,为了防止金属杂质从柱混入到被处理液中,优选使用聚丙烯等树脂制柱。经由使上述阳离子交换树脂与第1水溶液接触的工序,能得到包含钼酸根阴离子 (MoO4-)的第2水溶液。接着,实施通过使第2水溶液干燥而调制氧化钼粉末的工序。在该工序中,通过在温度为300°C以下的气氛下将第2水溶液干燥而能够得到氧化钼粉末(MoO3)。作为上述干燥工序,例如可以采用如下所示的第1干燥工序或第2干燥工序那样的方法。S卩,第1干燥工序是在聚乙烯容器中加入第2水溶液后在50°C 100°C的温度下以6 8小时来进行干燥的工序。图1示出了上述第1干燥工序的一例。在图1中,符号1表示第2水溶液,符号2表示树脂容器,符号3表示搅拌棒,符号 4表示加热容器,符号5表示加热介质。作为上述树脂容器2,通过使用聚乙烯容器、聚四氟乙烯容器等,能防止金属杂质向第2水溶液1中混入。并且,在构成树脂容器2的树脂中,尤其是聚乙烯从耐热性、耐腐蚀性、轻量性、强度特性、价格的观点考虑是优异的。作为加热介质5,可以适当地使用热水。 根据需要对加热容器4进行加热,边间接地对树脂容器进行加热边实施第2水溶液的加热浓缩。此外,上述加热操作时,优选边用搅拌棒3对第2水溶液进行搅拌边进行干燥。上述干燥工序持续到第2水溶液中的水分消失为止。在除去水分后,在树脂容器2 内氧化钼粉末以干燥残渣的形式残留。在该第1干燥工序中,得到的氧化钼粉末残留在树脂容器2内,因此,一次得到的氧化钼粉末受树脂容器2的尺寸的影响。因此,在该第1干燥工序中,在1批(1次处理)中得到的氧化钼粉末量为Ikg以下的情况下是有效的。若为 Ikg以下的量,则优选为6 8小时左右的干燥时间。另一方面,第2干燥工序为将第2水溶液喷射到旋转板上,在钼化合物在旋转板上被弹起而落下的途中,通过喷雾干燥器进行干燥的工序。图2示意地表示实施第2干燥工序的干燥装置的构成例。在图2中,符号1为第2水溶液、符号6为喷射第2水溶液1的喷射口、7为使旋转盘8旋转的旋转机构、8为使第2水溶液1微细地分散的旋转板、9为干燥容器、10为喷雾干燥器、11为回收容器、12为干燥后的氧化钼粉末。在实施上述第2干燥工序时,首先,在旋转机构7的前端安装圆盘状的旋转板8,使旋转板8高速旋转。旋转板8的旋转速度优选为500 3000rpm左右。从喷射口 6向旋转的旋转板8连续地滴加第2水溶液时,第2水溶液1的液滴被旋转板8弹起,进而成为微细的液滴,向干燥容器9的内壁飞翔。被弹起后微细地分散的液滴在干燥容器9内落下的途中,被从喷雾干燥器10喷射的高温干燥气流(热风)干燥。从上述喷雾干燥器10喷射的热风的温度优选为50 100°C的范围。以液滴的形式向上述旋转板8投入,被旋转板8的旋转力弹起的液滴进一步变小。通过上述旋转板8 被微细地分散化而成的液滴是微小的水滴,因此,即使是在干燥容器9内落下的期间的微少的时间,也能利用从喷雾干燥器10喷射的热风,在短时间内使其瞬间干燥。于是,干燥后的被处理物成为氧化钼粉末12而堆积在回收容器11中。只要是该干燥方法,就能连续地进行干燥工序,因此每1批(1次处理)可得到Ikg以上的大量的氧化钼粉末12。此外,根据需要,通过延长干燥容器9的纵向尺寸或增加喷雾干燥器10的配置个数,能适当地提高干燥能力。此外,干燥容器9的内壁通过进行聚四氟乙烯等树脂涂覆, 能有效防止金属杂质从干燥容器9混入到第2水溶液1中,因此优选。此外,也可以增加使第2水溶液1滴下的喷射口 6的设置基数来提高干燥能力。在上述的第2干燥工序中,由于能大幅度减少像第1干燥工序那样在水溶液的搬运等中所需的劳力和时间,因此作业性良好,能保持清洁的作业环境。此外,在第2干燥工序中,在微细的液滴状态下实施干燥操作,因此,干燥操作中的粉末彼此的附着少,能有效地防止最终得到的氧化钼粉末彼此的凝聚。由于将上述1次粒子的比例大的氧化钼粉末还原而制作高纯度钼粉末,因此,最终得到的高纯度钼粉末也可得到1次粒子的比例大的高纯度粉末。特别是根据本发明的制造方法,能有效地制造1次粒子的比例为90%以上、粒径一致且微细的高纯度钼粉末。接着,实施将得到的氧化钼粉末12投入到用钼覆盖了内壁的容器中并在400 600°C的温度下进行热处理的工序。由上述干燥工序得到的氧化钼粉末中即使残留少量的水分,也会影响后述的还原工序,因此通过在400 600°C的范围的温度下充分实施热处理来进行完全脱水。上述热处理工序中的处理温度低于400°C时,需要延长热处理时间,另一方面,上述处理温度超过600°C时,可能会产生氧化钼粉末发生晶粒生长或升华。优选的热处理时间为2小时以上。此外,上述热处理优选在大气中实施。通过在大气中实施热处理,即使在氧化钼粉末中并存与MoO3粉末的价态不同的氧化钼(Mo02、Mo3O8、Mo9O26等)的情况下,也能尽量按照仅由MoO3粉末构成的方式减少物质种类。此外,热处理工序也可以在氢气氛中实施。在氢气氛中实施热处理也具有使钼氧化物的价态一致的效果。由此能均勻恒定地发挥后述的还原工序中的效果。接着,实施将得到的氧化钼粉末进行粉碎的工序。通过上述热处理工序得到的氧化钼粉末的粒径粗大,在该状态下即使进行还原工序,还原效果也不恒定,因此优选事先实施粉碎工序。粉碎工序优选为使用球磨机等粉碎机的方法。此外,通过在球磨机的内壁实施聚四氟乙烯等树脂涂覆,能有效防止金属杂质混入到氧化钼粉末中。此外,通过调整粉碎程度,也能对最终得到的高纯度钼粉末的平均粒径进行调整。接着,进行将粉碎后的氧化钼粉末加入到用钼覆盖了内壁的容器中并加热到温度为950°C至1100°C进行还原的工序。在该还原工序中使用的容器优选使用用钼覆盖了其内壁的容器。覆盖还原容器内壁的钼优选尽量为高纯度,具体而言,优选使用99. 99%以上的高纯度钼,更优选使用99. 999%以上的高纯度钼。此外,在使用钼舟的情况下,优选使用其纯度为99. 99%以上的钼舟,更优选使用其纯度为99. 999%以上的钼舟。此外,上述还原工序优选在950 1100°C的温度范围中实施。该还原工序为将氧化钼还原而转换成金属钼的工序。还原温度低于950°C时还原反应无法充分进行。另一方面,若还原温度超过1100°C,则钼发生晶粒生长,因此作为目的的“使全部的高纯度钼粉末的粒径成为平均粒径的2倍以下”变得难以实现。此外,上述还原工序优选在上述的还原温度下将氧化钼保持3小时以上而实施。 在上述保持时间低于3小时的情况下,在1批的处理量多达Ikg以上的情况下,有可能无法进行充分的还原反应。此外,1批中的处理量低于Ikg的情况下,作为还原剂使用的氢气流速度优选为1升/分钟以上。但是,随着上述还原反应的进行,不需要的氧成为水分而蒸发,因此,若在密闭空间中实施上述还原工序,则蒸发的水分阻碍还原反应。因此,按照在氢气流环境下实施还原反应而使还原反应稳定地持续的方式进行考虑是非常重要的。通过这样的制造工序,能得到纯度为99. 99%以上、进而纯度为99. 999%以上的高纯度钼粉末。在氧化钼粉末的阶段防止粒子彼此的凝聚,减少了 2次粒子的比例,因此, 能使得到的高纯度钼粉末的1次粒子的比例达到50%以上、甚至达到90%以上。此外,在高纯度钼粉末中1次粒子的比例大,因此,得到的高纯度钼粉末即使不实施筛分操作,也能形成平均粒径为0. 5 100 μ m的微细的粉末。此外,在测定粒度分布时, 粒径为全部钼粉末的平均粒径的2倍以上的粉末不存在。并且,能得到在粒度分布曲线中仅存在1个作为规定的微细的粒径的峰、且粒径一致的Mo粉末。[实施例]接着,参照以下的实施例和比较例对本发明的高纯度钼粉末及其制造方法的实施方式进行更具体的说明。(实施例1 5及比较例1)首先,作为在各实施例及比较例中共同的原材料,准备了二钼酸铵(平均粒径 100 μ m)粉末。接着,将上述作为原材料的二钼酸铵粉末在温度580°C下经过3小时、在流量为5升/分钟的氢气流中进行还原,从而调制了第1钼粉末。接着,通过边按照温度不超过60°C的方式进行调整,边使得到的第1钼粉末与过氧化氢水反应,从而调制了包含钼化合物的第1水溶液。另一方面,将平均粒径为70 μ m的阳离子交换树脂粉末填充到直径40mmX长度 500mm的柱内。接着,使上述第1水溶液从填充了阳离子交换树脂的柱内通过而调制了除去了阳离子的包含钼化合物的第2水溶液。接着,按照表1所示的各个方法实施上述第2水溶液的干燥工序。S卩,实施例1 2通过第1干燥工序进行处理,所述第1干燥工序如图1所示,将加入有第2水溶液1的树脂容器2用加热容器4内的作为加热介质的热水进行加热,同时边用搅拌棒3对第2水溶液1进行搅拌边进行干燥。另一方面,实施例3 5通过第2干燥工序进行处理,所述第2干燥工序如图2所示,将第2水溶液1滴加到旋转板8上而分散,将分散的微细的液滴通过从喷雾干燥器10 喷射的热风进行气流干燥。
通过该干燥工序,分别得到氧化钼粉末。此外,为了进行比较,将改变了干燥工序的温度条件等的例子作为比较例1。另外,在上述干燥工序中,所使用的干燥容器的规格(材质、有无内部装饰)、每1 批向干燥容器中投入的第2水溶液1的量(1批量Kg)、干燥条件如下述表1所示。[表 1]
权利要求
1.一种高纯度钼粉末,其特征在于,平均粒径为0. 5 100 μ m,1次粒子的比例为50% 以上,且纯度为99. 99%以上。
2.根据权利要求1所述的高纯度钼粉末,其特征在于,全部的高纯度钼粉末的粒径为平均粒径的2倍以下。
3.根据权利要求1至2中任一项所述的高纯度钼粉末,其特征在于,纯度为99.999% 以上。
4.根据权利要求1至3中任一项所述的高纯度钼粉末,其特征在于,1次粒子的比例为 90%以上。
5.根据权利要求1至4中任一项所述的高纯度钼粉末,其特征在于,高纯度钼粉末的粒度分布曲线的峰仅存在1个。
6.一种高纯度钼粉末的制造方法,其特征在于,其具备通过对钼酸铵盐粉末进行氢还原而调制第1钼粉末的工序、通过使所述第1钼粉末与过氧化氢反应而调制包含钼化合物的第1水溶液的工序、通过使所述第1水溶液与阳离子交换树脂接触而调制包含钼化合物的第2水溶液的工序、通过使所述第2水溶液干燥而调制氧化钼粉末的工序、在用钼覆盖了内壁的容器中投入所述氧化钼粉末并在温度为400 600°C下进行热处理的工序、将得到的氧化钼粉末进行粉碎的工序、和在用钼覆盖了内壁的容器中投入所述粉碎后的氧化钼粉末并在温度为950 1100°C 下进行还原的工序,通过所述高纯度钼粉末的制造方法得到纯度为99. 99%以上的钼粉末。
7.根据权利要求6所述的高纯度钼粉末的制造方法,其特征在于,作为通过使所述包含钼化合物的第2水溶液干燥而调制氧化钼粉末的工序,使用在树脂容器中投入第2水溶液后于50°C 100°C的温度下进行干燥的工序。
8.根据权利要求6所述的高纯度钼粉末的制造方法,其特征在于,作为通过使所述包含钼化合物的第2水溶液干燥而调制氧化钼粉末的工序,使用将第2水溶液喷射到旋转板上而形成微细的液滴,在包含钼化合物的液滴从旋转板上弹起而落下的途中,通过喷雾干燥器进行干燥的工序。
9.根据权利要求6至8中任一项所述的高纯度钼粉末的制造方法,其特征在于,所述用钼覆盖了内壁的容器为用纯度为99. 99%以上的钼覆盖了内壁的容器。
10.根据权利要求6至9中任一项所述的高纯度钼粉末的制造方法,其特征在于,所述用钼覆盖了内壁的容器的构成是在纯度为99. 99%以上的钼舟上载置以纯度为99. 99% 以上的钼作为内部装饰材料而得到的盖部件。
11.根据权利要求6至10中任一项所述的高纯度钼粉末的制造方法,其特征在于,得到纯度为99. 999%以上的高纯度钼粉末。
12.根据权利要求6至11中任一项所述的高纯度钼粉末的制造方法,其特征在于,得到的高纯度钼粉末中的1次粒子的比例为50%以上。
13.根据权利要求6至12中任一项所述的高纯度钼粉末的制造方法,其特征在于,得到的高纯度钼粉末的平均粒径为0. 5 100 μ m。
全文摘要
在将氧化钼粉末还原而获得高纯度钼粉末时,将氧化钼粉末加入到用钼覆盖了内壁的容器中,在950~1100℃的温度下进行还原。此外,在途中的干燥工序中得到1次粒子多的氧化钼粉末。由此,能得到1次粒子的比例为50%以上的高纯度钼粉末。此外,通过改进干燥工序,可得到平均粒径为0.5~100μm且1次粒子的比例为50%以上的高纯度钼粉末。
文档编号B22F9/22GK102470437SQ20108003070
公开日2012年5月23日 申请日期2010年7月9日 优先权日2009年7月9日
发明者山口悟 申请人:东芝高新材料公司, 株式会社东芝
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1