一种稀土镁合金的热变形强化方法
【专利摘要】一种稀土镁合金的热变形强化方法,涉及一种金属材料成形与加工领域。步骤是:将金属模重力铸造的锭坯在525℃温度下均匀化处理10~24h,然后用水冷却,并去外皮;将去皮后的锭坯在400~500℃的温度下预热0.5~2h,按照挤压方式为正向挤压,挤压比5~30:1,挤压速度为0.1~10m/min进行两次挤压,在挤压过程中,挤压模具和挤压筒温度保持在380~420℃;将挤压后得到的稀土镁合金在450~560℃保温10~24h后进行水淬固溶处理,然后在180~250℃温度下保温10~48h进行时效热处理。本发明方法简单、易于控制,可生产难变形金属材料,可实现连续大规模生产,有效降低生产成本,能大幅度提高稀土镁合金的力学性能。
【专利说明】一种稀土镁合金的热变形强化方法
【技术领域】
[0001]本发明涉及一种金属材料成形与加工领域。具体涉及一种稀土镁合金通过常规的热挤压设备,控制挤压工艺和参数,在保持材料高强度的同时提高镁合金的塑性。
【背景技术】
[0002]镁合金由于其密度低、比强度高,同时兼具良好的抗蠕变性和抗震吸能等优点,在国防、航空航天、汽车制造等领域具有广泛的应用前景。众所周知传统的Mg-Al-Zn和Mg-Zn-Zr系合金强度较低,尽管在这些合金中,可以通过添加稀土元素(Ce、La、Nd和Y),通过在高温下形成稳定的第二相,使得这类镁合金在200°C及以上温度时,具有高强度和良好的抗蠕变性,当工作温度达到250°C及以上时,这类镁合金的力学性能一般会明显降低。在Mg-RE系合金中,Mg-Gd系合金具有较稳定的低蠕变速率和较高的蠕变抗力,其优异的室温和高温力学性能甚至超过WE54和QE22等商业镁合金,得到了国内外专家及学者的普遍关注。Drits等人最早对Mg-Gd 二元合金的力学性能进行了系统的研究,发现其室温强度可达400MPa以上,但其室温下的延伸率不到2%,低的延伸率带来的变形困难严重阻碍其广泛应用。因此,改善Mg-Gd系合金室温塑性是耐热镁合金应用领域亟待解决的关键问题之一。
[0003]CN102828133A名称为“一种超高强高韧镁合金的制备方法”,合金成份为Gd:6~13%,Y:2飞%,Zr:0.3^0.8%,通过对半连续镁合金铸锭进行强力热变形,再将热变形后镁合金在11(T150°C进行快速温变形,变形速度为15~24mm/S ;快速温变形后进行140^250 0C /23~38h时效热处理,总变形量为10~40%。温变形态合金室温抗拉强度为61(T647MPa,屈服强度为547~585MPa,断后延伸率为6~10%。时效态合金室温抗拉强度为710~749MPa,屈服强度为675~710MPa,断后延伸率为3.8~6.9%。
[0004] CN102392165A名称为“一种具有高强度的变形镁合金及其挤压材的制备方法”,在Mg-Zn系合金的基础上采用添加稀土合金元素,通过低频电磁油滑半连续铸造制备镁合金锭坯,然后进行反向温挤压和T5热处理。材料的室温拉伸力学性能为:抗拉强度390~420MPa,屈强比> 0.96,断后延伸率> 7%。
[0005]CN102828133A通过添加稀土元素和强力热变形、快速温变形来提高镁合金的强度和延伸率,但合金的室温变形能力仍有待提高;CN102392165A通过电磁油滑半连续铸造,结合反向温挤压来提高合金的强度和屈强比,但合金的延伸率仍旧较低。由此可以看出,如何有效改善镁合金的塑性是一个值得深入的课题。对变形镁合金而言,通过对镁合金微观组织和织构取向的控制来改善和提高变形镁合金的塑性具有非常重要的意义。具体来说是通过改变镁合金塑性成型方式,如引入大变形量剪切变形来改变基面的取向分布;另外一种是通过引入稀土元素后的粒子诱发形核机制,获得取向随机化分布的新晶粒,随机生成的织构可以消除一般变形镁合金中出现的不对称拉伸、压缩变形抗力,减小或消除材料的各向异性。最典型的常规热变形处理是单次等温热挤压,但很难将晶粒细化到ΙΟμπι以下。在以往的研究中,提出了一些大塑性变形的理论方法,比如等径角挤压法、累积轧制以及高压扭转法等来获得晶粒细小的微观组织,甚至可以达到亚微米、纳米级别;但是这些方法只适合制备小规格材料。因此,对于研发低成本高性能镁合金还需广大材料研究者长期不懈的努力。
[0006]综上所述,研究开发出一种可以获得室温抗拉强度≥420MPa、良好延伸率≥10% ;300°C时抗拉强度> 250MPa、良好延伸率> 30%的综合力学性能优良的镁合金,对于满足国防军工、航空航天、汽车制造等领域要求,具有重要的现实意义。
【发明内容】
[0007]本发明的目的在于提高稀土镁合金的强度与塑性,提供一种稀土镁合金热变形强化方法。
[0008]本发明所述稀土镁合金为Mg-Gd系合金,其重量组分百分比为:Gd 12.0%,Y3.0%, Zr 0.6%,其余为 Mg。
[0009]本发明所述热变形强化方法以下几个具体步骤:
1.将金属模重力铸造的锭坯在525°C温度下均匀化处理l(T24h,然后用水冷却,并去外皮;
2.将去皮后的锭坯在400-500°C的温度下预热0.5~2h,按照挤压方式为正向挤压,挤压比5~30:1,挤压速度为0.f 10m/min进行两次挤压,在挤压过程中,挤压模具和挤压筒温度保持在38(T420°C ;
3.将挤压后得到的稀土镁合金在450-560°C保温l(T24h后进行水淬固溶处理,然后在180-250°C温度下保温10~48h进行时效热处理。
[0010]与现有技术相比,本发明的特点和有益效果是:
1.工艺简单、易于控制,可生产难变形金属材料。高稀土含量镁合金(RE> 12%wt)通常热加工变形困难,晶粒难以有效细化。本发明利用一次挤压预变形,合金经过一次热挤压后,发生了显著的动态再结晶。一次挤压过程中发生的动态再结晶使初始的铸态组织变为细小的等轴晶,并在挤压方向形成粗大晶粒和细小晶粒交替排列的带状结构(图1),一次挤压后有方块状的第二相生成(图2)。一次挤压后,粗晶粒区域的晶粒尺寸达到25μπι,细晶粒区域的晶粒尺寸小于I μ m。
[0011]2.两次挤压后合金中的第二相变得更加细小,且分布更加均匀,使得稀土镁合金的力学性能大幅度提高。和一次挤压相比,两次挤压生成的细小晶粒呈现出剪切带方向与挤压方向约35°关系(图3)。图4显示了合金一次挤压后的反极图照片,可以明显观察到大部分晶粒的c轴垂直于挤压方向即
(1010) I |ED。本发明中,合金一次挤压后具有强非基面织构,说明非基面滑移系在热变形过
程中具有高活动能力,从而使合金具有高强度。两次挤压以后,由于存在强烈的剪切变形力的作用,形成了一种c轴偏离挤压方向20-30°织构组分,新的织构同时具有较弱的强度,这
种取向有利于材料的后续塑性成形。两次挤压后合金有大量的再结晶新晶粒和沿着?.η?ο?
与@行0)连续分布的弱织构,可以减小应力集中,延迟断裂发生,从而提高了材料的延伸率(图 5);
3.通过适当的时效热处理工艺,利用亚稳相在不同温度时所具有不同的析出序列产生不同的强化相来强化合金;4.本发明操作简单,只需两个阶段对坯料进行热变形即可,可实现连续大规模生产,有效降低生产成本。通过两次挤压变形以后,具有很高的表面质量。
【专利附图】
【附图说明】
[0012]图1 一次挤压后光学显微组织。
[0013]图2 —次挤压后扫描电镜照片。
[0014]图3两次挤压后背散射衍射分析照片。
[0015]图4 一次挤压后宏观织构。
[0016]图5两次挤压后宏观织构。
【具体实施方式】
[0017]结合本发明技术方案的内容提供以下实施例,但本发明的保护范围不限于下述实施例。本发明的稀土镁合金的重量百分比为:Gd 12.0%、Y 3.0%和Zr 0.6%,其余为Mg。
[0018]实施例1
本实施例采用普通铸造获得的直径180mm圆锭;
1.合金圆锭在525°C温度下均匀化10h,然后用水冷却,并去外皮;
2.挤压前,在挤压模具内 壁和挤压筒内壁均匀涂抹二硫化钥锂基润滑剂进行润滑;将均匀化处理后的镁合金坯料加热到400°C保温45min后进行一次挤压,挤压比9:1,挤压速度lm/min,挤压模具和挤压筒温度保持在380°C ;
3.把一次挤压镁合金圆棒加热到400°C保温45min,去皮并进行二次挤压,挤压比为9:1,挤压速度lm/min,挤压模具和挤压筒温度保持在380°C ;
4.两次挤压后的稀土镁合金在480°C保温12h后进行水淬固溶处理,然后在180°C,12h时效热处理。
[0019]实施例2
本实施例采用普通铸造获得的直径180mm圆锭;
1.合金圆锭在525°C温度下均匀化16h,然后用水冷却,并去外皮;
2.挤压前,在挤压模具内壁和挤压筒内壁均匀涂抹二硫化钥锂基润滑剂进行润滑;将均匀化处理后的镁合金坯料加热到430°C保温45min后进行一次挤压,挤压比16:1,挤压速度lm/min,挤压模具和挤压筒温度保持在400°C ;
3.把一次挤压镁合金圆棒加热到430°C保温45min,去皮并进行二次挤压,挤压比为16:1,挤压速度lm/min,挤压模具和挤压筒温度保持在400°C ;
4.两次挤压后的稀土镁合金在500°C保温16h后进行水淬固溶处理,然后在200°C,16h时效热处理。
[0020]实施例3
本实施例采用普通铸造获得的直径180mm圆锭;
1.合金圆锭在525°C温度下均匀化24h,然后用水冷却,并去外皮;
2.挤压前,在挤压模具内壁和挤压筒内壁均匀涂抹二硫化钥锂基润滑剂进行润滑;将均匀化处理后的镁合金坯料加热到450°C保温45min后进行一次挤压,挤压比25:1,挤压速度lm/min,挤压模具和挤压筒温度保持在420°C ;3.把一次挤压镁合金圆棒加热到450°C保温45min,去皮并进行二次挤压,挤压比为25:1,挤压速度1m/min,挤压模具和挤压筒温度保持在420°C ;
4.两次挤压后的稀土镁合金在525°C保温24h后进行水淬固溶处理,然后在225°C,16h时效热处理。
[0021]实施例4
本实施例采用普通铸造获得的直径180mm圆锭;
1.合金圆锭在525°C温度下均匀化10h,然后用水冷却,并去外皮;
2.挤压前,在挤压模具内壁和挤压筒内壁均匀涂抹二硫化钥锂基润滑剂进行润滑;将均匀化处理后的镁合金坯料加热到400°C保温45min后进行一次挤压,挤压比9: 1,挤压速度4m/min,挤压模具和挤压筒温度保持在380°C ;
3.把一次挤压镁合金圆棒加热到400°C保温45min,去皮并进行二次挤压,挤压比为9:1,挤压速度4m/min,挤压模具和挤压筒温度保持在380°C ;
4.两次挤压后的稀土镁合金在560°C保温12h后进行水淬固溶处理,然后在250°C,48h时效热处理。
[0022]实施例5
本实施例采用普通铸造获得的直径180mm圆锭;
1.合金圆锭在525°C温度下均匀化16h,然后用水冷却,并去外皮;
2.挤压前,在挤压模具内壁和挤压筒内壁均匀涂抹二硫化钥锂基润滑剂进行润滑;将均匀化处理后的镁合金坯料加热到430°C保温45min后进行一次挤压,挤压比16:1,挤压速度4m/min,挤压模具和挤压筒温度保持在400°C ;
3.把一次挤压镁合金圆棒加热到430°C保温45min,去皮并进行二次挤压,挤压比为16:1,挤压速度4m/min,挤压模具和挤压筒温度保持在400°C ;
4.两次挤压后的稀土镁合金在525°C保温24h后进行水淬固溶处理,然后在250°C,24h时效热处理。
[0023]实施例6
本实施例采用普通铸造获得的直径180mm圆锭;
1.合金圆锭在525°C温度下均匀化24h,然后用水冷却,并去外皮;
2.挤压前,在挤压模具内壁和挤压筒内壁均匀涂抹二硫化钥锂基润滑剂进行润滑;将均匀化处理后的镁合金坯料加热到450°C保温45min后进行一次挤压,挤压比25:1,挤压速度4m/min,挤压模具和挤压筒温度保持在420°C ;
3.把一次挤压镁合金圆棒加热到430°C保温45min,去皮并进行二次挤压,挤压比为25:1,挤压速度4m/min,挤压模具和挤压筒温度保持在420°C ;
4.两次挤压后的稀土镁合金在525°C保温24h后进行水淬固溶处理,然后在225°C,24h时效热处理。
[0024]实施例7
本实施例采用普通铸造获得的直径180mm圆锭;
1.合金圆锭在525°C温度下均匀化10h,然后用水冷却,并去外皮;
2.挤压前,在挤压模具内壁和挤压筒内壁均匀涂抹二硫化钥锂基润滑剂进行润滑;将均匀化处理后的镁合金坯料加热到400°C保温45min后进行一次挤压,挤压比9: 1,挤压速度6m/min,挤压模具和挤压筒,使其温度保持在380°C ;
3.把一次挤压镁合金圆棒加热到400°C保温45min,去皮并进行二次挤压,挤压比为9:1,挤压速度6m/min,挤压模具和挤压筒,使其温度保持在380°C ;
4.两次挤压后的稀土镁合金在525°C保温24h后进行水淬固溶处理,然后在225°C,16h时效热处理。
[0025]实施例8
本实施例采用普通铸造获得的直径180mm圆锭;
1.合金圆锭在525°C温度下均匀化16h,然后用水冷却,并去外皮;
2.挤压前,在挤压模具内壁和挤压筒内壁均匀涂抹二硫化钥锂基润滑剂进行润滑;将均匀化处理后的镁合金坯料加热到430°C保温45min后进行一次挤压,挤压比16:1,挤压速度6m/min,挤压模具和挤压筒温度保持在400°C ;
3.把一次挤压镁合金圆棒加热到430°C保温45min,去皮并进行二次挤压,挤压比为16:1,挤压速度6m/min,挤压模具和挤压筒温度保持在400°C ;
4.两次挤压后的稀土镁合金在460°C保温24h后进行水淬固溶处理,然后在225°C,16h时效热处理。
[0026]实施例9
本实施例采用普通铸造获得的直径180mm圆锭; 1.合金圆锭在525°C温度下均匀化24h,然后用水冷却,并去外皮;
2.挤压前,在挤压模具内壁和挤压筒内壁均匀涂抹二硫化钥锂基润滑剂进行润滑;将均匀化处理后的镁合金坯料加热到450°C保温45min后进行一次挤压,挤压比25:1,挤压速度6m/min,挤压模具和挤压筒,使其温度保持在420°C ;
3.把一次挤压镁合金圆棒加热到450°C保温45min,去皮并进行二次挤压,挤压比为25:1,挤压速度6m/min,挤压模具和挤压筒,使其温度保持在420°C ;
4.两次挤压后的稀土镁合金在480°C保温24h后进行水淬固溶处理,然后在225°C,16h时效热处理。
[0027]两次挤压的稀土镁合金经时效热处理后最大室温抗拉强度、屈服强度和延伸率分别可达:486MPa、415MPa和11.4% ;300°C时最大抗拉强度、屈服强度和延伸率分别可达:278MPa、204MPa和35.6%。实施例的测试结果见表1。
[0028]表1实施例的测试结果
【权利要求】
1.一种稀土镁合金的热变形强化方法,其特征是步骤如下: 1)将金属模重力铸造的锭坯在525°C温度下均匀化处理l(T24h,然后用水冷却,并去外皮; 2)将去皮后的锭坯在40(T50(TC的温度下预热0.5~2h,按照挤压方式为正向挤压,挤压比5~30:1,挤压速度为0.f 10m/min进行两次挤压,在挤压过程中,挤压模具和挤压筒温度保持在38(T420°C ; 3)将挤压后得到的稀土镁合金在45(T560°C保温l(T24h后进行水淬固溶处理,然后在18(T250°C温度下保温10~48.h进行时效热处理。
【文档编号】C22F1/06GK103469130SQ201310394542
【公开日】2013年12月25日 申请日期:2013年9月3日 优先权日:2013年9月3日
【发明者】黎小辉, 郑开宏, 周楠, 徐静, 戚文军 申请人:广州有色金属研究院