本发明属于电线电缆导体材料领域,主要涉及一种电子线缆用高强度高导电铜合金线制造方法。
背景技术:
随着电子器件高性能、多功能、小型化、便携式发展的趋势,对于连接线缆的要求不断提升,其中包括:连接线缆具有高强度和高导电性,连接线缆具有一定的耐弯曲寿命等,这就使得以普通铜线作为导体的电子线缆不能够满足高性能电子器件发展的要求,目前应用于电子线缆的铜合金线存在以下两个方面的问题:1.普通高强度铜合金线强度和导电率难以同时满足要求,部分铜合金线强度可以满足使用要求,但其导电率过低,而高导电率铜合金线其强度不足;2.普通铜合金线的耐弯曲次数不足,降低了连接线缆寿命;3.铜合金线性能一致性较差,导致连接线缆成品率较低。因此开发高强度高导电铜合金线及其制造方法,获得高性能、高一致性铜合金线是高性能电线电缆加工过程中亟待解决的问题。本发明提出了Cu-Co/P/Ag/Ce多元合金元素强化、真空熔炼制备高强度高导电铜合金线,这主要因为:Co元素能微量固熔于铜中,阻碍铜在加热过程中的晶粒长大,延缓固溶体过早分解、抑制晶界反应、避免晶界时效组织不均匀性,能和其它元素生成化合物而提高合金的强度和高温性能,稳定铜合金材料的耐热能力,由于是固溶强化,并不显著降低合金线的导电率。合金中添加Ag元素,溶质原子Ag溶入铜基体中形成置换固溶体,由于Ag的原子半径与Cu的半径不同,从而引起点阵畸变,Ag原子在位错周围偏聚形成柯氏气团使晶体的弹性应变能降低。此时,要使位错移动需要更大的应力,因而提高了铜的强度。合金中添加稀土Ce元素,Ce在Cu中的溶解度很小,对合金的相变、显微组织有明显的影响,改变合金中的化合物、相组成物和析出物的形态分布、大小、数量和结构等,从而提高铜合金的强度和导电率。再一点,由于Ce在铜中存在晶界偏聚,增加位错密度和畸变从而对晶界强度有明显的强化作用。Ce在铜合金中可以细化晶粒,并与铜合金中的P化合生成高熔点化合物,这些化合物在熔体中悬浮和弥散分布,从而提高铜及其合金的塑性和强度,减少表面裂纹和缺陷。上述多元合金可以较好的提高铜合金线的强度和耐弯曲性能,同时对导电率的影响较低。此外,现有的合金材料制备多采用非真空横引式连续铸造机,而这类连续铸造机都存在下面缺点:1.由于其为非真空系统,不能熔炼易氧化金属,并且其开放式的熔炼系统,会造成金属或合金熔炼过程的氧化和污染,不能确保合金组份稳定,并且降低了石墨结晶器寿命;2.非真空连续铸造机搅拌过程多为机械搅拌,搅拌过程中由于金属液体飞溅易对操作工人造成伤害;3.非真空连续铸造机在添加合金元素时容易造成合金元素烧损,无法保证合金材料组份均匀性;4.非真空连续铸造机易造成铸杆晶粒尺寸粗大不均匀及缩孔、缩松铸造缺陷。上述问题严重影响了合金线材坯料的致密性和均匀性,使合金坯料无法满足高一致性加工需要。
技术实现要素:
本发明的目的在于提供一种电子线缆用高强度高导电铜合金线制造方法,其具有高强度、高导电率和优秀的耐弯曲性能。为此,本发明提供如下技术方案:一种电子线缆用高强度高导电铜合金线制造方法,包括如下步骤:(1)铜合金线坯料的冶炼与连铸:a.制造Cu-Co中间合金:将质量分数80%的Cu和质量分数20%的Co分层放入真空炉的锥形氮化硼/氧化铝漏斗中,并将锥形氮化硼/氧化铝漏斗放置在固定支架上,在氮化硼/氧化铝漏斗上放置中间开孔的氮化硼/氧化铝漏斗盖,并在氮化硼/氧化铝漏斗正下方放置氮化硼/氧化铝坩埚,对真空炉的炉膛抽真空,真空度高于5.0×10-2Pa后,开始升温至1550-1800℃,其中,低于800℃时升温速率为20-40℃/min,温度高于800℃时升温速率为30-50℃/min,合金熔化后从氮化硼漏斗滴入氮化硼坩埚中,合金完全溶解后静置5-10分钟,然后将Cu-Co合金浇注到金属铸型中,冷却得到Cu-Co中间合金;b.制造Cu-P中间合金:将质量分数95%的Cu放入真空中频熔炼炉的石墨坩埚中,将质量分数5%的P放入真空中频熔炼炉的加料盒中,对真空中频熔炼炉的炉膛抽真空,真空度高于2.5×10-2Pa后,充入Ar至0.05-0.5MPa,然后重新抽真空至真空度高于5.0×10-2Pa后,开始升温,待温度升至500-700℃后,停止抽真空并向真空炉中充入Ar至0.05-0.5MPa;然后继续升温至1100-1200℃,待铜完全溶解且铜液变清澈透亮后,移动加料盒将P加入到石墨坩埚中,并晃动石墨坩埚搅拌5-10分钟,然后将合金熔体随炉冷却,得到Cu-P中间合金;c.制造Cu-Ce中间合金:将质量分数90%的Cu和质量分数10%的Ce放入真空中频熔炼炉石墨坩埚中,对真空中频熔炼炉的炉膛抽真空,真空度高于2.5×10-2Pa后,开始升温,待温度升至500-700℃后,停止抽真空并向真空冶炼炉中充入Ar至0.05-0.5MPa;然后继续升温至1200-1500℃,待铜完全溶解且铜液变清澈透亮后,移动加料盒将Ce加入到石墨坩埚中,并摇动石墨坩埚搅拌5-10分钟,然后将合金熔体冷却,得到Cu-Ce中间合金坯料;d.制造Cu-Ag中间合金:将质量分数90%的Cu和质量分数10%的Ag放入真空中频熔炼炉石墨坩埚中,对真空中频熔炼炉的炉膛抽真空,真空度高于2.5×10-2Pa后,开始升温,待温度升至500-700℃后,停止抽真空并向真空冶炼炉中充入Ar至0.05-0.5MPa;然后继续升温至1200-1500℃,待铜完全溶解且铜液变清澈透亮后,摇动石墨坩埚搅拌5-10分钟,然后将合金熔体冷却,得到Cu-Ag中间合金坯料;e.在真空中频熔炼炉中将Cu-Co中间合金、Cu-P中间合金、Cu-Ce中间合金、Cu-Ag中间合金和Cu按下述比例称量计算后,其中钴(Co)为0.1-1.0wt%,磷(P)为0.03-0.1wt%,银(Ag)为0.5-1.5wt%,铈(Ce)为0.3-0.8wt%,铜为余量,混合加入到真空中频熔炼炉的熔炼坩埚中,抽真空至5.0×10-1Pa以上,开始升温,待温度升至500-700℃后,停止抽真空并向真空中频熔炼炉中充入Ar至0.05-0.5MPa;然后继续升温至1200-1550℃,待合金完全溶解后,晃动熔炼坩埚搅拌5-10分钟,将合金熔体冷却,得到铜合金坯料;f.将铜合金坯料加入到真空熔炼合金连铸机的坩埚中,所述坩埚为石墨坩埚,对真空熔炼合金连铸机的炉膛抽真空,真空度高于5.0×10-1Pa后,开始升温,待温度升至500-700℃后,停止抽真空并向真空熔炼合金连铸机中充入Ar至0.05-0.5MPa;然后继续升温至1200-1550℃,待银铜合金坯料完全溶解且合金溶液变清澈后,向合金溶液中插入搅拌棒上下搅拌5-10分钟,充入Ar至1.05-1.1MPa,开始采用间歇方式拉铸,形成直径为6-10mm的铜合金杆;g.当所剩余铜合金材料溶液高度为5-20mm时,停止拉铸;充入Ar至1.1-1.2MPa,然后打开炉盖,将铜合金坯料加入到真空熔炼合金连铸机的坩埚中,停止充入Ar,重复f。(2)铜合金杆的拉制:将上述直径为6-10mm的铜合金杆经过拉丝机拉制成直径为2.5-3.5mm的铜合金线,拉丝过程采用单向拉制,拉丝速度为1-5m/秒;(3)银合金线的中间热处理:将直径为2.5-3.5mm的合金线放置在真空罐式炉中,然后对真空罐式炉进行抽真空,真空度高于1.0×10-1Pa后,停止抽真空,然后对真空罐式炉升温至450-650℃,保温时间为10-20分钟,然后随炉冷却;(4)将经过中间热处理的铜合金线经拉丝机拉制成直径为0.5-1.0mm的铜合金线,然后将直径为0.5-1.0mm的铜合金线经过拉丝机连续拉拔成直径为0.08-0.1mm的铜合金线,拉丝过程中,线材变形率为9-16%。进一步地,所述的电子线缆用高强度高导电铜合金线的制造方法,其特征在于:所述铜合金拉铸的牵引采用间歇式牵引,牵引速度为50-300mm/分钟,牵引时间0.5-3秒,停歇时间与牵引时间相同。更进一步地,所述电子线缆用高强度高导电铜合金线的制造方法,其特征在于:所述铜合金杆停止拉铸后,再次拉铸开始时需要将拉铸牵引反转,使铜合金杆向坩埚方向移动50-100mm,然后采用间歇式牵引拉铸铜合金杆。此外,本发明还提供一项所述的高强度高导电铜合金线的制造方法制造的高强度高导电铜合金线,其特征在于:所述铜合金线材料的各成分重量百分含量是:钴(Co)为0.1-1.0wt%,磷(P)为0.03-0.1wt%,银(Ag)为0.5-1.5wt%,铈(Ce)为0.3-0.8wt%,铜为余量。本发明所述的电子线缆用高强度高导电铜合金线的制造方法,通过优化合金成分提高了铜合金线强度,并具有高的导电性和一致性,满足了高性能电子器件的使用要求。具体实施方式实施例一:电子线缆用高强度高导电铜合金线的制造方法如下:(1)铜合金线坯料的冶炼与连铸:a.制造Cu-Co中间合金:将质量分数80%的Cu和质量分数20%的Co分层放入真空炉的锥形氮化硼/氧化铝漏斗中,并将锥形氮化硼/氧化铝漏斗放置在固定支架上,在氮化硼/氧化铝漏斗上放置中间开孔的氮化硼/氧化铝漏斗盖,并在氮化硼/氧化铝漏斗正下方放置氮化硼/氧化铝坩埚,对真空炉的炉膛抽真空,真空度为3.0×10-2Pa后,开始升温至1550℃,其中,低于800℃时升温速率为20℃/min,温度高于800℃时升温速率为30℃/min,合金熔化后从氮化硼漏斗滴入氮化硼坩埚中,合金完全溶解后静置5分钟,然后将Cu-Co合金浇注到金属铸型中,冷却得到Cu-Co中间合金;b.制造Cu-P中间合金:将质量分数95%的Cu放入真空中频熔炼炉的石墨坩埚中,将质量分数5%的P放入真空中频熔炼炉的加料盒中,对真空中频熔炼炉的炉膛抽真空,真空度高于2.5×10-2Pa后,充入Ar至0.05MPa,然后重新抽真空至真空度高于5.0×10-2Pa后,开始升温,待温度升至500℃后,停止抽真空并向真空炉中充入Ar至0.05MPa;然后继续升温至1100℃,待铜完全溶解且铜液变清澈透亮后,移动加料盒将P加入到石墨坩埚中,并晃动石墨坩埚搅拌5分钟,然后将合金熔体随炉冷却,得到Cu-P中间合金;c.制造Cu-Ce中间合金:将质量分数90%的Cu和质量分数10%的Ce放入真空中频熔炼炉石墨坩埚中,对真空中频熔炼炉的炉膛抽真空,真空度高于2.5×10-2Pa后,开始升温,待温度升至500℃后,停止抽真空并向真空冶炼炉中充入Ar至0.05MPa;然后继续升温至1200℃,待铜完全溶解且铜液变清澈透亮后,移动加料盒将Ce加入到石墨坩埚中,并摇动石墨坩埚搅拌5分钟,然后将合金熔体冷却,得到Cu-Ce中间合金坯料;d.制造Cu-Ag中间合金:将质量分数90%的Cu和质量分数10%的Ag放入真空中频熔炼炉石墨坩埚中,对真空中频熔炼炉的炉膛抽真空,真空度高于2.5×10-2Pa后,开始升温,待温度升至500℃后,停止抽真空并向真空冶炼炉中充入Ar至0.05MPa;然后继续升温至1200℃,待铜完全溶解且铜液变清澈透亮后,摇动石墨坩埚搅拌5分钟,然后将合金熔体冷却,得到Cu-Ag中间合金坯料;e.在真空中频熔炼炉中将Cu-Co中间合金、Cu-P中间合金、Cu-Ce中间合金、Cu-Ag中间合金和Cu按下述比例称量计算后,其中钴(Co)为0.1wt%,磷(P)为0.03wt%,银(Ag)为0.5wt%,铈(Ce)为0.3wt%,铜为余量,混合加入到真空中频熔炼炉的熔炼坩埚中,抽真空至5.0×10-1Pa以上,开始升温,待温度升至500℃后,停止抽真空并向真空中频熔炼炉中充入Ar至0.05MPa;然后继续升温至1200℃,待合金完全溶解后,晃动熔炼坩埚搅拌5分钟,将合金熔体冷却,得到铜合金坯料;f.将铜合金坯料加入到真空熔炼合金连铸机的坩埚中,所述坩埚为石墨坩埚,对真空熔炼合金连铸机的炉膛抽真空,真空度高于5.0×10-1Pa后,开始升温,待温度升至500℃后,停止抽真空并向真空熔炼合金连铸机中充入Ar至0.05MPa;然后继续升温至1200℃,待银铜合金坯料完全溶解且合金溶液变清澈后,向合金溶液中插入搅拌棒上下搅拌5分钟,充入Ar至1.05MPa,开始采用间歇方式拉铸,拉铸速度为50mm/分钟,牵引时间0.5秒,停歇时间与牵引时间相同,形成直径为6mm的铜合金杆;g.当所剩余铜合金材料溶液高度为5mm时,停止拉铸;充入Ar至1.1MPa,然后打开炉盖,将铜合金坯料加入到真空熔炼合金连铸机的坩埚中,停止充入Ar,重复f,再次拉铸开始时需要将拉铸牵引反转,使铜合金杆向坩埚方向移动50mm,然后采用间歇式牵引拉铸铜合金杆。(2)铜合金杆的拉制:将上述直径为6mm的铜合金杆经过拉丝机拉制成直径为2.5mm的铜合金线,拉丝过程采用单向拉制,拉丝速度为1m/秒;(3)银合金线的中间热处理:将直径为2.5mm的合金线放置在真空罐式炉中,然后对真空罐式炉进行抽真空,真空度高于1.0×10-1Pa后,停止抽真空,然后对真空罐式炉升温至450℃,保温时间为10分钟,然后随炉冷却;(4)将经过中间热处理的铜合金线经拉丝机拉制成直径为0.5mm的铜合金线,然后将直径为0.5mm的铜合金线经过拉丝机连续拉拔成直径为0.08mm的铜合金线,拉丝过程中,线材变形率为9%。实施例二:电子线缆用高强度高导电铜合金线的制造方法如下:(1)铜合金线坯料的冶炼与连铸:a.制造Cu-Co中间合金:将质量分数80%的Cu和质量分数20%的Co分层放入真空炉的锥形氮化硼/氧化铝漏斗中,并将锥形氮化硼/氧化铝漏斗放置在固定支架上,在氮化硼/氧化铝漏斗上放置中间开孔的氮化硼/氧化铝漏斗盖,并在氮化硼/氧化铝漏斗正下方放置氮化硼/氧化铝坩埚,对真空炉的炉膛抽真空,真空度为2.5×10-2Pa后,开始升温至1650℃,其中,低于800℃时升温速率为30℃/min,温度高于800℃时升温速率为40℃/min,合金熔化后从氮化硼漏斗滴入氮化硼坩埚中,合金完全溶解后静置7分钟,然后将Cu-Co合金浇注到金属铸型中,冷却得到Cu-Co中间合金;b.制造Cu-P中间合金:将质量分数95%的Cu放入真空中频熔炼炉的石墨坩埚中,将质量分数5%的P放入真空中频熔炼炉的加料盒中,对真空中频熔炼炉的炉膛抽真空,真空度高于2.5×10-2Pa后,充入Ar至0.2MPa,然后重新抽真空至真空度高于5.0×10-2Pa后,开始升温,待温度升至600℃后,停止抽真空并向真空炉中充入Ar至0.2MPa;然后继续升温至1150℃,待铜完全溶解且铜液变清澈透亮后,移动加料盒将P加入到石墨坩埚中,并晃动石墨坩埚搅拌7分钟,然后将合金熔体随炉冷却,得到Cu-P中间合金;c.制造Cu-Ce中间合金:将质量分数90%的Cu和质量分数10%的Ce放入真空中频熔炼炉石墨坩埚中,对真空中频熔炼炉的炉膛抽真空,真空度高于2.5×10-2Pa后,开始升温,待温度升至600℃后,停止抽真空并向真空冶炼炉中充入Ar至0.2MPa;然后继续升温至1400℃,待铜完全溶解且铜液变清澈透亮后,移动加料盒将Ce加入到石墨坩埚中,并摇动石墨坩埚搅拌7分钟,然后将合金熔体冷却,得到Cu-Ce中间合金坯料;d.制造Cu-Ag中间合金:将质量分数90%的Cu和质量分数10%的Ag放入真空中频熔炼炉石墨坩埚中,对真空中频熔炼炉的炉膛抽真空,真空度高于2.5×10-2Pa后,开始升温,待温度升至600℃后,停止抽真空并向真空冶炼炉中充入Ar至0.2MPa;然后继续升温至1400℃,待铜完全溶解且铜液变清澈透亮后,摇动石墨坩埚搅拌7分钟,然后将合金熔体冷却,得到Cu-Ag中间合金坯料;e.在真空中频熔炼炉中将Cu-Co中间合金、Cu-P中间合金、Cu-Ce中间合金、Cu-Ag中间合金和Cu按下述比例称量计算后,其中钴(Co)为0.5wt%,磷(P)为0.06wt%,银(Ag)为1.0wt%,铈(Ce)为0.5wt%,铜为余量,混合加入到真空中频熔炼炉的熔炼坩埚中,抽真空至5.0×10-1Pa以上,开始升温,待温度升至600℃后,停止抽真空并向真空中频熔炼炉中充入Ar至0.2MPa;然后继续升温至1400℃,待合金完全溶解后,晃动熔炼坩埚搅拌7分钟,将合金熔体冷却,得到铜合金坯料;f.将铜合金坯料加入到真空熔炼合金连铸机的坩埚中,所述坩埚为石墨坩埚,对真空熔炼合金连铸机的炉膛抽真空,真空度高于5.0×10-1Pa后,开始升温,待温度升至600℃后,停止抽真空并向真空熔炼合金连铸机中充入Ar至0.2MPa;然后继续升温至1400℃,待银铜合金坯料完全溶解且合金溶液变清澈后,向合金溶液中插入搅拌棒上下搅拌7分钟,充入Ar至1.07MPa,开始采用间歇方式拉铸,拉铸速度为150mm/分钟,牵引时间1.5秒,停歇时间与牵引时间相同,形成直径为8mm的铜合金杆;g.当所剩余铜合金材料溶液高度为10mm时,停止拉铸;充入Ar至1.15MPa,然后打开炉盖,将铜合金坯料加入到真空熔炼合金连铸机的坩埚中,停止充入Ar,重复f,再次拉铸开始时需要将拉铸牵引反转,使铜合金杆向坩埚方向移动80mm,然后采用间歇式牵引拉铸铜合金杆。(2)铜合金杆的拉制:将上述直径为8mm的铜合金杆经过拉丝机拉制成直径为3.0mm的铜合金线,拉丝过程采用单向拉制,拉丝速度为3m/秒;(3)银合金线的中间热处理:将直径为3.0mm的合金线放置在真空罐式炉中,然后对真空罐式炉进行抽真空,真空度高于1.0×10-1Pa后,停止抽真空,然后对真空罐式炉升温至550℃,保温时间为15分钟,然后随炉冷却;(4)将经过中间热处理的铜合金线经拉丝机拉制成直径为0.75mm的铜合金线,然后将直径为0.75mm的铜合金线经过拉丝机连续拉拔成直径为0.08mm的铜合金线,拉丝过程中,线材变形率为13%。实施例三:电子线缆用高强度高导电铜合金线的制造方法如下:(1)铜合金线坯料的冶炼与连铸:a.制造Cu-Co中间合金:将质量分数80%的Cu和质量分数20%的Co分层放入真空炉的锥形氮化硼/氧化铝漏斗中,并将锥形氮化硼/氧化铝漏斗放置在固定支架上,在氮化硼/氧化铝漏斗上放置中间开孔的氮化硼/氧化铝漏斗盖,并在氮化硼/氧化铝漏斗正下方放置氮化硼/氧化铝坩埚,对真空炉的炉膛抽真空,真空度为2.0×10-2Pa后,开始升温至1800℃,其中,低于800℃时升温速率为40℃/min,温度高于800℃时升温速率为50℃/min,合金熔化后从氮化硼漏斗滴入氮化硼坩埚中,合金完全溶解后静置10分钟,然后将Cu-Co合金浇注到金属铸型中,冷却得到Cu-Co中间合金;b.制造Cu-P中间合金:将质量分数95%的Cu放入真空中频熔炼炉的石墨坩埚中,将质量分数5%的P放入真空中频熔炼炉的加料盒中,对真空中频熔炼炉的炉膛抽真空,真空度高于2.5×10-2Pa后,充入Ar至0.05-0.5MPa,然后重新抽真空至真空度高于5.0×10-2Pa后,开始升温,待温度升至700℃后,停止抽真空并向真空炉中充入Ar至-0.5MPa;然后继续升温至1200℃,待铜完全溶解且铜液变清澈透亮后,移动加料盒将P加入到石墨坩埚中,并晃动石墨坩埚搅拌10分钟,然后将合金熔体随炉冷却,得到Cu-P中间合金;c.制造Cu-Ce中间合金:将质量分数90%的Cu和质量分数10%的Ce放入真空中频熔炼炉石墨坩埚中,对真空中频熔炼炉的炉膛抽真空,真空度高于2.5×10-2Pa后,开始升温,待温度升至700℃后,停止抽真空并向真空冶炼炉中充入Ar至0.5MPa;然后继续升温至1500℃,待铜完全溶解且铜液变清澈透亮后,移动加料盒将Ce加入到石墨坩埚中,并摇动石墨坩埚搅拌10分钟,然后将合金熔体冷却,得到Cu-Ce中间合金坯料;d.制造Cu-Ag中间合金:将质量分数90%的Cu和质量分数10%的Ag放入真空中频熔炼炉石墨坩埚中,对真空中频熔炼炉的炉膛抽真空,真空度高于2.5×10-2Pa后,开始升温,待温度升至700℃后,停止抽真空并向真空冶炼炉中充入Ar至0.5MPa;然后继续升温至1500℃,待铜完全溶解且铜液变清澈透亮后,摇动石墨坩埚搅拌10分钟,然后将合金熔体冷却,得到Cu-Ag中间合金坯料;e.在真空中频熔炼炉中将Cu-Co中间合金、Cu-P中间合金、Cu-Ce中间合金、Cu-Ag中间合金和Cu按下述比例称量计算后,其中钴(Co)为1.0wt%,磷(P)为0.1wt%,银(Ag)为1.5wt%,铈(Ce)为0.8wt%,铜为余量,混合加入到真空中频熔炼炉的熔炼坩埚中,抽真空至5.0×10-1Pa以上,开始升温,待温度升至700℃后,停止抽真空并向真空中频熔炼炉中充入Ar至0.5MPa;然后继续升温至1550℃,待合金完全溶解后,晃动熔炼坩埚搅拌10分钟,将合金熔体冷却,得到铜合金坯料;f.将铜合金坯料加入到真空熔炼合金连铸机的坩埚中,所述坩埚为石墨坩埚,对真空熔炼合金连铸机的炉膛抽真空,真空度高于5.0×10-1Pa后,开始升温,待温度升至700℃后,停止抽真空并向真空熔炼合金连铸机中充入Ar至0.5MPa;然后继续升温至1550℃,待银铜合金坯料完全溶解且合金溶液变清澈后,向合金溶液中插入搅拌棒上下搅拌10分钟,充入Ar至1.1MPa,开始采用间歇方式拉铸,拉铸速度为300mm/分钟,牵引时间3秒,停歇时间与牵引时间相同,形成直径为10mm的铜合金杆;g.当所剩余铜合金材料溶液高度为20mm时,停止拉铸;充入Ar至1.2MPa,然后打开炉盖,将铜合金坯料加入到真空熔炼合金连铸机的坩埚中,停止充入Ar,重复f,再次拉铸开始时需要将拉铸牵引反转,使铜合金杆向坩埚方向移动100mm,然后采用间歇式牵引拉铸铜合金杆。(2)铜合金杆的拉制:将上述直径为10mm的铜合金杆经过拉丝机拉制成直径为3.5mm的铜合金线,拉丝过程采用单向拉制,拉丝速度为5m/秒;(3)银合金线的中间热处理:将直径为3.5mm的合金线放置在真空罐式炉中,然后对真空罐式炉进行抽真空,真空度高于1.0×10-1Pa后,停止抽真空,然后对真空罐式炉升温至650℃,保温时间为20分钟,然后随炉冷却;(4)将经过中间热处理的铜合金线经拉丝机拉制成直径为1.0mm的铜合金线,然后将直径为1.0mm的铜合金线经过拉丝机连续拉拔成直径为0.1mm的铜合金线,拉丝过程中,线材变形率为16%。通过试验发现,本发明的电子线缆用高强度高导电铜合金线具有高的强度,同时具有优良的导电率,下表是通过实验得到的本发明的电子线缆用高强度高导电铜合金线的性能数据:从上表可以看出,本发明的电子线缆用高强度高导电铜合金线具有良好的性能,能够满足高性能电子器件用线的要求。