一种用于MOCVD制备YBCO带材的气体反应腔的制作方法

文档序号:12251524阅读:372来源:国知局
一种用于MOCVD制备YBCO带材的气体反应腔的制作方法与工艺

本发明属于薄膜制备技术领域,涉及一种金属有机源化学气相沉积(MOCVD)所用的气体反应腔,可用于YBCO超导带材的制备,具体为一种用于MOCVD制备YBCO带材的气体反应腔。



背景技术:

金属有机化合物化学气相沉积,其英文名称为Metal-organic Chemical Vapor De7position,缩写为MOCVD,是在气相外延生长(VPE)的基础上发展起来的一种新型气相外延生长技术,是以Ⅲ族、Ⅱ族元素的有机化合物以及Ⅴ、Ⅵ族元素的氢化物等作为气相沉积的源材料,通过扩散、气相反应以及表面化学反应,在高温的衬底上生长各种Ⅲ-Ⅴ族或Ⅱ-Ⅵ族化合物半导体以及它们的多元固溶体的薄层单晶材料。与其它生长技术相比,MOCVD法具有如下优点:①适用范围广泛,几乎可以生长所有化合物及合金材料;②可实现大面积均匀薄膜的快速沉积,很适于工业化生产;③采用液相金属有机源时,由于其保存在真空室外,故而生长过程中源的填装或更改很方便,适合长时间连续的薄膜制备,易于随时调节薄膜组分;④可以生长超薄外延层,并能获得很陡的界面过渡。正是鉴于上述优点,MOCVD生长技术已经成为各国科学工作者研究的热点。

通常MOCVD的生长条件是在低压下进行,生长使用的载气(通常为N2或Ar)与原料气体按一定比例混合通入反应腔内,衬底温度一般在700-1500K之间,反应器顶部及壁面一般采用冷壁。由于MOCVD生长使用的原料气体,特别是金属有机化合物(MO)源大都是易燃、易爆而且毒性较大的物质,对于反应原料气体的气体输运系统的密封性和可靠性有很高的要求。

对于MOCVD法制备超导薄膜及涂层,制约其商业化应用的重要因素就是性能和成本。在薄膜的制备过程中,一般需要对薄膜所附着的衬底进行加热,而通过在衬底两面对称各设置一个气体喷淋头来制备双面超导薄膜或涂层,可以在减少一倍衬底支出的情况下实现性能的成倍提高,从而降低成本提高性能的目的。但是,双喷淋头结构喷出的气体会导致喷淋头正下方的温度场分布不均匀,沉积的薄膜厚度不均,而且这种沉积方式金属有机源利用率低,成本高。

因此MOCVD喷嘴装置作为气体输运到反应腔中最重要的一个环节,其对于气道的分配以及喷淋方式对于晶体质量的好坏具有严重影响。



技术实现要素:

针对上述存在问题或不足,为解决金属有机源利用率低,并同时制备出具有良好面外均匀性和一致性的薄膜,本发明提供了一种用于MOCVD制备YBCO带材的气体反应腔。

该用于MOCVD制备YBCO带材的气体反应腔,包括反应铜管、连接于反应铜管两端的进排气仓和冷却管。反应铜管两端接到进排气仓;导热带绕于反应铜管和冷却管;进排气仓均设有一个与反应腔中间的反应铜管在一条直线上的孔隙,使用时基带衬底在反应铜管中沉积薄膜并从孔隙中通过。

所述孔隙还设有一个可供衬底基带通过的绝缘装置。

进一步的,上述气体反应腔还包括两个铜制软管,分别接于金属有机源蒸发管和与真空泵相连的抽气管道,铜制软管另一端与进排气仓分别相连。

所述导热带还可绕在进气铜制软管上,将反应管上的热量导到铜制软管上,来预热金属有机源。

上述用于MOCVD制备YBCO带材的气体反应腔,其工作流程为:

载有金属有机源的气体从进气仓进排气仓出,基带衬底从孔隙中穿过,通过电刷的加热方式自身产生热量在反应铜管中沉积薄膜。导热带绕于反应铜管和冷却管,将反应铜管的热量带走,防止反应温度过高。

综上所述,本发明中整个反应过程只集中在反应铜管中,气体从进入反应室到被抽走,扩散空间小,所以极大的提高了金属有机源的利用率,降低了成本;同时可以实现在衬底的两面同时生长薄膜,并且保证制备的薄膜的面外均匀性和一致性。

附图说明

图1是本发明的MOCVD反应腔实施例示意图;

图2是图1MOCVD气仓的侧视示意图;

图3是实施例反应铜管中三个不同位置的示意图;

图4是图3中三个不同位置上样品的X射线衍射2theta扫描图;

图5是反应铜管中三个不同位置上样品的X射线衍射omega扫描曲线的半高宽值;

图6是反应铜管中三个不同位置上样品的扫描电镜形貌图;

附图标记:1—进气管(或排气管),2—排气管(或进气管),3—衬底入口(或出口),4—衬底出口(或入口),5—进气仓(或排气仓),6—排气仓(或进气仓),7—反应铜管,8—冷却管,9—导热带,10、11—铜制软管,12—弹簧片,13、14—陶瓷片。

具体实施方式

下面结合附图和实施例对本发明作进一步说明。

图1中反应腔中间细长铜管为反应管,金属衬底基带在其中沉积薄膜。反应铜管上绕有铜导热带并与反应腔外的冷凝管相连,金属衬底基带自身通以电流来完成加热,产生的热辐射作用使得反应铜管中温度很高,由于铜具有良好的导热性,为避免金属有机源在到达衬底基带表面前就已反应,铜导带可将过高的热量传导到冷凝管上,有效抑制了这种情况的发生。两个铜制软管(10、11)分别接于MOCVD设备中的蒸发管和与真空泵相连的抽气管道,可根据实验要求,按照顺着走带方向进气和逆着走带方向进气两种方式,将软管另一端与反应腔相接。

为了预防金属有机源从蒸发管进入反应腔时由于温度低而在软管内壁冷凝,也可将铜导热带绕在进气软管上,将反应管上的热量导到铜制软管上,来预热金属有机源。

图2中矩形衬底入(出)口即孔隙嵌入两块陶瓷片,中间留有宽13mm的狭缝,四角用弹簧片压住。由于基带采用电刷的加热方式自身通以电流,这种方式可避免衬底基带与反应腔接触造成短路。同时又可抑制反应腔内气体经由衬底入(出)口向外溢出,保证反应腔内反应气体流动和压强的稳定。

图4中显示了实施例中a、b、c三个不同位置的样品的衍射峰都很尖锐,衍射峰强度也差不多,且都没有杂峰,表面三个位置的样品结晶质量都很好,YBa2Cu3O7-x(YBCO)晶粒均为纯c轴生长。

图5中显示了三个样品的半高宽值都较小,且很接近,表明三个样品面外取向性好,进一步说明三个样品间的均匀性很好。

图6中显示了三个样品的表面形貌类似,表面都有小颗粒析出,而在这些颗粒下层的薄膜却都很致密,说明三个样品的均匀性好。

最后将本发明装置安装于MOCVD设备中。截取一段宽1cm长30cm、双面已经沉积好缓冲层薄膜的哈氏合金基带(LaMnO3/homo-epi MgO/IBAD-MgO/SDP-Y2O3/Hastelloy),将该段基带的两个侧边进行打磨以去除侧边上沉积的氧化物以实现良好的电接触,然后采用焊接的方式将其首尾焊接到不锈钢牵引带上,再将牵引带从反应腔侧面矩形孔隙中穿进从另一侧孔隙中传出,最后将不锈钢牵引带连接到卷绕盘上,并连接好电路。将MOCVD系统的反应腔抽真空至3Pa。称取金属有机源分别为128.4mg的Y(TMHD)3、143mg的Gd(TMHD)3、696mg的Ba(TMHD)2、356.885mg的Cu(TMHD)2和16.9175mg的Zr(TMHD)4(thmd:2,2,6,6-四甲基-3,5-庚二酮),一起溶于5ml四氢呋喃溶剂中,并超声振荡使其充分溶解,形成均匀澄清的金属有机源溶液。打开电源加热,给金属衬底通入26A的电流(电压为30V)。打开牵引电机,将金属衬底牵引至反应铜管中。待温度和压强稳定后,采用蠕动泵将金属有机源溶液送入310℃的蒸发室中闪蒸成为金属有机源蒸气。该有机源蒸气在Ar气的带动下与O2和N2O气体混合,经过320℃的输气管道后再经由进气管进入到反应铜管中在金属衬底上反应生成YBCO薄膜。沉积完成后关闭加热电源,再次打开牵引电机,将金属衬底牵引出反应区,关闭MOCVD设备。然后取出薄膜样品进行退火处理,最后将薄膜样品进行表征。所制备出的薄膜的结构及形貌如图4-图6所示。由图中对比可以看出,采用本发明的反应腔装置所制备的薄膜的结晶质量及取向性好,不同位置薄膜的均匀性好。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1