粗糙化处理铜箔、覆铜层叠板和印刷电路板的制作方法

文档序号:11633152阅读:348来源:国知局
粗糙化处理铜箔、覆铜层叠板和印刷电路板的制造方法与工艺

本发明涉及粗糙化处理铜箔、覆铜层叠板和印刷电路板。



背景技术:

作为适合形成细距电路的印刷电路板铜箔,提出了作为粗糙化处理面具备经过氧化处理和还原处理(以下有时统称为氧化还原处理)而形成的微细凹凸的粗糙化处理铜箔。

例如,专利文献1(国际公开第2014/126193号)中公开了一种表面处理铜箔,其在表面具备由最大长度为500nm以下的针状的微细凹凸所形成的粗糙化处理层,所述针状的微细凹凸由铜复合化合物构成。另外,专利文献2(国际公开第2015/040998号)中公开了一种铜箔,其在至少一面具备:具有由铜复合化合物构成的最大长度为500nm以下大小的针状的凸状部所形成的微细凹凸的粗糙化处理层、和在该粗糙化处理层的表面的硅烷偶联剂处理层。根据这些文献的粗糙化处理铜箔,利用由粗糙化处理层的微细凹凸带来的锚固效果而能够得到与绝缘树脂基材之间的良好的密合性,同时能够形成具备良好的蚀刻因子的细距电路。专利文献1和2中所公开的具有微细凹凸的粗糙化处理层均是在进行碱脱脂等预处理后,经过氧化还原处理而形成的。由此形成的微细凹凸具有由铜复合化合物的针状结晶构成的特有的形状,具备所述微细凹凸的粗糙化处理面一般比由微细铜粒的附着所形成的粗糙化处理面、通过蚀刻赋予了凹凸的粗糙化处理面还微细。

现有技术文献

专利文献

专利文献1:国际公开第2014/126193号

专利文献2:国际公开第2015/040998号



技术实现要素:

然而,针对具备通过氧化还原处理所形成的由针状结晶构成的微细凹凸的粗糙化处理面,期望更进一步改善与绝缘树脂的密合性和可靠性。

本发明人等此次得到如下见解:对于在至少一侧具有具备由针状结晶构成的微细凹凸的粗糙化处理面的粗糙化处理铜箔,通过使针状结晶的表面全部由cu金属和cu2o的混相构成,从而使与绝缘树脂的密合性和可靠性(例如吸湿耐热性)显著地提高。

因此,本发明的目的在于提供能够显著地提高与绝缘树脂的密合性和可靠性(例如吸湿耐热性)的粗糙化处理铜箔。

根据本发明的一方式,提供一种粗糙化处理铜箔,其在至少一侧具有具备由针状结晶构成的微细凹凸的粗糙化处理面,所述针状结晶的表面全部由cu金属和cu2o的混相构成。

根据本发明的另一方式,提供一种覆铜层叠板,其具备上述方式的粗糙化处理铜箔。

根据本发明的另一方式,提供一种印刷电路板,其具备上述方式的粗糙化处理铜箔。

附图说明

图1是对构成在例1中得到的粗糙化处理铜箔的粗糙化处理面的微细凹凸的截面进行拍摄而得到的截面sem图像。

图2是对构成在例1中得到的粗糙化处理铜箔的粗糙化处理面的微细凹凸(特别是针状结晶)的截面进行拍摄而得到的stem-haadf图像。

图3a是对构成在例1中得到的粗糙化处理铜箔的粗糙化处理面的微细凹凸(特别是针状结晶)的截面进行拍摄而得到的tem图像。

图3b是图3所示的tem图像的部分放大图像。

图4同时示出了:表示构成在例1中得到的粗糙化处理铜箔的微细凹凸的针状结晶的stem-haadf像、和有关在该图像的附有圆圈标记的针部分和铜箔主体的各部分所获得的cu-l2,3端的eels的光谱。

图5同时示出了:表示构成在例1中得到的粗糙化处理铜箔的微细凹凸的针状结晶的针前端部的stem-haadf像、和有关在该图像的附有圆圈标记的外周部分和芯的各部分所获得的cu-l2,3端的eels的光谱。

图6是示出构成在例1中得到的粗糙化处理铜箔的微细凹凸的针状结晶的针前端部的stem-haadf像、和该图像的虚线框包围的区域的stem-eels成像(氧和铜成像)的图。

图7同时示出了:表示构成在例2中得到的粗糙化处理铜箔的微细凹凸的针状结晶的针前端部的stem-haadf像、和有关在该图像的附有圆圈标记的外周散在部分、外周主要部分和芯部分的各部分所获得的cu-l2,3端的eels的光谱。

图8是示出有关铜氧化物的o-k端和cu-l2,3端的公知的eels光谱的图。

具体实施方式

粗糙化处理铜箔

本发明的铜箔是粗糙化处理铜箔。该粗糙化处理铜箔在至少一侧具有粗糙化处理面。粗糙化处理面具备由针状结晶构成的微细凹凸,所述微细凹凸是可以经过氧化还原处理而形成的,典型的是,观察到针状结晶为相对于铜箔面在大致垂直和/或倾斜方向上丛生的形状(例如草坪状)。而且,该粗糙化处理面的针状结晶的表面全部由cu金属和cu2o的混相构成。由此,对于具备由针状结晶构成的微细凹凸的粗糙化处理面,通过使针状结晶的表面全部由cu金属和cu2o的混相构成,从而能够显著地提高与绝缘树脂的密合性和可靠性(例如吸湿耐热性)。特别是,对于与绝缘树脂的密合性而言,本发明的粗糙化处理铜箔不仅在常态下的密合性优异,而且吸湿后、酸处理后的密合性也优异,可以呈现出不依赖于工序经历的稳定的高密合性。另外,对于可靠性而言,本发明的粗糙化处理铜箔能够发挥即使在高湿度环境中长期放置后、实施高温处理(例如在回流炉中的处理)也完全或几乎不发生铜箔的变形(例如膨胀)这样优异的吸湿耐热性。关于该内容,本发明人等进行了确认,如发现专利文献1中所公开那样的以往的粗糙化处理铜箔中的针状结晶的表面的主要部分由cu金属构成,cu金属和cu2o的混相仅局部散在。与此相对,本发明的粗糙化处理铜箔的针状结晶由于其表面全部由cu金属和cu2o的混相构成,因此可以说与以往的粗糙化处理铜箔相比,cu2o遍及成面状地存在于针状结晶的表面。而且,可认为cu2o比cu金属更易与绝缘树脂产生化学结合。由此,可认为由于更易与绝缘树脂发生化学结合的cu2o遍及成面状地存在于针状结晶的表面,因此与绝缘树脂的密合性、吸湿耐热性等可靠性显著提高。

如上所述,粗糙化处理面的微细凹凸由针状结晶构成。针状结晶的高度(即从针状结晶的根部沿垂直方向所测定的高度)优选为50~400μm、更优选为100~400μm、进一步优选为150~350μm。与以往的粗糙化处理铜箔中的针状结晶相比,这样的针状结晶的高度是较低的。即使像这样针状结晶的高度较低,由于如上所述针状结晶的表面全部由cu金属和cu2o的混相构成,因此反而可以实现高的密合性。可认为像这样针状结晶的高度较低是因用于形成由针状结晶构成的微细凹凸的氧化还原处理所导致的,其中所述针状结晶的表面全部由cu金属和cu2o的混相构成。另外,所述经过氧化还原处理而形成的微细凹凸典型的是针状结晶的前端呈圆形。特别是,从提高与绝缘树脂的密合性的观点出发,优选针状结晶无规则地密集而形成富含空隙的粗糙化层,更优选富含空隙的粗糙化层具有针状结晶密集成草坪状的形态。

然而,针状结晶的表面的cu金属和cu2o的混相的存在可以通过利用使用了stem(扫描透射电子显微镜)的eels(电子能量损失谱分析)(以下称为stem-eels)而获得cu-l端的电子能量损失谱并进行鉴定来确认。归属于cu金属/cu2o混相的光谱的鉴定在后述的实施例中进行更详细的说明,但作为原则,可以通过确认满足以下的i)~iv)来进行。需要说明的是,在以下的基准中所标记的“xev附近”(x为任意的值)的术语容许在x±5ev的范围内变动。

i)在约938ev附近具有峰p938。

ii)在约959ev附近也具有峰p959。

iii)峰p938的强度i938与峰p959的强度i959为大致相同程度或近似(即i938≈i959)或比强度i938还高(即i938<i959)。

iv)作为结果p938与p959之间形成谷。

针状结晶的表面的cu金属和cu2o的混相的厚度典型的是10nm以下,更典型的是1~5nm。为这样的厚度时,针状结晶与绝缘树脂的反应性提高,不仅在常态下的密合性提高,而且吸湿后、酸处理后的密合性也提高。该混相的厚度的下限值没有特别限定,为1个原子大小或用分析设备能确认的最小值。

另一方面,典型的是,与由该混相构成的表面相比位于内侧的针状结晶的内部由cu金属的单相构成。针状结晶的内部由cu金属的单相构成可以通过利用stem-eels获得cu-l端的电子能量损失谱并进行鉴定来确认。作为原则,归属于cu金属的光谱的鉴定可以通过确认满足以下的1)~4)来进行。

1)在约938ev附近具有峰p938。

2)在约959ev附近也具有峰p959。

3)峰p959的强度i959比峰p938的强度i938还高(即i938<i959)。

4)在940~950ev附近进一步具有2个峰。

本发明的粗糙化处理铜箔的厚度没有特别限定,优选0.1~35μm、更优选为0.5~18μm。需要说明的是,本发明的粗糙化处理铜箔不限于对通常的铜箔的表面进行了粗糙化处理的粗糙化处理铜箔,也可以是对带有载体的铜箔的铜箔表面进行了粗糙化处理的粗糙化处理铜箔。

制造方法

本发明的粗糙化处理铜箔可以是通过任意方法制造而成的粗糙化处理铜箔,但优选经过氧化还原处理而制造。以下,对本发明的粗糙化处理铜箔的优选的制造方法的一个例子进行说明。该优选的制造方法包括:准备铜箔的工序;和对上述表面依次进行第1预处理、第2预处理、氧化处理和还原处理的粗糙化工序(氧化还原处理)。

(1)铜箔的准备

作为用于制造粗糙化处理铜箔的铜箔,可以使用电解铜箔和压延铜箔这两种,更优选为电解铜箔。另外,铜箔可以是未粗糙化的铜箔,也可以是实施了预粗糙化的铜箔。铜箔的厚度没有特别限定,优选0.1~35μm、更优选为0.5~18μm。在以带有载体的铜箔的形态准备铜箔时,铜箔也可以是利用化学镀铜法或电镀铜法等湿式成膜法、溅射和化学蒸镀等干式成膜法、或它们的组合所形成的铜箔。

进行粗糙化处理的铜箔的表面优选具有以jisb0601-2001为基准测定的微观不平度十点高度rzjis为1.5μm以下的表面、更优选为1.3μm以下、进一步优选为1.0μm以下。下限值没有特别限定,例如为0.1μm以上。

(2)粗糙化处理(氧化还原处理)

优选由此对上述铜箔的表面实施依次进行第1预处理、第2预处理、氧化处理和还原处理的湿式的粗糙化处理。特别是,通过用使用了溶液的湿式法对铜箔的表面实施氧化处理,从而在铜箔表面形成含有cuo的铜化合物。然后,通过对该铜化合物进行还原处理而使cuo转化为cu金属、cu2o,从而能够在铜箔的表面形成由针状结晶构成的微细凹凸,该针状结晶的内部为cu金属且表面全部由cu金属和cu2o的混相构成。此处,微细凹凸在用湿式法对铜箔的表面进行氧化处理的阶段,由以cuo作为主要成分的铜化合物形成。而且,在对该铜化合物进行还原处理时,在大致维持由该铜化合物所形成的微细凹凸的形状的同时,cuo转化为cu金属、cu2o,成为其表面全部由cu金属和cu2o的混相构成的微细凹凸。由此用湿式法对铜箔的表面实施适当的氧化处理后实施还原处理,从而能够形成本发明特有的微细凹凸。

(2a)第1预处理

该第1预处理通过在将上述铜箔浸渍于硫酸系水溶液后进行水洗来进行。硫酸系水溶液的硫酸浓度没有特别限定,优选为1~20质量%。硫酸系水溶液也可以进一步含有过氧化氢,在此情况下,硫酸系水溶液中的过氧化氢浓度优选为1~5质量%。硫酸系水溶液的液温优选为20~50℃。铜箔在硫酸系水溶液中的浸渍时间优选为2秒~5分钟。

(2b)第2预处理

该第2预处理通过将实施了上述第1预处理的铜箔浸渍于氢氧化钠水溶液进行碱脱脂处理后进行水洗来进行。氢氧化钠水溶液的naoh浓度优选为20~60g/l。氢氧化钠水溶液的液温优选为30~60℃。在氢氧化钠水溶液中的浸渍时间优选为2秒~5分钟。

(2c)氧化处理

使用氢氧化钠溶液等碱性溶液对实施了上述第2预处理的铜箔进行氧化处理。通过用碱性溶液对铜箔的表面进行氧化,从而能够在铜箔的表面形成由针状结晶构成的微细凹凸,所述针状结晶由以cuo作为主要成分的铜复合化合物构成。此时,碱性溶液的温度优选为60~85℃,碱性溶液的ph优选为10~14、更优选为12~14。另外,从氧化的观点出发,碱性溶液优选包含氯酸盐、亚氯酸盐、次氯酸盐、高氯酸盐,其浓度优选100~500g/l。氧化处理优选通过将铜箔浸渍于碱性溶液中来进行,其浸渍时间(即氧化时间)优选10秒~20分钟、更优选为30秒~10分钟。

用于氧化处理的碱性溶液优选进一步包含氧化抑制剂。即,利用碱性溶液对铜箔的表面实施氧化处理时,有时该凸状部过度地生长,而超过期望的长度,难以形成期望的微细凹凸。因此,为了形成上述微细凹凸,优选使用包含能够抑制铜箔表面的氧化的氧化抑制剂的碱性溶液。作为优选的氧化抑制剂的例子,可列举出氨基系硅烷偶联剂。通过使用包含氨基系硅烷偶联剂的碱性溶液对铜箔表面实施氧化处理,从而能够使该碱性溶液中的氨基系硅烷偶联剂吸附于铜箔的表面,抑制由碱性溶液导致的铜箔表面的氧化。其结果,能够抑制氧化铜的针状结晶的生长,能够形成具备极其微细的凹凸的期望的粗糙化处理面。作为氨基系硅烷偶联剂的具体例,可列举出:n-2-(氨乙基)-3-氨丙基甲基二甲氧基硅烷、n-2-(氨乙基)-3-氨丙基三甲氧基硅烷、3-氨丙基三甲氧基硅烷、3-氨丙基三乙氧基硅烷、3-三乙氧基甲硅烷基-n-(1,3-二甲基-亚丁基)丙胺、n-苯基-3-氨丙基三甲氧基硅烷等,特别优选为n-苯基-3-氨丙基三甲氧基硅烷。这些均可溶解于碱性溶液中,稳定地保持在碱性溶液中的同时发挥抑制上述的铜箔表面氧化的效果。碱性溶液中的氨基系硅烷偶联剂(例如n-2-(氨乙基)-3-氨丙基三甲氧基硅烷)的优选的浓度为0.01~20g/l、更优选为0.02~20g/l。

(2d)还原处理

使用还原处理液对实施了上述氧化处理的铜箔(以下称为氧化处理铜箔)进行还原处理。通过利用还原处理使cuo转化为cu金属、cu2o,从而可以在铜箔的表面形成由如下针状结晶构成的微细凹凸,该针状结晶的内部为cu金属且表面全部由cu金属和cu2o的混相构成。该还原处理通过使氧化处理铜箔接触还原处理液来进行即可,优选通过使氧化处理铜箔浸渍于还原处理液中的方法、将还原处理液喷洒在氧化处理铜箔上的方法来进行,其处理时间优选2~60秒、更优选为5~30秒。需要说明的是,优选的还原处理液为二甲胺硼烷水溶液,该水溶液优选以10~40g/l的浓度含有二甲胺硼烷。另外,二甲胺硼烷水溶液优选使用碳酸钠和氢氧化钠调整为ph12~14。此时的水溶液的温度没有特别限定,可以为室温。由此进行了还原处理的铜箔优选进行水洗、干燥。此时的干燥温度优选设为80~125℃、更优选为110~120℃。干燥时间可以是3~60秒这样的短时间,更优选为5~30秒。

(3)硅烷偶联剂处理

根据期望也可以对铜箔实施硅烷偶联剂处理而形成硅烷偶联剂层。由此能够提高耐湿性、耐化学药品性和与粘接剂等的密合性等。硅烷偶联剂层可以通过对硅烷偶联剂进行适当稀释并涂布,使其干燥而形成。作为硅烷偶联剂的例子,可列举出:4-缩水甘油基丁基三甲氧基硅烷、3-环氧丙氧基丙基三甲氧基硅烷等环氧基官能性硅烷偶联剂、或3-氨丙基三乙氧基硅烷、n-2(氨乙基)3-氨丙基三甲氧基硅烷、n-3-(4-(3-氨基丙氧基)丁氧基)丙基-3-氨丙基三甲氧基硅烷、n-苯基-3-氨丙基三甲氧基硅烷等氨基官能性硅烷偶联剂、或3-巯基丙基三甲氧基硅烷等巯基官能性硅烷偶联剂或乙烯基三甲氧基硅烷、乙烯基苯基三甲氧基硅烷等烯烃官能性硅烷偶联剂、或3-甲基丙烯酰氧基丙基三甲氧基硅烷等丙烯酸类官能性硅烷偶联剂、或咪唑硅烷等咪唑官能性硅烷偶联剂、或三嗪硅烷等三嗪官能性硅烷偶联剂等。

覆铜层叠板

本发明的粗糙化处理铜箔优选用于制作印刷电路板用覆铜层叠板。即,根据本发明的优选的方式,提供具备上述粗糙化处理铜箔的覆铜层叠板、或使用上述粗糙化处理铜箔而得到的覆铜层叠板。该覆铜层叠板具备本发明的粗糙化处理铜箔、和密合设置在该粗糙化处理铜箔的粗糙化处理面的树脂层。粗糙化处理铜箔可以设置于树脂层的单面,也可以设置于双面。树脂层包含树脂,优选包含绝缘性树脂。树脂层优选为预浸料和/或树脂片。预浸料是指使合成树脂浸渗于合成树脂板、玻璃板、玻璃织布、玻璃无纺布、纸等基材中而成的复合材料的统称。作为绝缘性树脂的优选的例子,可列举出:环氧树脂、氰酸酯树脂、双马来酰亚胺三嗪树脂(bt树脂)、聚苯醚树脂、酚醛树脂等。另外,作为构成树脂片的绝缘性树脂的例子,可列举出:环氧树脂、聚酰亚胺树脂、聚酯树脂等绝缘树脂。另外,从提高绝缘性等的观点出发,树脂层也可以含有由二氧化硅、氧化铝等各种无机颗粒构成的填料颗粒等。树脂层的厚度没有特别限定,优选1~1000μm、更优选为2~400μm、进一步优选为3~200μm。树脂层也可由多层构成。预浸料和/或树脂片等树脂层也可以隔着预先涂布于铜箔表面的底漆树脂层而设置于粗糙化处理铜箔上。

印刷电路板

本发明的粗糙化处理铜箔优选用于制作印刷电路板。即,根据本发明的优选的方式,提供具备上述粗糙化处理铜箔的印刷电路板、或使用上述粗糙化处理铜箔而得到的印刷电路板。本方式的印刷电路板包含依次层叠树脂层和铜层而成的层构成。另外,对于树脂层而言,有关覆铜层叠板如上所述。在任意情况下,印刷电路板均可采用公知的层构成。作为有关印刷电路板的具体例,可列举出:在预浸料的单面或双面粘接本发明的粗糙化处理铜箔进行固化而制成层叠体,在此基础上进行电路形成而得到的单面或双面印刷电路板、对它们进行多层化而成的多层印刷电路板等。另外,作为其它的具体例,还可列举出在树脂薄膜上设置本发明的粗糙化处理铜箔而形成电路的柔性印刷电路板、cof、tab带等。进而,作为其它的具体例,可列举出:在本发明的粗糙化处理铜箔上涂布上述的树脂层而形成带有树脂的铜箔(rcc),将树脂层作为绝缘粘接剂层层叠于上述的印刷基板后,将粗糙化处理铜箔作为布线层的全部或一部分通过模拟/半加成(msap)法、减成法等方法形成了电路的积层电路板、除去粗糙化处理铜箔并通过半加成(sap)法形成了电路的积层电路板、在半导体集成电路上交替地重复进行带有树脂的铜箔的层叠和电路形成的晶圆上直接积层(directbuilduponwafer)等。

实施例

通过以下的例子对本发明进行进一步具体说明。需要说明的是,在以下的例子中,电解铜箔的“电极面”是指在制作电解铜箔时与阴极接触侧的面,而电解铜箔的“析出面”是指在制作电解铜箔时析出电解铜侧的面、即未与阴极接触侧的面。

例1

本发明的粗糙化处理铜箔的制作以如下方式进行。

(1)电解铜箔的制作

作为铜电解液使用以下所示的组成的硫酸铜溶液,阴极使用表面粗糙度ra为0.20μm的钛制的旋转电极,阳极使用dsa(尺寸稳定性阳极),以溶液温度45℃、电流密度55a/dm2进行电解,得到厚度18μm的电解铜箔。用后述的方法测定该电解铜箔的微观不平度十点高度rzjis,结果是析出面为0.6μm、电极面为1.3μm。

<硫酸铜溶液的组成>

-铜浓度:80g/l

-硫酸浓度:260g/l

-双(3-磺丙基)二硫化物浓度:30mg/l

-二烯丙基二甲基氯化铵聚合物浓度:50mg/l

-氯浓度:40mg/l

(2)粗糙化处理(氧化还原处理)

用以下所示的4阶段的工艺对在上述中得到的电解铜箔的双面进行粗糙化处理(氧化还原处理)。即,依次进行以下所示的第1预处理、第2预处理、氧化处理和还原处理。

(a)第1预处理

将在上述(1)中得到的电解铜箔在液温40℃下浸渍于硫酸浓度为5质量%的硫酸系水溶液中1分钟,然后进行水洗。

(b)第2预处理

将实施了第1预处理的电解铜箔在液温40℃下浸渍于naoh浓度50g/l的氢氧化钠水溶液中1分钟,然后进行水洗。

(c)氧化处理

对实施了上述预处理的电解铜箔进行氧化处理。该氧化处理通过将该电解铜箔浸渍于液温75℃、ph=13、亚氯酸浓度为180g/l、n-苯基-3-氨丙基三甲氧基硅烷浓度为15g/l的氢氧化钠溶液中2分钟来进行。由此,在电解铜箔的双面形成由针状结晶构成的微细凹凸,所述针状结晶由以cuo作为主要成分的铜复合化合物构成。

(d)还原处理

对实施了上述氧化处理的电解铜箔进行还原处理。该还原处理通过将利用上述氧化处理形成了微细凹凸的电解铜箔浸渍于使用碳酸钠和氢氧化钠调整为ph=12的二甲胺硼烷浓度为20g/l的水溶液中1分钟来进行。此时的水溶液的温度设为35℃。对由此进行了还原处理的电解铜箔进行水洗,在110℃下干燥10秒。通过这些工序,使电解铜箔的双面的cuo还原成为cu金属、cu2o,制成具有由铜复合化合物构成的微细凹凸的粗糙化处理面,所述铜复合化合物其表面全部由cu金属和cu2o的混相构成。由此得到在至少一侧具有具备由针状结晶构成的微细凹凸的粗糙化处理面的粗糙化处理铜箔。

(3)分析和评价

对于所制作的粗糙化处理铜箔样品而言,进行以下所示的分析和评价。

(a)粗糙化处理面(微细凹凸)的观察

利用截面sem来观察构成粗糙化处理铜箔的粗糙化处理面的微细凹凸(析出面侧),结果得到图1所示的截面sem图像。如图1所示,确认了粗糙化处理面包含由无数的针状结晶构成的微细凹凸。另外,利用透射电子显微镜(tem)(日本电子株式会社制、jem-arm200f)以20万倍的倍率来观察微细凹凸(特别是针状结晶)的截面,结果得到图2所示的stem-haadf像。进而,利用上述透射电子显微镜观察微细凹凸(特别是针状结晶),结果得到图3a和图3b所示的tem图像。图3b是图3a所示的tem图像的部分放大图像。基于由此获得的stem-haadf像测定针状结晶的高度(相对于箔垂直的方向的长度)。此时,将在1μm×1μm的区域测定10处所得的值的平均值作为各样品中的针状结晶高度。结果如表1所示。

(b)基于stem-eels的针状结晶的组成分析

利用以下的步骤对构成粗糙化处理铜箔样品表面的微细凹凸的针状结晶的组成进行组成分析。

(b-1)试样的预处理

在粗糙化处理铜箔的表面使用粘接剂进行树脂包埋后,利用超薄切片法制作用于eels测定的超薄切片。此时,目标厚度为20nm。

(b-2)eels光谱的获得

使用透射电子显微镜(tem)(日本电子株式会社制、jem-arm200f)利用电子能量损失谱分析(eels)而获得所制作的试样的cu-l端的电子能量损失谱。具体而言,在获得包含粗糙化处理面的针状结晶的部分的stem(扫描透射电子显微镜)-haadf像(高角度散射暗场像)(以下称为stem-haadf像)后,指定规定的位置来获得电子能量损失谱。该测定针对在stem-haadf像中包含铜箔主体部分(即除了针状结晶以外的铜箔的主要部分)、针状结晶的内部部分(即芯的部分)和针状结晶的表面(即外周部分)的多处来进行。stem观察时的加速电压为200kv,电子束光斑直径为约0.15nm。获得的能量区域为具有cu-l端的包含900~1000ev的范围。图4中同时示出了:表示构成粗糙化处理铜箔的微细凹凸的针状结晶的stem-haadf像、和有关在该图像的附有圆圈标记的针部分和铜箔主体的各部分中获得的cu-l2,3端的eels的光谱。另外,图5中同时示出了:表示针状结晶的针前端部的stem-haadf像、和有关在该图像的附有圆圈标记的外周部分和芯的各部分中获得的cu-l2,3端的eels的光谱。特别是,对于针状结晶的表面而言,对任意5点进行测定,获得各点的eels光谱。

(b-3)eels光谱数据的分析

对得到的cu-l端的电子能量损失谱的铜箔主体部分(即除了针状结晶以外的铜箔的主要部分)的光谱和cu金属的标准试样的光谱进行比较,只要cu-l端的能量位置偏移就根据需要进行校正。通过使用后述的鉴定方法对由此根据需要校正了的光谱和由后述的峰特性而赋予特征的cu金属、cu2o和cuo的标准的cu-l端的电子能量损失谱进行比较,从而进行测定位置处的组成的鉴定。而且,对于针状结晶的表面而言,对所测定的5点的各点进行eels光谱的鉴定,判断它们全部为cu金属/cu2o混相。进而,也进行了针状结晶的前端部的eels成像,结果如图6所示,也确认了整个最表层存在氧。综合考虑这些结果,判断针状结晶的表面全部由cu金属/cu2o混相构成。

需要说明的是,在eels光谱数据的分析中的cu金属、cu2o和cuo的鉴定使用以下所示的步骤进行。其中,值得留意的是,以下所示的能量值(ev)是以利用本实施例中使用的测定装置所测定的值为基础的,与公知文献中所公开的值之间最大可产生至5ev为止的偏差。因此,在以下的基准中所标记的“xev附近”(x为任意的值)的术语容许在x±5ev的范围内变动。

<cu金属的光谱的鉴定>

作为原则,归属于cu金属的光谱的鉴定可以通过确认满足以下的1)~4)来进行。

1)在约938ev附近具有峰p938。

2)在约959ev附近也具有峰p959。

3)峰p959的强度i959比峰p938的强度i938还高(即i938<i959)。

4)在940~950ev附近进一步具有2个峰。

<cu2o的光谱的鉴定>

作为原则,归属于cu2o的光谱的鉴定可以通过确认满足以下的5)~8)来进行。

5)在约936ev附近具有峰p936。

6)在约957ev附近也具有峰p957。

7)峰p936的强度i936与峰p957的强度i957为大致相同程度或近似(即i936≈i957)。需要说明的是,在i936>i957的情况下鉴定为cuo。该2个峰的关系可以通过参照例如图8所示的源自公知文献(hofer&golob,ultramicroscopy21(1987)379)的cu2o和cuo的光谱中的、2个峰的强度比(根据在图8中2个峰的上方的辅助线的倾斜度加以强调)而更加直观地理解。

8)作为结果p936与p957之间形成谷。

<cu金属/cu2o混相的鉴定>

不过,cu金属/cu2o混相复合了cu金属的光谱和cu2o的光谱而在一定程度上继承这些光谱的特征,同时也呈现出均难以进行严格分类的特有的光谱。具体而言,具有上述1)和2)中记载的峰p938和p959,同时上述3)的i959>i938的峰强度比消失,且上述4)的940~950ev附近的2个峰也变得难以确定。另一方面,上述5)和6)中记载的峰p936和峰p957分别被引入至与它们能量位置接近的上述1)和2)中记载的峰p938和p959中,结果实质上消失。作为替代,与上述3)不同,反而以依据上述7)的形态,峰p959的强度i959与峰p938的强度i938为大致相同程度或近似(即i938≈i959),或如上述3)所述,峰p959的强度i959比峰p938的强度i938还高(即i938<i959)。在任意情况下,作为结果,以依据上述8)的形态在p938与p959之间形成谷。归纳这些结果,作为原则,归属于cu金属/cu2o混相的光谱的鉴定可以通过确认满足以下的i)~iv)来进行。

i)在约938ev附近具有峰p938(与上述1)相同)

ii)在约959ev附近也具有峰p959(与上述2)相同)

iii)峰p938的强度i938与峰p959的强度i959为大致相同程度或近似(即i938≈i959)(代替上述3)以上述7)为准)或比强度i938还高(即i938<i959)(与上述3)相同)。

iv)作为结果p938与p959之间形成谷(代替上述4)以上述8)为准)。

即,可以说归属于cu金属/cu2o混相的光谱的2个峰(即p938和p959)的位置与cu金属的光谱一致,但2个峰的强度比、2个峰之间的形状与cu2o的光谱一致。因此,归属于cu金属/cu2o混相的光谱的鉴定可以通过确认如下内容来进行:i)基于2个峰(即p938和p959)的位置来鉴定cu金属,ii)基于这2个峰的强度(即i938和i959)之比和这些峰之间的形状来鉴定cu2o,iii)在针状结晶的表面的多处(例如5处)均满足上述i)和ii)和/或通过氧成像确认整个最表层存在氧。

(c)与树脂的密合性的评价

对于各种状态的粗糙化处理铜箔而言,为了评价与绝缘树脂基材的密合性,如下所述来进行常态剥离强度、吸湿后剥离强度和酸处理后剥离强度的测定。

(c-1)常态剥离强度

作为绝缘树脂基材,准备2张预浸料(panasoniccorporation制、r1551、厚度100μm),进行叠加。在该叠加的预浸料中以粗糙化处理铜箔的粗糙化处理面与预浸料抵接的方式层叠粗糙化处理铜箔,使用真空压制机,在压制压力2.9mpa、温度200℃、压制时间90分钟的条件下进行压制而制作覆铜层叠板。接着,利用蚀刻法制作在该覆铜层叠板上具备0.8mm宽度的剥离强度测定用直线电路的试验基板。依据jisc6481-1996从绝缘树脂基材上剥离由此形成的直线电路,测定常态剥离强度(kgf/cm)。结果如表1所示。

(c-2)吸湿后剥离强度

在进行剥离强度的测定之前,将具备直线电路的试验基板浸渍在沸水中2小时,除此以外利用与上述的常态剥离强度相同的步骤,测定吸湿后剥离强度(kgf/cm)。结果如表1所示。

(c-3)酸处理后剥离强度

在进行剥离强度的测定之前,将具备直线电路的试验基板浸渍于4n盐酸中30分钟,除此以外利用与上述的常态剥离强度相同的步骤,测定酸处理后剥离强度(kgf/cm)。结果如表1所示。

(d)吸湿耐热性试验

将使用粗糙化处理铜箔与上述相同地制作的覆铜层叠板在温度60℃、湿度60%的环境下放置120小时,然后在回流炉中对覆铜层叠板进行峰温度270℃的加热30秒,进行10次该加热。在回流炉中进行10次加热后,观察由加热导致的覆铜层叠板表面的膨胀的有无。未观察到膨胀的情况判断为合格,将进行的5次试验中判断为合格的次数作为吸湿耐热性的指标来使用。结果如表1所示。

例2(比较)

以如下方式进行相当于专利文献1的实施例1中所公开的粗糙化处理铜箔的粗糙化处理铜箔的制作。

(1)电解铜箔的制作

与例1的(1)相同地制作电解铜箔。

(2)粗糙化处理(氧化还原处理)

用以下所示的4阶段工艺对上述得到的电解铜箔的双面进行粗糙化处理(氧化还原处理)。即,依次进行以下所示的第1预处理、第2预处理、氧化处理和还原处理。

(a)第1预处理

将在上述(1)中得到的电解铜箔在液温25℃下浸渍于naoh浓度50g/l的氢氧化钠水溶液中5分钟,然后进行水洗。

(b)第2预处理

将实施了第1预处理的电解铜箔在液温25℃下浸渍于过氧化氢浓度为1质量%、硫酸浓度为5质量%的硫酸系水溶液中5分钟,然后进行水洗。

(c)氧化处理

对实施了上述预处理的电解铜箔进行氧化处理。该氧化处理通过使该电解铜箔浸渍在液温70℃、ph=12、亚氯酸浓度为150g/l、n-2-(氨乙基)-3-氨丙基三甲氧基硅烷的浓度为10g/l的氢氧化钠溶液中2分钟来进行。由此,在电解铜箔的双面形成由针状结晶构成的微细凹凸,所述针状结晶由以cuo作为主要成分的铜复合化合物构成。

(d)还原处理

对实施了上述氧化处理的试样进行还原处理。该还原处理通过将利用上述氧化处理而形成了微细凹凸的电解铜箔浸渍于使用碳酸钠和氢氧化钠调整为ph=12的二甲胺硼烷浓度为20g/l的水溶液中1分钟来进行。此时的水溶液的温度设为35℃。对由此进行了还原处理的电解铜箔进行水洗,在130℃下干燥20秒。由此得到在双面具有具备由针状结晶构成的微细凹凸的粗糙化处理面的粗糙化处理铜箔。

(3)分析和评价

对于所制作的粗糙化处理铜箔样品而言,进行与例1相同的分析和评价。结果如表1所示。另外,图8中同时示出了:表示构成在本例中得到的粗糙化处理铜箔的微细凹凸的针状结晶的针前端部的stem-haadf像、和有关在该图像的附有圆圈标记的外周散在部分、外周主要部分和芯部分的各部分中获得的cu-l2,3端的eels的光谱。如图7所示,针状结晶的外周主要部分由cu金属构成,但在针状结晶的表面局部散在有cu金属/cu2o混相。

例3(比较)

以如下方式进行相当于专利文献1的比较例中所公开的粗糙化处理铜箔的粗糙化处理铜箔的制作。

(1)电解铜箔的制作

与例1的(1)相同地制作电解铜箔。

(2)粗糙化处理(氧化还原处理)

用以下所示的4阶段工艺对上述得到的电解铜箔的双面进行粗糙化处理(氧化还原处理)。即,依次进行以下所示的第1预处理、第2预处理、氧化处理和还原处理。

(a)第1预处理

将在上述(1)中得到的电解铜箔在液温25℃下浸渍于naoh浓度50g/l的氢氧化钠水溶液中5分钟,然后进行水洗。

(b)第2预处理

将实施了第1预处理的电解铜箔在液温25℃下浸渍于过氧化氢浓度为1质量%、硫酸浓度为5质量%的硫酸系水溶液中5分钟,然后进行水洗。

(c)氧化处理

对实施了上述预处理的电解铜箔进行氧化处理。该氧化处理通过将上述电解铜箔浸渍于含有rohmandhaaselectronicmaterialsco.,ltd.制造的作为氧化处理液的“probond80aoxidesolution”10vol%和“probond80boxidesolution”20vol%的液温85℃的水溶液中5分钟来进行。由此,在电解铜箔的双面形成由针状结晶构成的微细凹凸,所述针状结晶由以cuo作为主要成分的铜复合化合物构成。

(d)还原处理

对实施了上述氧化处理的试样进行还原处理。该还原处理通过将实施了上述氧化处理的电解铜箔浸渍于含有rohmandhaaselectronicmaterialsco.,ltd.制造的作为还原处理液的“circupositpboxideconverter60c”6.7vol%、“cupositz”1.5vol%的水溶液中5分钟来进行。此时的水溶液的温度设为35℃。对由此进行了还原处理的电解铜箔进行水洗,在130℃下干燥20秒。由此得到在双面具有具备由针状结晶构成的微细凹凸的粗糙化处理面的粗糙化处理铜箔。

(3)分析和评价

对于制作的粗糙化处理铜箔样品而言,进行与例1相同的分析和评价。结果如表1所示。

表1

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1