碳纳米材料复合片材以及用于制造其的方法与流程

文档序号:15102967发布日期:2018-08-04 16:11阅读:174来源:国知局
本申请要求于2015年12月8日提交的美国序列号62/264,633和2016年1月27日提交的美国序列号15/007,379的优先权。
技术领域
:本公开一般地涉及复合材料,并且更具体地涉及一种多功能碳纳米材料复合片材、包括该碳纳米材料复合片材的复合结构以及用于制造其的方法,该多功能碳纳米材料复合片材包括结合到多孔载体材料的碳纳米材料,例如该碳纳米材料为碳纳米材料结构的形式。
背景技术
::正使用更大百分比的复合材料来设计和制造航空航天飞行器。例如,复合材料可以用于航空航天应用中的各种主要和次要结构的构建,例如形成飞机的机体和/或外部蒙皮(例如,机身、机翼等)的复合板中。复合材料的使用可以增加航空飞行器各种部件的强度、减轻重量并提供更长的使用寿命。然而,航空航天飞行器具有复合材料部件,例如蒙皮面板,其可能需要应用附加材料以用于防雷击和/或屏蔽相关的航空电子设备和电子产品免受外部电磁干扰。这种附加材料可能会不期望地增加航空航天飞行器的重量,并增加生产的时间和成本。因此,本领域技术人员将继续在复合材料领域进行研究和开发工作。技术实现要素:在一个实例中,所公开的碳纳米材料复合片材可以包括碳纳米材料结构的层和包括多孔金属化非织造材料的载体层,该载体层结合到碳纳米材料结构。在一个实例中,所公开的制造碳纳米材料复合片材的方法包括步骤:使碳纳米材料结构的层结合到载体层,该由多孔金属非织造材料制成。在一个实例中,所公开的复合结构可以包括至少一个纤维增强的聚合物层和碳纳米材料复合片材,其中碳纳米材料复合片材包括碳纳米材料结构的层和包括多孔金属化非织造材料的载体层,该载体层结合到碳纳米材料结构。从下面的详细描述、附图和所附权利要求,所公开的装置和方法的其它实例将变得显而易见。附图说明图1是用于制造所公开的碳纳米材料复合片材的所公开方法的一个实例的流程图;图2是用于制造所公开的碳纳米材料复合片材的所公开系统的一个实例的示意图;图3是所公开的碳纳米材料复合片材的一个实例的示意性框图;图4是所公开的碳纳米材料复合片材的一个实例的局部截面示意图;图5是用于制造所公开的碳纳米材料复合片材的所公开系统的一个实例的示意图;图6是包括所公开的碳纳米材料复合片材的所公开复合结构的一个实例的示意性框图;图7是飞机制造和维修方法的框图;图8是飞机的示意图;图9是所公开的碳纳米材料复合片材的一个实例的局部截面示意图;图10是示出了所公开的碳纳米材料复合片材的各种实例的屏蔽效能的图。具体实施方式下面的详细描述参考附图,附图示出了本公开所描述的具体示例。具有不同结构和操作的其它示例不脱离本公开的范围。相同的附图标记可以指代不同附图中的相同的特征、元件或部件。在上面提到的图3和图8中,连接各种元件和/或部件的实线(如果有的话)可以表示机械连接、电连接、流体连接、光学连接、电磁连接和其他连接和/或它们的组合。如本文所使用的,“连接”意味着直接和间接相关。例如,构件A可以与构件B直接相关或者可以例如通过另一构件C而与构件B间接相关。可以理解的是,不一定提供了各种公开元件之间的所有关系。因此,也可能存在不同于框图中所描述的那些的连接。连接指示各种元件和/或部件的方框的虚线(如果有的话)表示在功能和目的与由实线表示的连接类似的连接;然而,由虚线表面的连接可以是选择性提供的或可以涉及本公开所公开的替代实例。同样地,以虚线表示的元件和/或部分(如果有的话)指示由本公开所公开的替代实例。在不脱离本公开的范围的情况下,可以从具体实例中省略以实线和/或虚线示出的一个或多个元件。环境元件(如果有的话)用虚线表示。为了清楚起见,也可以显示虚拟(虚构)元件。本领域技术人员将会理解,图3和图8中示出的一些特征可以以各种方式进行组合,而不需要包括图3和8、其它附图和/或附带公开中描述的其它特征,尽管此类组合或多个组合在本文中未明确示出。类似地,不局限于所展示的实例的附加特征可以与本文示出和描述的特征中的一些或全部相组合。在上面提到的图1和图7中,方框可以代表操作和/或其部分并且连接各个方框的线不表示操作或其部分的任何特定顺序或依赖性。由虚线表示的方框表示替代的操作和/或其部分。连接各个方框的虚线(如果有的话)表示操作或其部分的替代依赖性。应该理解的是,不一定展示了各公开的操作之间的所有依赖关系。图1和图7及描述本文阐述的方法的操作的附带公开内容不应被解释为一定确定操作所执行的顺序。相反,尽管指示了一个说明性顺序,但是应当理解,操作的顺序在适当的时候可以被修改。因此,某些操作可以以不同的顺序或同时进行。另外,本领域技术人员将认识到,并非所有描述的操作都需要执行。除非另有说明,术语“第一”、“第二”等在本文中仅被用作标签,而不旨在对这些术语所涉及的条目强加次序、位置或等级要求。此外,提到“第二”条目并不要求或排除存在较低编号的条目(例如“第一”条目)和/或较高编号的条目(例如“第三”条目)。如本文所使用的,短语“至少一个/种”当与一个条目列表一起使用时,是指可以使用所列条目中的一个或多个的不同组合并且可以仅需要列表中的条目之一。条目可以是一个特定的对象、事物或类别。换言之,“至少一个/种”意味着可以从列表中使用条目的任何组合或许多条目,但并非所有列表中的条目都是必需的。例如,“条目A、条目B和条目C中的至少一个”可以是指条目A;条目A和条目B;条目B;条目A、条目B和条目C;或条目B和条目C。在一些情况下,“条目A、条目B和条目C中的至少一个”可以是指例如但不限于两个条目A、一个条目B和十个条目C;四个条目B和七个条目C;或一些其它适合的组合。本文中提及的“实施例”、“一个实施例”、“另一个示实施例”或类似的语言是指关联该实施例所描述的一个或多个特征、结构、元件、部件或特性被包括在至少一个实施方案或实施方式中。因此,在整个本公开中的短语“在一个实施例中”、“作为一个实施例”或类似语言可以(但不一定)是指同一个实施例。另外,表征任何一个实例的主题可以(但不一定)包括表征任何其它实例的主题。以下提供了说明性的、非穷尽性的实例,其可以(但不一定)是根据本公开的要求保护的主题。参见图1,公开了方法100的一个实施例。方法100是用于制造多功能碳纳米材料复合片材202的公开方法的一个示例性实施方式。如图2所示,系统200是用于例如根据方法100制备碳纳米材料复合片材202的公开系统的一个示例性实施方式。在不脱离本公开的范围的条件下,可以对方法100进行修改、添加或省略。方法100可以包括更多、更少或其它步骤。此外,步骤可以任何适合的顺序实施。参见图1并且参见图3,在一个实施例中,如框122所示,方法100包括将碳纳米材料结构242的层258(例如一个或多个层)结合到载体层204的步骤。在一个实施例中,载体层204是由多孔金属化非织造材料制造的。在一个实施例中,碳纳米材料结构242的层258永久地结合到载体层204。在一个实施例中,如框124所示,方法100包括将可离型的保护膜216连接到载体层204的步骤。在一个实施例中,如图4所示,载体层204位于保护膜216和碳纳米材料结构242(例如碳纳米材料结构242的层258)之间。参见图1并且参见图3,在一个示例性实施方式中,如框102所示,方法100包括提供载体层204的步骤。通常,载体层204包括可以在其上覆盖碳纳米材料226以在载体层204的表面上形成(例如建立和/或结合)碳纳米材料结构242的任何材料。载体层204也可以被称为载体材料、材料层、过滤层(filterlayer)或滤层(filteringlayer)。作为一个一般的实例,载体层204可以包括可以滤过碳纳米材料226(例如碳纳米材料226的浆料238)的任何多孔材料。多孔材料可以包括孔或多孔膜、片材、沙幔(帐,veil)或织物材料(例如具有多个孔或开口的材料,浆料238经过该开口或开口被过滤)。载体层204可以是导电的或不导电的,这取决于特定的应用和/或期望的性质。非限制性实例包括织造或非织造(例如,湿法成网或熔纺)尼龙、聚酯、PEEK、PEKK、纤维玻璃、碳纤维、金属化聚合物或金属网/箔(例如扩展铜箔)。参见图3,在一个实施例中,碳纳米材料复合片材202包括碳纳米材料结构242的层258和载体层204。在一个实施例中,载体层204包括多孔金属化非织造材料。在一个实施例中,载体层204结合到碳纳米材料结构242。参见图3,作为一个实施例,碳纳米材料复合片材202是层压件。作为一个实施例,碳纳米材料复合片材202是连续片材。作为一个实施例,载体层204永久地结合到碳纳米材料结构242(例如,结合到碳纳米材料结构242的层258)。作为一个实施例,碳纳米材料结构242包括随机取向的、均匀分布的碳纳米管的结构(“CNT”)228。作为一个具体的非限制性实施例,碳纳米材料结构242具有约1克碳纳米材料226/平方米(gsm)的基重。作为另一个具体的非限制性实施例,碳纳米材料结构242具有至少1克碳纳米材料226/平方米(gsm)的基重。在一个实施例中,碳纳米材料复合片材202包括与碳纳米材料结构242连接的至少一个聚合物层262。在另一个实施例中,碳纳米材料复合片材202包括与碳纳米材料结构242连接的至少一个聚合物封装层264。作为一个实施例,碳纳米材料复合片材202包括与碳纳米材料结构242连接的预浸材料266。参见图2并且参见图3,在一个示例性实施方式中,并且如图2所示,载体层204可以提供为载体层204的连续片材(或采用载体层204的连续片材的形式)(在此通常称为片材206)。如此处所使用的,“连续的”是指具有比宽度大几个数量级的长度的伸长的片材。通常,片材206可以是或者可以包括连续的布;织物;沙幔;非织造片材、层片或垫;织造片材、层片或垫等。载体层204可以是多孔的。载体层204可以是导电的或不导电的。如图2所示,作为一个实施例,系统200可以包括一卷(roll)载体层204(在本文中通常称为卷208)。例如,连续片材206可被制造并卷成卷208。参见图3并且参见图2和图4,作为一个一般的非限制性实例,载体层204可以是导电材料的多孔的非织造的沙幔、片材、层片或垫(或采用导电材料的多孔的非织造的沙幔、片材、层片或垫的形式)。作为一个一般的实例,载体层204可以包括环绕在一起以形成薄的非织造片材、层片或垫的纤维260。作为一个具体的非限制性实施例,载体层204(例如导电载体材料)是碳纤维沙幔210(或采用碳纤维沙幔210的形式)。因此,片材206(图2)可以是碳纤维沙幔210的连续片材。碳纤维沙幔210包括碳纤维212(例如多个连续的碳纤维的束),其随机地环绕在一起以形成碳纤维212的非织造片材、层片或垫。碳纤维沙幔210可以是多孔的。碳纤维沙幔210也可以是导电的。在某些示例性实施方式中,可以使用轻质粘合剂(未明确示出)将碳纤维212保持在一起。作为另一个一般的非限制性实施例,载体层204可以是非导电材料的多孔的非织造的沙幔、片材、层片或垫(或采用非导电材料的多孔的非织造的沙幔、片材、层片或垫的形式)。作为具体的非限制性实施例,载体层204(例如非导电载体材料)可以是(或采用以下形式)玻璃纤维(例如E-玻璃、S-玻璃)、聚芳基酰胺纤维(例如Kevlar)、含氟聚合物纤维(例如超高分子量聚乙烯、高密度聚乙烯、特氟隆等)或它们的组合的多孔非织造的沙幔、片材、层片或垫。作为另一个一般的非限制性实施例,载体层204可以是(或采用以下形式)介电材料的多孔非织造的沙幔、片材、层片或垫(例如介电沙幔)(未明确示出)。作为具体的非限制性实施例,载体层204(例如介电载体材料)包括但不限于超高分子量聚乙烯(“UHMWPE”)、含氟聚合物、聚酰亚胺或它们的组合。用于载体层204的具体材料可以至少部分地取决于所公开的碳纳米材料复合片材202的具体应用和/或功能,诸如但不限于电磁干扰(“EMI”)屏蔽、雷电保护、环境保护、环境隔离、耐刮擦等。作为一个实施例,当期望或需要碳纳米材料复合片材202的更高导电性时,例如为了防雷击保护和/或低频屏蔽效能,载体层204可以由导电材料制成,例如碳纤维212(例如碳纤维沙幔210)。作为另一个实施例,当期望或需要碳纳米材料复合片材202的更低导电性时,载体层204可以由非导电材料制成,例如玻璃纤维、芳族聚酰胺纤维和/或含氟聚合物纤维。参见图3,在一个实施例中,载体层204包括涂镍纤维(涂覆有镍涂层214的纤维260)。因此,在一个实施例中,载体层204包括金属涂层254。包括金属涂层254的载体层204也可以被称为金属涂覆的载体层、金属化载体层、金属涂覆载体材料、金属化载体材料、金属涂覆的材料层、金属化材料层、金属涂覆的过滤层(metaliccoatedfilterlayer)、金属化过滤层、金属涂覆的滤层(metaliccoatedfilteringlayer)、金属化滤层、金属涂覆的纤维层或金属化纤维层。作为一个具体的非限制性实施例,金属涂层254是镍涂层214。包括镍涂层214的载体层204也可以被称为镍(“Ni”)涂覆的载体层、镍(“Ni”)金属化载体层、镍涂覆的载体材料、镍金属化载体材料、镍涂覆的材料层、镍金属化材料层、镍涂覆的过滤层(nicklcoatedfilterlayer)、镍金属化过滤层、镍涂覆的滤层(nicklcoatedfilteringlayer)、镍金属化滤层、镍涂覆的纤维层或镍金属化纤维层。除了镍之外的其它金属也可以被用作金属涂层254。例如,可以基于期望的屏蔽效能,选择用于金属涂层254的具体金属。参见图1并且参见图3,在一个示例性实施方式中,如框118(图2)所示,方法100可以包括将金属涂层254(例如镍涂层214)施用到载体层204的步骤。通过各种已知的方法或技术将金属涂层254(例如镍涂层214)施用到载体层204。在一个示例性实施方式中,可以通过化学气相沉积工艺将镍(镍涂层214)施用到载体层204。在另一个示例性实施方式中,可以通过无电镀镍工艺将镍施用到载体层204。在又另一个示例性实施方式中,可以通过镍电镀工艺将镍施用到载体层204。作为一个实施例,碳纤维沙幔210包括金属涂层254(例如镍涂层214)。包括金属涂层254的碳纤维沙幔210还可以被称为金属涂覆的碳纤维沙幔或金属化碳纤维沙幔。作为一个实施例,可以将镍施用到碳纤维沙幔210以形成镍涂覆的碳纤维沙幔。包括镍涂层214的碳纤维沙幔210也可以被称为镍涂覆的碳纤维沙幔或镍金属化碳纤维沙幔。可以通过各种已知的方法或技术将金属涂层254(例如镍涂层214)施用到碳纤维沙幔210。作为实施例,可以通过化学气相沉积工艺、无电镀镍工艺或镍电镀工艺将镍(镍涂层214)施用到碳纤维沙幔210。作为一个实施例,纤维260包括金属涂层254(例如镍涂层214)。作为一个实施例,可以将金属(例如镍)施用到纤维260中的单个纤维上,以形在金属(例如镍)涂覆的纤维。镍涂覆的纤维可用于形成纤维沙幔、片材、层片或垫(例如镍涂覆的沙幔片材、层片或垫)。作为另一个实施例,碳纤维212包括金属涂层254(例如镍涂层214)。作为一个实施例,可以将金属(例如镍)施用到碳纤维212的单个纤维上以形成金属(例如镍)涂覆的碳纤维。镍涂覆的碳纤维可以用来形成碳纤维沙幔210(例如镍涂覆的碳纤维沙幔)。可以通过各种已知的方法或技术将金属涂层254(例如镍涂层214)施用到纤维260或碳纤维212。作为实施例,可以通过化学气相沉积工艺、无电镀镍工艺或镍电镀工艺将镍施用到纤维260或碳纤维212。作为一个实施例,非导电载体材料或介电载体材料(例如由非导电材料或介电材料制成的载体层204)包括金属涂层254(例如镍涂层214)。向非导电载体材料或介电载体材料施用金属涂层254(例如镍涂层214)可以提供或基本上形成导电载体层204。例如,可以向非导电载体材料或介电载体材料施用金属(例如镍)以形成金属涂覆的(例如镍涂覆的)载体材料。可以通过各种已知的方法或技术以将金属涂层254(例如镍涂层214)施用到非导电载体材料或介电载体材料。作为实施例,可以通过化学气相沉积工艺、无电镀镍工艺或镍电镀工艺将镍施用到非导电载体材料或介电载体材料。参见图2,在一个实施例中,系统200可以包括一个或多个第一辊224。第一辊224可以是配置为将例如载体层204(例如碳纤维沙幔210)的片材206拉离卷208并且沿着处理路径指引或引导载体层204。参见图1并且参见图2和图3,在一个示例性实施方式中,如框104所示,方法100包括提供碳纳米材料226的步骤。碳纳米材料226可以采取各种形式。如图3所示,作一个一般的非限制性实施例,碳纳米材料226可以是(或采用以下形式)具有各种几何形状的碳纳米颗粒232。作为一个具体的非限制性实施例,碳纳米材料226可以是(或采用以下形式)碳纳米管228。作为一个具体的非限制性实施例,碳纳米材料226可以是(或采用以下形式)碳纳米球230。作为一个具体的非限制性实施例,碳纳米材料226可以是(或采用以下形式)石墨烯234。作为一个具体的非限制性实施例,碳纳米材料226可以是碳纳米颗粒232、碳纳米管228、碳纳米球230和/或石墨烯234中的至少一种或组合。碳纳米材料226也可以包括碳的各种其他同素异形体。可以使用各种已知的化学方法来制造碳纳米材料226。例如,可以将根据已知技术制造的各种类型的碳纳米管228用作碳纳米材料226。在一个示例性实施方式中,可以在不锈钢片上生长碳纳米管228。然后可以从片上刮下生长的碳纳米管228。作为一个实施例,碳纳米管228可以是单壁碳纳米管(“SWCNT”)。作为另一个实施例,碳纳米管228可以是多壁碳纳米管(“MWCNT”)。作为另一个实施例,碳纳米管228可以是预应力多壁碳纳米管(“PSMWCNT”)。作为又另一个实施例,碳纳米管228可以是SWCNT、MWCNT和/或PSMWCNT的组合。可以根据已知的技术制造PSMWCNT。作为一个实施例,可以通过将MWCNT放入到炸弹室中并且使用爆炸来快速增加压力以迫使MWCNT的壁压缩到范德华力占优势的距离内,从而获得PSMWCNT。作为一个实施例,可以通过将MWCNT暴露于辐射中以增加压力,从而获得PSMWCNT。在一个特定的非限制性实施例,PSMWCNT可具有从约0.22nm到约0.28nm范围内的壁间间距(例如与此相比,传统的MWCNT则约为0.34nm)。PSMWCNT所赋予的益处可以包括增强的壁间剪切强度,与普通MWCNT相比,这反过来提高了负载传输能力。这提供了比普通碳纳米管(“CNT”)高约20%的轴向拉伸强度和杨氏模量。参见图1并且参见图2,在一个示例性实施方式中,如框106所示,方法100包括混合碳纳米材料226和液体236以形成碳纳米材料226和液体236的浆料(在本文中一般称为浆料238)(例如碳纳米材料226悬浮于液体236中的流体混合物或悬浮液)的步骤。液体236可以是碳纳米材料226可以分散并悬浮在其中的任何合适的分散性液体或流体载体材料。通常,液体236可以不与碳纳米材料226反应(例如碳纳米材料226不溶于液体238)。作为一个具体的非限制性实施例,液体236可以是水。作为另一个具体的非限制性实施例,液体236可以是有机溶剂。作为另一个具体的非限制性实施例,液体236可以是酸。作为另一个具体的非限制性实施例,液体236可以是树脂(例如热塑性塑料或环氧树脂)。还预期了适合的分散性液体(例如液体236)的其它实例。液体236还可以包括用于改善和/或稳定碳纳米材料226在液体236中的分散和悬浮的一种或多种化合物。参见图1并且参见图2和图3,在一个示例性实施方式中,如框108所示,方法100包括将碳纳米材料226和液体236的浆料238覆盖(例如分配)在载体层204上的步骤。如框110所示,方法100包括通过载体层204过滤碳纳米材料226的步骤。如框112所示,方法100包括在载体204的表面上形成(例如建造)碳纳米材料结构242(图3)的步骤。在本文中并且如图2所示,结合到(例如形成并且连接到)载体层204的碳纳米材料结构242的组合可以被称为碳纳米材料前体复合片材246。参见图2并且参见图3,在一个实施例中,系统200包括网案(formingtable)240。在网案240上发生碳纳米材料226和载体层204之间的相互作用以建造碳纳米材料结构242(图3)。在一个示例性实施方式中,网案240可以包括在将浆料238分散(例如浇注、喷洒等)在载体层204上时足以支持载体层204丝网或筛。当浆料238覆盖(例如浇注)在载体层204上时,浆料238在载体层204的表面上展开。液体236穿过载体层204并且通过载体层204过滤碳纳米材料226(例如筛出并保留)(例如在载体层204的表面上和/或至少部分地在载体层204的表面下),以形成碳纳米材料结构242。在一个示例性实施方式中,载体层204支撑在运输器(例如传送带)上(未明确示出),其沿着加工加工路径运送载体层204。输送带可以是在浆料238被分配在载体层204上并且过滤时足以支撑载体层204在一个平面上的丝网或筛。在一个实施例中,系统200(例如网案240)还可以包括一个真空区域,其配置为提供足以从载体层204的上方(例如从上表面)下拉浆料238并使用其穿过载体层204的真空压力,同时允许碳纳米材料226缠结在表面上并沉降入(例如至少部分地分散通过)载体层204中。在过滤步骤(框110)之后,碳纳米材料226可以随机取向并均匀分布在载体层204上。参见图3和图4并且参见图1和图2,在一个实施例中,如图4所示,碳纳米材料226中的至少一些散布穿过载体层204的厚度并且与载体层204缠结,使得碳纳米材料结构242永久地结合到载体层204。在一个示例性实施方式中,在浆料238(图2)的覆盖步骤(框108)和过滤步骤(框110)(图1)过程中,碳纳米材料226可以在多个方向上彼此缠结以在载体层204的表面上形成碳纳米材料结构242(例如碳纳米材料226的积聚)(框112)。因此,碳纳米材料结构242是包括碳纳米材料226的缠结网络的片状结构(例如碳纳米颗粒结构包括碳纳米颗粒232的缠结网络,碳纳米管结构包括碳纳米管228的缠结网络、碳纳米球结构包括碳纳米球230的缠结网络,或石墨烯结构包括石墨烯234的缠结网络)。碳纳米材料226可以在载体层204的表面上随机分布或取向。可替换地,碳纳米材料226可以在载体层204的表面上均匀分布或取向。作为一个具体的非限制性示例性实施方式,载体层204(例如碳纤维沙幔、镍涂覆的碳纤维沙幔等)沿着系统200的加工路径(未明确标识)移动,例如在输送机上。可以将碳纳米材料226作为液体236和碳纳米材料238(例如碳纳米管228、碳纳米球230、碳纳米颗粒232、石墨烯234)的浆料238施用到载体层204上。可以控制载体层204(例如运输器)的移动速度以提供均匀分布的浆料238,并由此,碳纳米材料226穿过下面的载体层204。积聚以形成碳纳米材料结构242的碳纳米材料226的密度可取决于各种因素,包括但不限于碳纳米材料226的尺寸和/或几何形状、碳纳米材料226的类型、碳纳米材料结构242的具体应用(例如期望的屏蔽效能或特定RF频率下的衰减、期望的雷击保护水平、期望的电导率水平、期望的表面电阻率等)、碳纳米材料结构242的期望厚度、碳纳米材料结构242的期望重量等。作为一个具体的非限制性实施例,碳纳米材料226可以具有约1克/平方米(gsm)的基重。作为一个具体的非限制性实施例,碳纳米材料226可具有小于约1.0的相对密度。如图1所示,可以按需重复分配步骤(框108)和过滤步骤(框110)以建造碳纳米材料结构242。参见图4,作为一个实施例,碳纳米材料226之间的缠结可以发生在不同碳纳米材料226之间的各个交叉位置244处。缠结的碳纳米材料226的网络可以包括足够量的碳纳米材料226,以提供足够数量的交叉位置244从而实现稳定的碳纳米材料结构242。根据碳纳米材料226(例如碳纳米管228、碳纳米球230、碳纳米颗粒232、石墨烯234等)的类型和/或几何形状,碳纳米材料226的尺寸可以变化。作为一个具体的非限制性实施例,碳纳米管228可以具有极高的长宽比(长度直径比),例如至少2,500:1。例如,碳纳米管228可具有约0.5毫米至约4毫米的长度和约1纳米至约50纳米的直径。还没有限制地预期了碳纳米材料226的其它适合尺寸。由于碳纳米材料226的尺寸小,所以至少一些碳纳米材料226可以至少部分地分散并整合到整个载体层204中。例如,至少一些碳纳米材料226可以至少部分地透入并散布通过载体层204的一定厚度(例如穿过厚度)(未明确标识)并且与载体层204缠结和整合。因此,在方法100的过滤步骤(框110)和建造步骤(框112)(图1)之后,碳纳米材料结构242有效地连接到载体层204(例如形成碳纳米材料前体复合片材246)。作为一个实施例,碳纳米材料226可集中在载体层204的表面附近(例如在或靠近)。作为一个实施例,碳纳米材料226可部分地散布并缠结在载体层204的整个厚度上。作为一个实施例,碳纳米材料226可以完全散布并缠结在载体层204的整个厚度上。参见图1并且参见图2,在一个示例性实施方式中,方法100包括:如框14所示,将压力和热量中的至少一个施加到碳纳米材料前体复合片材246的步骤(例如将压力和热量中的至少一个施加到碳纳米材料结构242和载体层204的连接组合上);如框116所示,整合碳纳米材料结构242和载体层204的步骤;和如框120所示,形成碳纳米材料复合片材202的步骤。将压力和热量中的至少一个施加到碳纳米材料前体复合片材246的步骤(例如施加到碳纳米材料结构242和载体层204)也可以称为层压。作为一个实施例,施加热量可以包括干燥碳纳米材料前体复合片材246。例如,可以向碳纳米材料前体复合片材246施加足以干燥(例如蒸发)来自载体层204和/或碳纳米材料结构242的任何剩余的液体236的热量。作为一个一般的非限制性实施例,可以将碳纳米材料前体复合片材246加热到约200°F和约300°F之间(例如220°F)以除去流体236并干燥碳纳米材料前体复合片材246并且形成碳纳米材料复合片材202。作为一个实施例,施加压力可以包括压缩碳纳米材料前体复合片材246。例如,压力可以被施加到碳纳米材料前体复合片材246,其足以压缩碳纳米材料前体复合片材246并形成碳纳米材料复合片材202。作为一个一般的非限制性实施例,碳纳米材料前体复合片材246可以从约8密耳(mil)的厚度进行压缩以形成具有约6密耳(例如6.3密耳)厚度的碳纳米材料复合片材202。施加热量、压力或它们的组合进一步将碳纳米材料结构242和载体层204结合并整合在一起。施加到碳纳米材料前体复合片材246的压力和/或热量(例如通过夹辊250)可以是均匀的,并且有助于创造均匀且单一的碳纳米材料复合片材202。参见图2并且参见图1,系统200可以包括一个或多个干燥器248(例如施加热量)和/或一个或多个第二辊250(例如施加压力或者压力和热量)。干燥器248可以沿着加工路径定位(例如靠近)在碳纳米材料前体复合片材246附近,在网案240之后,并且被配置为干燥碳纳米材料前体复合片材246(例如除去保留在碳纳米材料前体复合片材246中的液体236)并且形成碳纳米材料复合片材202。第二辊250可以是导辊、夹辊、捏辊等,其配置为沿着加工路径牵引、引导或指引碳纳米材料前体复合片材246。第二辊250也可以配置为压缩碳纳米材料前体复合片材246并且形成碳纳米材料复合片材202。第二辊250可以是经加热的辊,其配置为提高碳纳米材料前体复合片材246的温度,例如用于在由第二辊250压缩碳纳米材料前体复合片材246的同时干燥碳纳米材料前体复合片材246。虽然在图2和5中仅示例性地示出了单独相对的一对第二辊250,但本领域技术人员将理解,可以沿着加工路径放置多对第二辊250,在多个阶段中递增地压缩(例如介于约0.5密耳至约1.0密耳之间)。向碳纳米材料前体复合片材246(例如碳纳米材料结构242和载体层204的组合)施加压力和/或热量(框114)可以进一步散布并且整合碳纳米材料226与载体层204,例如将碳纳米材料结构242和载体层204结合在一起(框122)。在应用压力和/或加热步骤之后(框114)(图1),可以将碳纳米材料复合片材202卷制成一卷碳纳米材料复合片材202(在本文中通常称为卷252)。参见图5并且参见图4,在一个示例性实施方式中,载体层204还可以包括保护膜216。例如,当卷制成卷252时,保护膜216可以保护碳纳米材料复合片材202。在特定应用中,例如当用于制备复合结构300(图6)时,在使用碳纳米材料复合片材202之前,从碳纳米材料复合片材202上除去保护膜216。保护膜216也可以被称为保护层或离型膜。作为一个实施例,保护膜216可以提供为(或采用以下形式)保护膜216的片(在本文中通常称为片222)。作为一个具体的非限制性实施例,保护膜216可以由聚四氟乙烯玻璃材料(诸如ARMALONTM聚四氟乙烯玻璃层压件)制成。作为一个实施例,系统200可以包括卷成保护膜216的卷的连续片222(在本文中通常称为卷220)。作为一个实施例,保护膜216可以可剥离地连接到载体层204(例如碳纤维沙幔210)。第一辊224可以被配置为将载体层204拉离卷208并且将保护膜216拉离卷220,并且沿着加工路径引导或导向载体层204和保护膜216。第一辊224也可以被配置为将片206和片222压缩成紧密接触。参见图9,在一个实施例中,碳纳米材料复合结构202可以包括介电层256。介电层256可以连接到载体层204。作为一个实施例,在碳纳米材料226和液体236的浆料238的覆盖步骤之前,可以将介电层256施用到载体层204(框108)。如图9所示,载体层204可以设置在介电层256和碳纳米材料结构242之间。作为一个实施例,介电层256向载体层204的施用可以类似于上文描述的关于保护膜216的施用的工艺。然而,介电层256可能不能从载体层204去除。在一个实施例中,碳纳米材料复合结构202可以包括施用到载体层204的介电层256和保护膜216。例如,保护膜216可以施用(例如可离型地连接)到介电层256(例如设置在载体层204和保护膜216之间的介电层256)。介电层256可以是多孔的或非多孔的(例如可由多孔材料或非多孔材料制成)。参见图6,公开了复合结构300的一个实施例。在一个实施例中,复合结构300包括至少一个纤维增强的聚合物层302和碳纳米材料复合片材202。碳纳米材料复合片材202可以包括碳纳米材料结构242的层258和载体层204。载体层204可以包括多孔金属化非织造材料。载体层204可以结合到碳纳米材料结构242。在一个实施例中,载体层204可以永久地结合到碳纳米材料结构242。在一个实施例中,碳纳米材料复合片材202是层压件。在一个实施例中,碳纳米材料结构242可以包括碳纳米管228(或其它类型的碳纳米材料226)的随机取向均匀分布的结构。因此,在一个实施例中,复合结构300可以是复合层压件。作为一个实施例,复合结构300可以包括一个或多个纤维增强的聚合物层302(例如图6的实施例中示出了三个纤维增强的聚合物层302)。纤维增强的聚合物层302的每一个可以包括由聚合物基质(未明确示出)结合在一起的增强纤维材料(未明确示出)的片材、垫或层片。纤维状材料可以包括任何合适的织造或非织造(例如针织、编织或缝合)连续增强纤维或长丝。聚合物基质材料可以包括任何合适的热固性树脂(例如环氧树脂)或热塑性塑料。可以使用各种已知的方法或技术来制造纤维增强的聚合物层302。作为一个实施例,纤维增强的聚合物层302的每一个可以包括一片用聚合物基体材料(例如预浸料)预浸渍的增强纤维材料,也称为干法铺敷(drylayup)。作为一个实施例,纤维增强的聚合物层302的每一个可以包括一片增强纤维材料,并将聚合物基质材料施加到该增强纤维材料上,也称为湿法铺敷(wetlayup)。复合结构300还包括至少一层碳纳米材料复合片材202。可以使用各种已知的方法或技术来制造复合结构300。在一个示例性实施方式中,纤维增强的聚合物层302和碳纳米材料复合片材202可以例如在模具(未明确示出)内连续地叠层。纤维增强的聚合物层302和碳纳米材料复合片材202可以共固化以形成复合结构300。作为一个实施例并且如图6所示,碳纳米材料复合片材202是复合叠层的最外层(例如限定复合结构300的外表面层)。作为一个实施例,碳纳米材料复合片材202是复合叠层的内层(例如限定复合结构300的内部层)。复合结构300可以包括任何期望的三维("3D")形状。3D形状可以包括复合结构300的各种维数,包括长度维数、宽度维数、高度维数和/或横截面维数。作为一个具体的非限制性实施例,复合结构300可以是飞机的蒙皮面板。因此,所公开的碳纳米材料复合片材202以被整合到制造复合结构300的生产过程中。碳纳米材料复合片材202可以提供复合结构300,其能有效屏蔽EMI且有效的雷击保护,而不需要额外的材料。包括碳纳米材料复合片材202的复合结构300可以具有宽带EMI屏蔽效能,这在航空航天应用中可以是特别有利的,因为每个射频(“RF”)频带可能会不同地影响电子和航空电子设备。作为一个实施例,包括载体层204(例如碳纤维沙幔210)和碳纳米材料结构242的碳纳米材料复合片材202可以在中频(在约100MHz和约1GHz之间)和在高频(大于约1GHz)提供有效的EMI屏蔽。作为一个实施例,包括具有镍涂层214的载体层204(例如镍涂覆的碳纤维沙幔210)和碳纳米材料结构242的碳纳米材料复合片材202可以在低频(低于约100MHz)、中频(在约100MHz和约1GHz之间)和在高频(大于约1GHz)提供有效的EMI屏蔽。将介电材料用作载体层204或将介电层256连接到载体层204可以通过例如在雷击时将雷电电流保持在表面上并且在能量进入并导致下方的复合结构300损坏之前允许碳纳米材料复合材料202将能量传导出去,由此能够为下方的复合结构300提供用于雷击保护的屏障。在各个实施例中,可以选择用于碳纳米材料复合片材202的材料以提供对特定频率或频率范围的期望的EMI屏蔽效能(以分贝计)(“dB”)。作为一个实施例,碳纳米材料结构242(由缠结的碳纳米材料226的网络形成)可以提供在中频和高频下具有有效的EMI屏蔽的碳纳米材料复合片材202。导电性载体层204(例如由导电材料或金属涂覆的材料形成)可以提供在低频下具有有效EMI屏蔽的碳纳米材料复合片材202。因此,包括具有金属涂层254(例如镍涂层214)的载体层204(例如碳纤维沙幔210)和碳纳米材料结构242的碳纳米材料复合片材202,可以在低频、中频和高频下提供有效的EMI屏蔽。用作金属涂层254的镍可以有利地在低频下提供最高的屏蔽性能或有效性。不受任何特定理论的束缚,减小载体层204的电阻可等同于电导率的增加,并因此等同于EMI屏蔽效能的提高,例如特别是在低频下。如图10所示,示出了复合片材202的各种材料构造的EMI屏蔽效能。图10示出了第一载体层204a、碳纳米材料结构242、第一碳纳米材料复合片材202a、第二载体层204b、第二碳纳米材料复合片材202b、第三载体层204c和第三碳纳米材料复合片材202c的屏蔽效能。作为一个实施例,碳纳米材料结构242包括碳纳米材料226的缠结网络。碳纳米材料结构242在约100MHz至约1GHz频率范围内可以提供约58dB至约62dB的范围内的屏蔽效能。作为一个实施例,第一载体层204a包括导电材料。该导电材料可以包括导电材料层、具有金属涂层(例如镍涂层)的导电材料层或具有金属涂层的非导电材料层。第一载体层204a可以具有约0.1欧姆的电阻。第一载体层204a可以在约100MHz至约1GHz频率范围内提供约58dB至约68dB的屏蔽效能。作为一个实施例,第一碳纳米材料复合片材202a包括第一载体层204a和碳纳米材料结构242。第一碳纳米材料复合片材202a可以在约100MHz至约1GHz频率范围内提供约61dB至约78dB的屏蔽效能。作为一个实施例,第二载体层204b包括导电材料。该导电材料可以包括导电材料层、具有金属涂层(例如镍涂层)的导电材料层或具有金属涂层的非导电材料层。第二载体层204b可以具有约0.04欧姆的电阻。第二载体层204b可以在约100MHz至约1GHz频率范围内提供约65dB至约75dB的屏蔽效能。作为一个实施例,第二碳纳米材料复合片材202b包括第二载体层204b和碳纳米材料结构242。第二碳纳米材料复合片材202b可以在约100MHz至约1GHz频率范围内提供约67dB至约86dB的屏蔽效能。作为一个实施例,第三载体层204c包括导电材料。该导电材料可以包括导电材料层、具有金属涂层(例如镍涂层)的导电材料层或具有金属涂层的非导电材料层。第三载体层204c可以具有约0.02欧姆的电阻。第三载体层204c可以在约100MHz至约1GHz频率范围内提供约74dB至约78dB的屏蔽效能。作为一个实施例,第三碳纳米材料复合片材202c包括第三载体层204c和碳纳米材料结构242。第三碳纳米材料复合片材202c可以在约100MHz至约1GHz频率范围内提供约65dB至约97dB的屏蔽效能。可以在如图7所示的飞机制造和维修方法1100及如图8所示的飞机1200的背景下描述本文所公开的碳纳米材料复合片材202和复合结构300及它们的制造方法的实施例。在预生产期间,说明性的方法1100可以包括飞机1200的规格和设计(如框1102所示),其可以包括具有碳纳米材料复合片材202的复合结构300的设计以及材料采购,如框1104所示。在生产过程中,可以进行如框1106所示的飞机1200的部件和子组件制造以及如框1108所示的系统集成。碳纳米材料复合片材202的生产及碳纳米材料复合片材202在复合结构300中的使用(如本文)可以作为生产、部件和子组件制造步骤的一部分来完成(框1106)和/或作为系统集成的一部分来完成(框1108)。此后,如框1110所示,飞机1200可以通过认证和交付,从而投入使用(如框1112所示)。在使用期间,如框1114所示,可以安排飞机1200进行日常维护和维修。日常维护和维修可以包括飞机1200的一个或多个系统的修改、重新配置、翻新等。说明性方法1100的每个过程可以由系统集成商、第三方和/或运营商(例如客户)进行或执行。为了说明的目的,系统集成商可以包括但不限于任何数量的飞机制造商和主要系统分包商;第三方可以包括但不限于任何数量的销售商、分包商和供应商;并且运营商可以是航空公司、租赁公司、军事实体、服务机构等等。如图17所示,由说明性方法1100生产的飞机1200可以包括机体1202(例如具有包括碳纳米材料复合片材202的复合蒙皮面板)和多个高级系统1204和内部1206。高级系统1204的实例包括推进系统1208、电气系统1210、液压系统1212和环境系统1214中的一个或多个。可以包括任意数量的其它系统。尽管示出了航空航天实例,但是本文公开的原理可以应用于其他工业,例如汽车工业、海洋工业等。在制造和维护方法1100的任何一个或多个阶段期间可以使用本文示出或描述的装置和方法。例如,对应于部件或子组件制造(框1106)的部件或子组件可以以类似于飞机1200在使用中(框1112)时生产的部件或子组件的方式来装配或制造。另外,在生产阶段(框1108和1110),可以利用装置、方法或它们的组合的一个或多个实例,例如通过增加飞机1200的有效EMI屏蔽和/或防雷保护。类似地,例如但不限制地,在飞机1200使用时(框1112)以及维护和维修阶段(框1114),可以利用装置、方法或它们的组合的一个或多个实例。虽然已经示出并描述了所公开的碳纳米材料层压件、复合结构及其制造方法的各种实施例,但本领域技术人员在阅读说明书之后可以想到多种修改。本申请包括此类修改并且仅受到权利要求范围的限制。当前第1页1 2 3 当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1