一种高强塑性混晶结构铝‑镁合金的制备方法与流程

文档序号:12858350阅读:422来源:国知局
一种高强塑性混晶结构铝‑镁合金的制备方法与流程

本发明涉及金属材料领域,特别是涉及一种高强塑性混晶结构铝-镁合金的制备方法。



背景技术:

铝-镁合金密度低、比强度高、具有良好的加工性能、抗腐蚀性能、焊接性能和抗疲劳强度,且价格低廉。高强度铝-镁合金成为替代传统钢铁零部件的热门候选材料,在航空航天、交通运输和建筑结构等领域有广泛的应用前景。然而,传统变形铝-镁合金的强度很难与钢材媲美。利用大变形技术可以大幅度提高铝-镁合金的强度,近年来引起了人们的广泛关注。目前,高强度非热处理铝-镁合金的制备方法主要有:高压扭转、等通道角挤压、机械冶金法等。然而,高强度铝-镁合金通常塑性较低,严重限制了其工业应用。本发明给出一种高强塑性混晶结构铝-镁合金的制备方法,获得的纳米晶、超细晶、微米晶混合共存的混晶结构有利于塑性变形过程的位错运动、积累和储存,有效防止变形过程中局部塑性应变集中,显著提高了材料的塑性变形能力。本发明方法简单、可靠,能够制备较大尺寸样品、易于推广应用,非常适合于批量生产高强塑性混晶铝-镁合金板材。该发明方法亦可适用于镁合金、钛合金等难变形金属材料。



技术实现要素:

本发明目的是提供一种工艺简单、高效,且易于批量生产和推广应用的高强塑混晶结构(纳米晶、超细晶、微米晶共存)铝-镁合金的制备方法,显著提高了不可时效硬化铝-镁合金的强度和塑性。

一种高强塑性混晶结构铝-镁合金的制备方法,该制备方法包括均质固溶处理、中间退火辅助大压下量控制轧制两个步骤,通过均质化处理、中间退火辅助大压下量控制轧制,促进微观非均匀变形及部分再结晶,制备出纳米晶/超细晶与微米晶共存的混晶结构高强塑铝-镁合金,该制备方法包括以下步骤:

(1)高温均质固溶处理:将固溶镁含量大于5%的铸造铝-镁合金进行450-600摄氏度保温100-300分钟的均质化热处理,消除铸态组织中元素宏观偏析并实现合金元素高固溶化;

(2)中间退火辅助大压下量控制轧制:将上述均质态样品进行大压下量控制轧制变形,其中每道次压下量大于等于50%,样品表面无明显微裂纹产生;将轧制变形样品置于空气加热炉或盐浴炉中,在200-400摄氏度保温1-45分钟,消除内应力,形成回复或再结晶组织;然后继续进行压下量大于等于50%的轧制加工。

反复进行步骤(2),直至样品的总压下量达到75%以上,获得同时具有高强度和高塑性的混晶结构铝-镁合金板材。

优选的,步骤(1)所述均质热处理温度为480-580摄氏度,保温时间为150-250分钟。

优选的,步骤(2)所述每道次压下量为50-70%,总压下量为75%以上;所述中间退火温度为250-350摄氏度,保温时间为5-30分钟。

采用以上技术方案的有益效果是:本发明提供一种能够制备大尺寸板材、工艺简单、高效,适合于批量生产具有高强塑性混晶结构铝-镁合金的制备方法,主要具有以下优点:

(1)本发明制备的铝-镁合金所含合金元素仅有两种,有利于回收再利用;本发明制备的铝-镁合金中所加入的镁元素含量较高,有利于促进微观非均匀变形和位错繁殖、演化及再结晶动力学;

(2)中间退火辅助大压下量控制轧制能有效减少材料内应力,有利于增加变形量获得混晶中的超细晶/纳米晶;同时,也利于提高材料的变形能力及成品率;

(3)本发明中混晶结构组织与传统粗晶组织相比,晶界强化和位错强化明显增强,显著提高了材料的强度;与单一纳米晶或超细晶组织相比,明显有利于塑性变形过程的位错滑移、积累和储存,显著提高了材料的加工硬化和塑性变形能力;

(4)该制备方法适合于批量生产高强塑性铝-镁合金,突破了“不可热处理铝合金强塑性难以同时提高”传统认识。

(5)该发明方法亦可适用于镁合金、钛合金等难变形轻合金材料。

附图说明:

图1为高强塑性al-5mg合金的混晶结构组织的ebsd照片

图2为高强塑性al-8mg合金的混晶结构组织的tem照片

具体实施方式

本发明的制备方法具体包括为:首先通过高温均质化处理消除铸态组织中元素宏观偏析并实现合金元素高固溶化,然后通过中间退火辅助大压下量控制轧制,引入高密度位错并细化晶粒;该方法制备的铝-镁合金组织中纳米晶/超细晶与微米晶混杂共存;与单一纳米晶或超细晶结构铝–镁合金相比,该混晶铝–镁合金具有高强塑性。

实施例一

(1)高温均质化处理:将铸造al-5mg合金进行580摄氏度保温180分钟的均质化热处理,消除铸态组织中元素宏观偏析并实现合金元素高固溶化;

(2)中间退火辅助大压下量控制轧制:将均质热处理后的al-5mg合金加工成一定尺寸的试样,然后进行单道次压下量为60%的轧制变形,样品表面没有微裂纹产生;将变形样品置于空气加热炉或盐浴炉中,在320摄氏度保温10分钟,消除内应力,形成回复或再结晶组织,然后将样品放入凉水中降至室温;对中间退火后的样品进行室温下压下量为70%的轧制变形,即总压下量达到88%,样品表面没有明显微裂纹产生。

轧制试样组织中超细晶粒小于300nm,粗大晶粒尺寸大于20m。材料的屈服强度为206mpa,抗拉强度为412mpa,断裂延伸率为12%。

实施例二

(1)高温均质化处理:将铸造al-7mg合金进行550摄氏度保温180分钟的均质化热处理,消除铸态组织中元素宏观偏析并实现合金元素高固溶化;

(2)中间退火辅助大压下量控制轧制:将均质热处理后的al-7mg合金加工成一定尺寸的试样,然后进行单道次压下量为70%的轧制变形,样品表面没有微裂纹产生;将变形样品置于空气加热炉或盐浴炉中,在350摄氏度保温5分钟,消除内应力,形成回复或再结晶组织,然后将样品放入凉水中降至室温;对中间退火后的样品进行室温下压下量为70%的轧制变形,即总压下量达到91%,样品表面没有明显微裂纹产生。

材料的屈服强度为397mpa,抗拉强度为553mpa,断裂延伸率大于等于10%。

实施例三

(1)高温均质化处理:将铸造al-7mg-0.2sc合金铸锭进行550摄氏度保温180分钟的均质化热处理,消除铸态组织中元素宏观偏析并实现合金元素高固溶化;

(2)中间退火辅助大压下量控制轧制:将均质热处理后的al-7mg-0.2sc合金加工成一定尺寸的轧制试样,然后进行两道次轧制变形,每道次压下量为50%,样品表面没有微裂纹产生;将轧制后的样品置于空气加热炉或盐浴炉中,在350摄氏度保温10分钟,消除内应力,然后将样品放入凉水中降至室温;对中间退火后的样品进行室温下进行单道次压下量为60%的轧制变形,即总压下量达到90%,样品表面没有明显微裂纹产生。

轧制试样的屈服强度为383mpa,抗拉强度为552mpa,断裂延伸率为17%。

实施例四

(1)高温均质化处理:将铸造al-8mg合金进行500摄氏度保温180分钟的均质化热处理,消除铸态组织中元素宏观偏析并实现合金元素高固溶化;

(2)中间退火辅助大压下量控制轧制:将均质热处理后的al-8mg合金加工成一定尺寸的试样,然后进行单道次压下量为50%的轧制变形,样品表面没有微裂纹产生;将变形样品置于空气加热炉或盐浴炉中,在400摄氏度保温5分钟,消除内应力,形成回复或再结晶组织,然后将样品放入凉水中降至室温;对中间退火后的样品进行室温下压下量为50%的轧制变形,即总压下量达到75%,样品表面没有明显微裂纹产生。

轧制试样组织中超细晶粒小于500nm,粗大晶粒尺寸大于20μm。材料的屈服强度为350mpa,抗拉强度为530mpa,断裂延伸率为15%。

混晶结构组织中粗大微米晶粒与亚微米晶粒超细晶粒混杂共存,且超细晶粒分布在粗大微米晶粒的晶界周围;该多尺度晶粒分布组织中超细晶提供了强晶界强化作用,粗大微米晶粒为位错的滑移和储存提供了足够的空间,能提高材料的加工硬化能力;此外,高固溶元素含量及高位错密度能有效强化材料;该方法制备的混晶铝-镁合金与传统单一超细晶铝-镁合金相比具有明显增强的加工硬化能力的及塑性,而与粗晶铝-镁合金相比具有明显提高的强度。

将al-5mg、al-7mg、al-8mg、al-7mg-0.2sc、al-7mg-0.4sc等铝-镁合金,按照本发明内容制备成高强塑性宏观形貌良好混晶铝-镁合金板材,主要制备参数及见下表。

表1主要铝镁合金制备参数及相应性能

注:变形压下量及中间退火过程中1p、2p、3p表示第一、二、三道次,50、60、70表示压下量。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1