半导体材料的制备方法与流程

文档序号:16816872发布日期:2019-02-10 14:46阅读:1796来源:国知局
半导体材料的制备方法与流程

本发明涉及一种半导体材料的制备方法,特别涉及一种以缺陷石墨烯为衬底直接生长半导体材料的制备方法,属于半导体制备工艺技术领域。



背景技术:

2004年,英国科学家发现了由碳原子以sp2杂化连接的单原子层构成的新型二维原子晶体-石墨烯,其基本结构单元为有机材料中最稳定的苯六元环,是目前最理想的二维纳米材料。单层石墨烯是指只有一个碳原子层厚度的石墨,c-c间依靠共价键相连接而形成蜂窝状结构。在石墨烯中,每个碳原子通过很强的σ键(自然界中最强的化学键)与其他3个碳原子相连接,这些很强的c-c键致使石墨烯片层具有及其优异的力学性质和结构刚性。碳原子有4个价电子,每个碳原子都贡献一个未成键的π电子,这些π电子与平面成垂直的方向可形成π轨道,π电子可在晶体中自由移动,赋予石墨烯良好的导电性。但这些面外离位的π键与相邻层内的π键的层间相互作用远远小于一个σ键,即片层间的作用力较弱,因此石墨间很容易互相剥离,形成薄的石墨片。

在石墨烯上外延生长半导体材料,可以利用石墨烯层间比较弱范德华力,实现半导体材料的机械剥离并转移到任意衬底上,从而实现柔性的、可转移的光电子器件。然而,由于石墨烯表面缺乏悬挂键,直接外延生长存在困难,而且生长的半导体材料存在大量层错、位错等,缺陷密度远高于可应用于常规器件的材料。另一方面,现有的石墨烯基本都是在负载金属催化剂的基底上生长形成,在作为衬底应用时,需要与金属催化剂分离并转移出来使用,但在转移过程中不可避免的会遭受污染,从而导致以其作为衬底生长的半导体材料存在质量问题。



技术实现要素:

本发明的主要目的在于提供一种半导体材料的制备方法,以克服现有技术的不足。

为实现前述发明目的,本发明采用的技术方案包括:

本发明实施例提供了一种半导体材料的制备方法,其包括:

以乙烯和/或乙炔为碳源,采用化学气相沉积法于未负载金属催化剂的基底上生长形成含表面缺陷的石墨烯,以及,

以形成在所述基底上的、含表面缺陷的石墨烯作为衬底,并直接于所述衬底上外延生长半导体材料。

进一步的,所述半导体材料包括gan、aln、inn、zno或sic,但不限于此。

进一步的,所述化学气相沉积法中采用的反应温度为800~1200℃。

在一些较为具体的实施方案中,所述方法包括:以乙烯为碳源,采用化学气相沉积法,在1000~1200℃的反应温度下,于所述基底上直接生长形成含表面缺陷的石墨烯。

在一些较为具体的实施方案中,所述方法包括:以乙炔为碳源,采用化学气相沉积法,于800~1000℃的反应温度下,于所述基底上直接生长形成含表面缺陷的石墨烯。

与现有技术相比,本发明采用化学气相沉积方法直接制备含大量缺陷的石墨烯,无需对石墨烯表面进行额外化学处理,可以提高其表面化学活性,获得具有大尺寸、均匀分布大量缺陷的石墨烯,继而直接以所述石墨烯作为衬底生长半导体材料,而无需进行石墨烯的转移等操作,可以有效避免污染,利于半导体材料的外延生长,并获得高品质的半导体材料。

附图说明

图1是本发明一典型实施案例中的石墨烯单个缺陷形成的示意图。

图2是本发明实施例1中以乙烯作为碳源于蓝宝石基底上生长形成的石墨烯的拉曼图。

具体实施方式

鉴于现有技术中的不足,本案发明人经长期研究和大量实践,得以提出本发明的技术方案。如下将对该技术方案、其实施过程及原理等作进一步的解释说明。

本发明实施例提供了一种半导体材料的制备方法,包括:

以乙烯和/或乙炔为碳源,采用化学气相沉积法于未负载金属催化剂的基底上生长形成含表面缺陷的石墨烯,以及,

以形成在所述基底上的、含表面缺陷的石墨烯作为衬底,并直接于所述衬底上外延生长半导体材料。

进一步的,所述半导体材料包括gan、aln、inn、zno或sic,但不限于此。

进一步的,所述化学气相沉积法中采用的反应温度为800~1200℃。

进一步的,所述化学气相沉积法中采用的反应气氛包括乙烯或乙炔、氢气、氩气中的任意一种或两种以上的组合,但不限于此。

优选的,所述反应气氛中乙烯或乙炔的体积百分比为1~10%。

优选的,所述反应气氛中氢气的体积百分比为0~20%。

进一步的,所述化学气相沉积法中采用的反应压力为0.5~1个大气压。

在一些较为具体的实施方案中,所述方法包括:以乙烯为碳源,采用化学气相沉积法,在1000~1200℃的反应温度下,于所述基底上直接生长形成含表面缺陷的石墨烯。

在一些较为具体的实施方案中,所述方法包括:以乙炔为碳源,采用化学气相沉积法,于800~1000℃的反应温度下,于所述基底上直接生长形成含表面缺陷的石墨烯。

更进一步的,所述基底包括蓝宝石、碳化硅、氮化铝/蓝宝石模板、石英和硅基底中的任意一种,但不限于此。

进一步的,所述石墨烯表面的缺陷密度为107~1010cm-2

进一步的,所述石墨烯为多层石墨烯。

优选的,所述石墨烯的层数为3~10层。

本发明中无需采用金属催化剂等催化生长石墨烯,而完全是通过热分解乙烯、乙炔等碳源,使碳沉积在衬底上。该沉积过程是一种碳源分子吸附,迁移,脱附的过程,通过使吸附的量大于脱附的量,从而实现石墨烯在衬底上的生长。

更具体的讲,本发明中采用的碳源乙烯和/或乙炔的裂解温度相对甲烷较低,并且分解后的碳源含有c=c双键;因此,生长的石墨烯表面存在大量缺陷(主要是晶界缺陷,密度可达107~1010cm-2),这些缺陷位置是半导体材料成核的主要位置,有利于半导体材料外延成核。

本发明采用化学气相沉积方法直接制备含大量缺陷的石墨烯,无需对石墨烯表面额外做化学处理,可以提高其表面化学活性,获得具有大尺寸、均匀分布大量缺陷的石墨烯,继而,通过将获得的石墨烯直接作为衬底生长半导体材料,不需要转移,可以避免在衬底转移过程中引入污染而造成生长的半导体材料产生宏观缺陷等问题。

以下结合若干实施例及附图对本发明的技术方案作进一步的解释说明。

实施例1:以蓝宝石为衬底,乙烯为碳源,利用化学气相沉积法在衬底上生长石墨烯,具体如下:

首先将外延级蓝宝石衬底放入生长腔室中,将腔室内气压调整为约1pa,去除本底氧气,然后通入氩气900sccm,通过控制干泵抽速从而控制腔室气压为5x104pa,将衬底温度升高到1200℃,保温约10分钟,在此过程中始终保持腔室气压不变。然后通5sccm氢气2分钟,用于清洗衬底表面,再通入100sccm乙烯生长石墨烯,生长时间为5分钟;生长完成后,停止通氢气和乙烯,快速降温至室温,保持氩气不变,保持腔内气压不变,最终在蓝宝石上获得含大量缺陷的石墨烯。请参阅图2是以乙烯作为碳源于蓝宝石基底上生长形成的石墨烯的拉曼图,其中三角符号标示的峰是蓝宝石的峰,其中d峰的强度比g峰强度还大,说明存在大量缺陷。

以获得的生长在蓝宝石基底上的缺陷石墨烯为衬底,采用氢化物气相外延方法生长gan厚膜,具体如下:

首先将衬底放入gan外延设备,加热衬底到约1040℃,加热过程中仅通氮气,加热到1040℃后,通氢气保温5分钟,用于清洗衬底表面多余的碳,然后通入nh3气和hcl气体,比例约为20∶1倍,通入适量氮气和氢气,比例约为1∶1,直接生长gan,生长约20微米gan膜后,gan的表面就比较平整,无孔洞。

对比例1:以金属铜箔为衬底,乙烯为碳源,利用化学气相沉积法在其上生长石墨烯,具体如下:

首先将金属铜箔分别用丙酮、酒精、去离子水超声清洗3分钟,然后用高纯氮气吹干,将铜箔放入生长腔室中,将腔室气压调整为1pa,去除本底氧气,然后通入氩气900sccm,通过控制干泵抽速从而控制腔室压力为5x104pa,将衬底温度升高到800℃,保温约10分钟,在此过程中始终保持腔室气压不变,然后通5sccm氢气2分钟,用于清洗衬底表面,再通50sccm乙烯生长石墨烯,生长时间为5分钟,生长完成后,停止通氢气和乙烯,快速降温至室温,保持氩气不变,保持腔压不变,最终在金属铜箔上获得石墨烯。

将石墨烯从金属铜箔上剥离,并作为衬底生长半导体材料。再以该石墨烯为衬底,采用氢化物气相外延方法生长gan厚膜,具体如下:

首先将铜箔上的石墨烯贴上硅片,然后采用旋涂技术,在表面涂上pmma,然后在40℃加热条件下烘干pmma,如此反复3~5次。然后将铜箔上石墨烯放入三氯化铁溶液中,铜箔与三氯化铁发生反应,溶解到溶液中,在溶液表面仅漂浮涂有pmma的石墨烯;然后将涂有pmma的石墨烯取出,放到蓝宝石上晾干,最后通过丙酮蒸汽去除pmma,获得在蓝宝石上的石墨烯;转移好石墨烯后,将石墨烯放入gan外延设备,加热衬底到1040℃,加热过程中仅通氮气,加热到1040℃后,通氢气保温5分钟,用于清洗衬底表面多余的碳,然后通入nh3气和hcl气体,比例约为20∶1倍,通入适量氮气和氢气,比例约为1∶1,直接生长gan,生长约20微米gan膜后,gan表面始终有大量孔洞,无法生长成平整薄膜。

其原因可能在于:(1)铜箔上生长石墨烯相对缺陷少,不利于gan成核;(2)三氯化铁溶液中的杂质,pmma的残留对外延生长都有影响,造成表面存在孔洞。

实施例2:以蓝宝石为衬底,乙炔为碳源,利用化学气相沉积法在衬底上生长石墨烯,具体如下:

首先将外延级蓝宝石衬底放入生长腔室中,将腔室内气压调整为1pa,去除本底氧气,然后通入氩气900sccm,通过控制干泵抽速从而控制腔室气压为5x104pa,将衬底温度升高到1000℃,保温约10分钟,在此过程中始终保持腔室气压不变,然后通5sccm氢气2分钟,用于清洗衬底表面,再通入100sccm乙炔生长石墨烯,生长时间为5分钟;生长完成后,停止通氢气和乙炔,快速降温至室温,保持氩气不变,保持腔内气压不变,最终在蓝宝石衬底上获得含大量缺陷的石墨烯。

参照实施例1的方式,以获得的缺陷石墨烯作为衬底直接生长半导体材料,可以获得表面比较平整,无孔洞的gan等。

对比例2:以金属铜箔为衬底,乙炔为碳源,利用化学气相沉积法在其上生长石墨烯,具体如下:

首先将金属铜箔分别用丙酮、酒精、去离子水超声清洗3分钟,然后用高纯氮气吹干,将铜箔放入生长腔室中,控制腔室内气压为1pa,去除本底氧气,然后通入氩气900sccm,通过控制干泵抽速从而控制腔室压力为5x104pa,将衬底温度升高到600℃,保温约10分钟,在此过程中始终保持腔室气压不变。然后通5sccm氢气2分钟,用于清洗衬底表面,再通入50sccm乙烯生长石墨烯,生长时间为5分钟;生长完成后,停止通氢气和乙炔,快速降温至室温,保持氩气不变,保持腔压不变,最终在金属铜箔上获得石墨烯。

参照对比例1的方式,将石墨烯从金属铜箔上剥离,并作为衬底生长半导体材料,但所获gan表面始终有大量孔洞,而且无法生长成平整薄膜。

需说明的是,前述实施例仅是对本发明的示范性说明,其中所采用的各种反应参与物及工艺条件均是较为典型的范例,但经过本案发明人大量试验验证,于前文所列出的其它类型的反应参与物及其它工艺条件也均是适用的,并也均可达成本发明所声称的技术效果。

应当理解,上述实施例仅为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1