金属粉烧结浆料及其制造方法、以及导电性材料的制造方法与流程

文档序号:15943467发布日期:2018-11-14 03:37阅读:524来源:国知局

本发明涉及金属粉烧结浆料及其制造方法、以及导电性材料的制造方法。

背景技术

以往,在以发光元件作为光源的发光装置、功率半导体装置中,在安装构件上配置功率半导体元件等时,已知有使用将金属粒子分散于有机溶剂等分散介质中的金属粉烧结浆料的做法。在安装构件与功率半导体元件等之间配置金属粉烧结浆料,利用200℃左右的加热将金属粉烧结浆料中的金属粒子之间烧结,由此进行接合。

另外,作为发光元件与安装构件的接合方法,已知有将包含树脂的粘接剂、使用了共晶的无铅共晶焊料配置于发光元件与安装构件之间的方法。

但是,由于无铅焊料通常熔点为300℃以上,因此有可能因高温加热所致的构件劣化、接合后冷却时的发光元件与安装构件的热膨胀系数的差所致的应力而产生构件损伤。因而,在使用无铅焊料的方法中,也会有可以使用的安装构件的选择项窄的情况。

在金属粉烧结浆料中,例如在作为金属粉使用银的情况下,成为理论上的耐热极限的银的熔点约为962℃,然而利用200℃左右的加热进行接合。因而,金属粉烧结浆料在所得的发光装置的接合温度及耐热性的方面,比使用了共晶的无铅共晶焊料更优异。

另外在金属粉烧结浆料中,在作为金属粉不包含金的情况下,比发光元件的安装中经常使用的金锡共晶焊料更廉价。

金属粉烧结浆料中也有包含树脂的浆料,然而从因烧结而需要高温的方面、树脂成分或树脂的挥发成分污染周围构件的方面考虑,不包含树脂而以挥发性有机溶剂作为分散介质的浆料优异。

使用金属粉烧结浆料的方法与使用包含树脂的粘接剂的方法相比,不发生树脂劣化,因此在所得的发光装置的耐热性、散热性的方面优异。

作为金属粉烧结浆料,例如已知有含有平均粒径为3μm以下的球形cu粉末、纵横尺寸比为3以上并且平均粒径为10μm以上的扁平cu粉末、玻璃粉、和由在用于烧结的热处理工序中不熔融的无机材料构成的平均粒径为30μm以上的球形无机粉末、且所述无机粉末包含陶瓷系材料的浆料(例如日本专利第5962673号)。另外,还已知有包含一次粒子的个数平均粒径为40nm~400nm的银微粒、溶剂、在使用了差示扫描量热的测定中得到的dsc图中的吸热峰的极大值处于80℃到170℃的范围的热塑性树脂粒子的导电性组合物(例如国际公开第2016/063931号)。



技术实现要素:

将金属粉烧结浆料烧结后得到的导电性材料由于金属之间形成网络,因此弹性模量低于大块金属。但是,此种导电性材料的弹性模量高于银浆料等包含树脂的导电性粘接剂。因此,在使用此种导电性材料将线膨胀系数不同的发光元件与安装构件接合的情况下,即使施加热应力,弹性模量也很高而难以变形,因而会引起由裂纹、断裂造成的接合强度的降低。

因而,本实施方式提供提高了对于热应力的耐久性的金属粉烧结浆料及其制造方法、以及使用了该金属粉烧结浆料的导电性材料的制造方法。

本实施方式的金属粉烧结浆料作为主成分包含平均粒径(中值粒径)为0.3μm~5μm的银粒子,还包含cv值(标准偏差/平均值)小于5%的无机间隔件粒子,实质上不包含树脂。

本实施方式的金属粉烧结浆料的制造方法包括将cv值(标准偏差/平均值)小于5%的无机间隔件粒子与平均粒径(中值粒径)为0.3μm~5μm的银粒子混合,但是在实质上不与树脂混合。

本实施方式的导电性材料的制造方法包括煅烧所述金属粉烧结浆料的工序。

由此,可以提供提高了对于热应力的耐久性的金属粉烧结浆料及其制造方法、以及使用了该金属粉烧结浆料的导电性材料的制造方法。

具体实施方式

以下,对本实施方式的金属粉烧结浆料、金属粉烧结浆料的制造方法、以及导电性材料及导电性材料的制造方法进行说明。

本实施方式的金属粉烧结浆料作为主成分包含平均粒径(中值粒径)为0.3μm~5μm的银粒子,还包含cv值(标准偏差/平均值)小于5%的无机间隔件粒子,实质上不包含树脂。所谓cv值(coefficientofvariation),是表示粒径的均匀性、相对于平均粒径而言的标准偏差的比例的值。

数1

计算式:变异系数(cv)%=(标准偏差÷粒径平均值)×100

另外,本实施方式的金属粉烧结浆料的制造方法包括将cv值(标准偏差/平均值)小于5%的无机间隔件粒子与平均粒径(中值粒径)为0.3μm~5μm的银粒子混合,但是在实质上不与树脂混合。

在本实施方式的金属粉烧结浆料中,cv值(标准偏差/平均值)小于5%的无机间隔件粒子为了防止芯片接合时的浆料的压碎,能够较厚地形成浆料,其结果是,可以减小由热应力造成的变形时的变形率,抑制强度的降低,由此能够制造可靠性高的半导体装置等。

也将半导体元件称作芯片。半导体元件除了可以使用lsi、ic等半导体以外,还可以使用led、ld等半导体发光元件。半导体元件可以适用于发热量大的被称作功率半导体的半导体元件、在热以外还放出光的半导体发光元件中。

[银粒子]

本实施方式的金属粉烧结浆料中所用的金属粒子的主成分为银粒子。即意味着,金属粒子中的所述银粒子的含有率例如为70质量%以上,优选为80质量%以上,更优选为90质量%以上。需要说明的是,在银粒子中,例如也可以包含10质量%以下、优选为7质量%以下、更优选为5质量%以下的氧化银粒子。

该银粒子可以是平均粒径(中值粒径)为1种的粒子,也可以混合使用2种以上的粒子。银粒子的平均粒径(中值粒径)为0.3μm~5μm,优选为1.0μm~4μm,更优选为1.5μm~3.5μm。由此可以减小电阻值。银粒子以外的金属粒子也可以使用平均粒径(中值粒径)为0.1μm~15μm的粒子,优选为0.3μm~10μm,更优选为0.3μm~5μm。

所述银粒子优选粒径小于0.3μm的粒子的含量为5质量%以下,更优选为4质量%以下。

所述银粒子优选粒径为0.5μm以下的粒子的含量为15质量%以下,更优选为10质量%以下。

所述银粒子的平均粒径(中值粒径)可以利用激光衍射法测定。需要说明的是,所谓平均粒径(中值粒径),是指根据粒度分布求出的累计堆积频率为50%的值。以下,只要没有特别指出,平均粒径就是指中值粒径。

另外,所述银粒子的比表面积为0.4m2/g~1.5m2/g,优选为0.6m2/g~0.9m2/g,更优选为0.66m2/g~0.74m2/g。由此可以增大相邻的银粒子的接合面积,并且由于由银粒子的添加造成的粘度升高小,因此可以在浆料中包含大量银粒子。由此可以抑制空隙的产生,获得高接合强度。作为金属粉烧结浆料的主原料的银粒子的比表面积可以利用bet的方法测定。

所述银粒子的形态没有限定,例如可以举出球状、扁平的形状、薄片状、多面体等,优选薄片状。这是因为,通过制成薄片状,与相邻的银粒子的接触面积变大,电阻下降。所述银粒子的形态优选对于平均粒径为给定的范围内的银粒子是均等的。所述银粒子在混合平均粒径为2种以上的粒子的情况下,各个平均粒径的银粒子的形态可以相同也可以不同。例如在混合平均粒径为3μm的银粒子与平均粒径为0.3μm的银粒子这2种的情况下,平均粒径为0.3μm的银粒子可以为球状,平均粒径为3μm的银粒子可以为扁平的形状。

本实施方式的金属粉烧结浆料作为主成分包含银粒子。本实施方式的金属粉烧结浆料作为银粒子以外的金属粒子,例如可以使用金、铜、铂、钯、铑、钌、铱及锇的金属粒子的1种以上。

所述银粒子的含量优选相对于浆料为70质量%以上,更优选为85质量%以上,进一步优选为90质量%以上。这是因为,如果所述银粒子的含量为给定的范围,则所得的导电性材料的接合强度变高。

[无机间隔件粒子]

本实施方式的金属粉烧结浆料包含cv值(标准偏差/平均值)小于5%的无机间隔件粒子。所述无机间隔件粒子优选包含二氧化硅。由于所述无机间隔件粒子包含无机物,因此在所述金属粉烧结浆料的煅烧时发生热分解的可能性低。另外,由于所述无机间隔件粒子包含无机物,因此在所述金属粉烧结浆料的煅烧时,不会产生阻碍烧结的挥发成分。

为了作为所述无机间隔件粒子发挥作用,优选粒径均匀。如果粒径均匀,则在包含小的粒子的情况下,可以抑制配置于所述金属粉烧结浆料上的芯片的倾斜、所述金属粉烧结浆料的烧结体的厚度的不均,可以防止向芯片表面的安装工序时的高度设定范围外所致的不佳状况、对热应力的耐久性不足。所述无机间隔件粒子的粒径的均匀性以cv值(标准偏差/平均值)计小于5%,优选小于4%,更优选小于3%。cv值越小,则意味着所述无机间隔件粒子的粒径的不均越小。所述无机间隔件粒子的cv值(标准偏差/平均值)例如可以利用分辨率优异的库尔特计数器(コールターカウンター)测定。

所述无机间隔件粒子的平均粒径(中值粒径)优选为10~60μm,更优选为10~50μm,进一步优选为20μm~40μm。这是因为,如果所述无机间隔件粒子的平均粒径(中值粒径)为10μm以上,则可以制成适度的厚度的所述金属粉烧结浆料,因而优选。另外,如果所述无机间隔件粒子的平均粒径(中值粒径)为60μm以下,则可以防止作为间隔件发挥作用的比例低、所述金属粉烧结浆料的烧结体的强度降低。

所述无机间隔件粒子的平均粒径(中值粒径)可以使用利用激光衍射散射法求出的粒度分布进行测定。需要说明的是,所谓平均粒径(中值粒径),是指根据粒度分布求出的累计堆积频率为50%的值。以下,只要没有特别指出,平均粒径就是指中值粒径。

所述无机间隔件粒子的添加量只要所述金属粉烧结浆料中的无机间隔件粒子的浓度是相对于所用的芯片面积(mm2)达到3pcs以上的添加量即可,优选达到20pcs以上的添加量,更优选达到100pcs以上的添加量。这是因为,如果所述无机间隔件粒子的浓度为3pcs/芯片面积以上,则可以抑制配置于所述金属粉烧结浆料上的芯片倾斜、所述金属粉烧结浆料的烧结体的厚度的不均的产生。此处“pcs”是指粒子的个数。另外,所述无机间隔件粒子的添加量优选为使所述金属粉烧结浆料中的所述无机间隔件粒子的浓度达到10体积%以下的添加量,更优选为达到5体积%以下的添加量。这是因为,如果所述金属粉烧结浆料中的所述无机间隔件粒子的浓度为10体积%以下,则可以防止所得的烧结体的强度降低。

上述的无机间隔件粒子的浓度可以重新计算为重量比后使用。具体而言,已知混合材料的比重可以利用下述的式1求出。

1/((材料a重量比/材料a比重)+(材料b重量比/材料b比重)+…)…[式1]

此外,在使用间隔件的情况下,认为金属粉烧结浆料的厚度相当于间隔件的直径。因此,可以利用下述的式2计算芯片下浆料体积。

芯片下浆料体积=芯片面积×间隔件直径…[式2]

通过在芯片下浆料体积上乘以利用式1求出的浆料比重,就可以计算芯片下浆料重量,因此利用下述的式3求出芯片下间隔件总体积。

芯片下间隔件总体积

=芯片下浆料体积×浆料比重×(间隔件重量比/间隔件比重)…[式3]

用于上限浓度设定的间隔件体积%可以利用以下的式4计算。

粒子浓度(体积%)=芯片下间隔件总体积×100/芯片下浆料体积…[式4]

此外,间隔件粒子体积可以利用下述的式5根据粒径来计算。

间隔件粒子体积=4×π×(粒径/2)×(粒径/2)×(粒径/2)/3…[式5]

利用下述的式6求出用于下限浓度设定的粒子浓度(pcs/芯片面积)。

粒子浓度(pcs/芯片面积)=芯片下间隔件总体积/间隔件粒子体积…[式6]

上述的计算是根据间隔件重量比求出粒子浓度,而如果使计算反过来,则可以求出与粒子的任意浓度相当的间隔件重量比。

[表面活性剂]

在本实施方式的金属粉烧结浆料中也可以包含阴离子性的表面活性剂。利用阴离子性所致的电场,对通常具有负的表面电位的银或金之类的电极,阴离子性的表面活性剂发挥由电场所致的耐渗出性,由此可以改善向基板底面的泄漏或污染所致的引线接合不良,能够实现稳定化的电子部件的制造。

所述表面活性剂优选挥发性高的物质。具体而言优选在tg-dta(差热·热重量同时分析)中从室温附近以每分钟2℃升温时、350℃时的残渣相对于初始质量为20质量%以下的物质,更优选为5质量%以下的物质。这是因为,如果所述残渣为20质量%以下,则煅烧时挥发残渣不会抑制烧结,因此接合强度提高。

所述阴离子性表面活性剂优选为包含羧基、或其盐的羧酸型,更优选为以下述式(i)表示的羧酸型。

r1o(ch2ch(r2)o)n1ch2coor3(i)

[式中,r1为碳原子数7以上的具有直链或支链的烷基,r2为-h或-ch3或-ch2ch3、-ch2ch2ch3的任意一种,r3为-h或碱金属,n1为2~5的范围。]

另外,所述阴离子性表面活性剂更优选为以下述式(ii)表示的羧酸型。

r11-c(o)n(r12)(ch2)n2coor13(ii)

[式中,r11为碳原子数7以上的具有直链或支链的烷基,r12为-h或-ch3或-ch2ch3、-ch2ch2ch3的任意一种,r13为-h、nh+(c2h4oh)3或碱金属,n2为1~5的范围。]

另外,所述阴离子性表面活性剂更优选为以下述式(iii)表示的羧酸型。

r21-ch=ch-(ch2)n3coor22(iii)

[式中,r21为碳原子数7以上的具有直链或支链的烷基,r22为-h或碱金属,n3为1~10的范围。]

另外,所述阴离子性表面活性剂更优选为以下述式(iv)表示的羧酸型。

r31-coor32(iv)

[式中,r31为由oh或coor33(r33为碱金属)任意取代了的碳原子数7以上的具有直链或支链的烷基或烷氧基,r32为-h或碱金属。]

另外,所述阴离子性表面活性剂优选为包含磺基、或其盐的磺酸型,更优选为以下述式(v)表示的磺酸型。

r41-so3r42(v)

[式中,r41为由oh或coor43(r43为烷基)任意取代了的碳原子数7以上的具有直链或支链的烷基、

由oh或coor43(r43为烷基)任意取代了的碳原子数7以上的具有直链或支链的芳烷基、或

由oh或coor43(r43为烷基)任意取代了的碳原子数7以上的具有直链或支链的烯基、或者

芳烷基,r42为-h或碱金属。]

另外,所述阴离子性表面活性剂优选为包含羧基或其盐和磺基或其盐双方的羧酸-磺酸型,更优选为以下述式(vi)表示的羧酸-磺酸型。

化1

[式中,r51为碳原子数7以上的具有直链或支链的烷氧基或r54-conh-(r54为碳原子数7以上的具有直链或支链的烷基),r52及r53为-h或碱金属,n5为1~8的范围,n6为0~1的范围,n7为0~1的范围。]

另外,所述阴离子性表面活性剂优选为作为磷酸酯结构或其盐的磷酸酯型,更优选为以下述式(vii)表示的磷酸酯型。

r61-o-po(or62)or63(vii)

[式中,r61及r62为具有直链或支链的烷基,r63为-h或碱金属。]

所述表面活性剂的含量优选相对于本实施方式的金属粉烧结浆料以10质量%为上限。另外,所述表面活性剂的含量优选相对于所述金属粉烧结浆料为2质量%以下。这是因为,可以利用煅烧使之完全地挥发。

所述表面活性剂优选在25℃时为液状。这是因为,由于所述浆料中的固体成分得到抑制,因此能够包含大量的银粉,在所得的烧结体中难以产生空隙。

[有机溶剂]

本实施方式的金属粉烧结浆料优选作为分散介质包含有机溶剂。这是因为,通过将银粒子均匀地分散于有机溶剂中,能够利用印刷、点胶之类的方法实现有效并且高品质的涂布。

在以往的金属粉烧结浆料中也有包含树脂的材料,然而从因烧结而需要高温的方面、树脂成分或其挥发成分污染周围构件的方面考虑,在本实施方式的金属粉烧结浆料中,不包含树脂而以挥发性有机溶剂作为分散介质的材料更优异。

所述分散介质可以是1种有机溶剂,也可以是2种以上的有机溶剂的混合物,优选为二醇与醚的混合物。这是因为,利用使用此种分散介质的金属粉烧结浆料,可以在低温下将半导体元件与安装构件接合。

所述分散介质的沸点优选为300℃以下,更优选为150℃~250℃。这是因为,如果所述分散介质的沸点为150℃~250℃的范围,则可以抑制由分散介质挥发造成的金属粉烧结浆料的室温时粘度变化,操作性良好。此外,如果分散介质的沸点为该范围,则可以利用煅烧使所述分散介质完全地挥发。

作为二醇,例如可以举出乙二醇、1,3-丙二醇、1,4-丁二醇、二乙二醇、1,5-戊二醇、1,6-己二醇、二丙二醇、三乙二醇、四乙二醇、1,2-丙二醇、1,3-丁二醇、2,3-丁二醇、新戊二醇(2,2-二甲基丙烷-1,3-二醇)、1,2-己二醇、2,5-己二醇、2-甲基-2,4-戊二醇、3-甲基-1,3-戊二醇、2-乙基-1,3-己二醇等脂肪族二醇类;2,2-双(4-羟基环己基)丙烷、2,2,-双(4-羟基环己基)丙烷的环氧烷烃加成物;1,4-环己二醇、1,4-环己烷二甲醇等脂环族二醇类。

作为醚,例如可以举出二丙二醇甲醚、三丙二醇甲醚、丙二醇正丙醚、二丙二醇正丙醚、丙二醇正丁醚、二丙二醇正丁醚、丙二醇苯醚、二丙二醇二甲醚、1,3-二氧杂环戊烷、乙二醇单丁醚、二乙二醇单乙醚、二乙二醇单丁醚、乙二醇单乙醚等。

在所述分散介质为二醇与醚的混合物的情况下,二醇与醚的质量比优选为二醇:醚=7~9:2。这是因为,可以利用使用此种有机溶剂的混合物的金属粉烧结浆料在低温下将半导体元件与安装构件接合。

对于所述分散介质的含量,由于必需粘度根据金属粉烧结浆料的涂布方法而变化,因此没有特别限定。为了抑制煅烧所述金属粉烧结浆料而得的烧结体的接合层的空隙率,相对于所述金属粉烧结浆料而言的分散介质的含量优选以30质量%为上限。

[树脂]

本实施方式的金属粉烧结浆料实质上不包含树脂。作为所述树脂,可以举出环氧树脂、酚醛树脂等粘结剂、聚酰胺树脂等固化剂。

<金属粉烧结浆料的制造方法>

另外,对于包括将cv值(标准偏差/平均值)小于5%的无机间隔件粒子与平均粒径(中值粒径)为0.3μm~5μm的银粒子混合、但是在实质上不与树脂混合的金属粉烧结浆料的制造方法说明如下。需要说明的是,对于所述无机间隔件粒子、银粒子及树脂,如所述金属粉烧结浆料中说明所示。

在本实施方式的金属粉烧结浆料还包含表面活性剂和分散介质的情况下,本实施方式的金属粉烧结浆料的制造方法包括将表面活性剂、cv值(标准偏差/平均值)小于5%的无机间隔件粒子、平均粒径(中值粒径)为0.3μm~5μm的银粒子、和分散介质混合,但是在实质上不与树脂混合。需要说明的是,对于所述无机间隔件粒子、银粒子、树脂、表面活性剂及分散介质,如所述金属粉烧结浆料中说明所示。

本实施方式的金属粉烧结浆料的制造方法中的混合可以在室温下进行,优选包括脱泡工序。通过包括脱泡工序,可以防止因起泡进入芯片下而造成的芯片与安装构件的接合强度的降低。

<金属粉烧结浆料>

优选可以利用170℃、60分钟的借助大气烘箱的煅烧得到电阻为6μω·cm以下的导电性材料的金属粉烧结浆料。

<导电性材料的制造方法>

另外,对包括煅烧金属粉烧结浆料的工序的本实施方式的导电性材料的制造方法进行说明。该方法中金属粉烧结浆料是本实施方式的金属粉烧结浆料。

[煅烧条件]

所述煅烧可以在非氧化性气氛下、大气下、真空气氛下、氧气或混合气体气氛下等气氛下等进行,然而优选在氧气、臭氧或大气气氛下进行。这是因为,如果在该气氛下煅烧,则银的热扩散得到加速,可以获得具有更高的烧结强度的导电性材料(烧结体)。

本实施方式中,所述煅烧优选在160℃~300℃的范围的温度下进行。这是因为,在该温度范围中煅烧的情况下,能够在比安装有半导体元件等的树脂封装件的熔点低的温度下进行金属接合。另外,煅烧更优选在160℃~260℃的范围的温度下进行,进一步优选在170℃~195℃的范围的温度下进行。这是因为,以往的设想为包含树脂的粘接剂的引线框包含在200℃以上发生劣化的构件。

所述煅烧例如进行10分钟~180分钟,优选进行30分钟~120分钟。

所述煅烧例如在160℃~300℃的范围进行10分钟~180分钟,优选进行30分~120分钟。

<导电性材料>

本实施方式的导电性材料是煅烧本实施方式的金属粉烧结浆料而得。本实施方式的导电性材料优选电阻值为50μω·cm以下。这是因为,电阻越低,则作为电极使用时越可以抑制电力的损失,另外散热性越优异。电阻值更优选为10μω·cm以下,进一步优选为6μω·cm以下。

<接合方法>

使用本实施方式的金属粉烧结浆料将芯片与基板接合的方法包括:

将所述金属粉烧结浆料涂布于所述基板上、

在所述金属粉烧结浆料上配置所述芯片、

加热配置有所述金属粉烧结浆料和所述芯片的所述基板、使所述金属粉烧结浆料烧结而将所述芯片与所述基板接合的工序。

[加热条件]

所述加热可以在非氧化性气氛下、大气下、真空气氛下、氧气或混合气体气氛下、气流中等气氛下等进行,优选在氧气、臭氧或大气气氛下进行。这是因为,如果在该气氛下加热,则银的热扩散得到加速,可以获得具有更高的烧结强度的导电性材料(烧结体)。

本实施方式中,所述煅烧优选在160℃~300℃的范围的温度下进行。这是因为,在该温度范围中煅烧的情况下,能够在比安装有半导体元件等的树脂封装件的熔点低温度下进行金属接合。另外,煅烧更优选在160℃~260℃的范围的温度下进行,进一步优选在170℃~195℃的范围的温度下进行。这是因为,以往的设想为包含树脂的粘接剂的引线框包含在200℃以上发生劣化的构件。

所述加热例如进行10分钟~180分钟,优选进行30分钟~120分钟。

所述加热例如在160℃~300℃的范围进行10分钟~180分钟,优选进行30分钟~120分钟。

由于使用本实施方式的金属粉烧结浆料,因此根据所述接合的方法,可以抑制所述芯片的倾斜或烧结体的厚度的不均。

[实施例]

以下,基于实施例、比较例、参考例,对本实施方式的金属粉烧结浆料、金属粉烧结浆料的制造方法、导电性材料、及导电性材料的制造方法进行说明。

[比较例1]

将作为有机溶剂的2-乙基-1,3-己二醇(0.57g)和二乙二醇单丁醚(0.14g)及阴离子性液状表面活性剂(三洋化成工业株式会社制、产品名“beaulightlca-h”、月桂醇聚醚-5-羧酸、25℃时为液状、0.09g)利用自转/公转搅拌机(商品名“去泡练太郎ar-250”、株式会社thinky制)搅拌1分钟,然后进行15秒脱泡,以此作为1个循环,使用1个循环进行搅拌,得到溶剂混合物。

量取薄片状银粒子(福田金属箔粉工业株式会社制、产品名“agc-239”、薄片状、平均粒径(中值粒径)为2.7μm、比表面积为0.7m2/g、粒径小于0.3μm的粒子的含量为1质量%、粒径0.5μm以下的粒子的含量为3质量%、9.19g)后加入所述溶剂混合物中。将所得的混合物使用自转/公转搅拌机(商品名“去泡练太郎ar-250”、株式会社thinky制)搅拌1分钟并脱泡15秒,以此作为1个循环,使用1个循环进行搅拌,得到金属粉烧结浆料(10g)(银粒子的含量为91.9质量%)。

[实施例1]

将作为有机溶剂的2-乙基-1,3-己二醇(0.57g)和二乙二醇单丁醚(0.14g)及阴离子性液状表面活性剂(三洋化成工业株式会社制、产品名“beaulightlca-h”、月桂醇聚醚-5-羧酸、25℃时为液状、0.09g)利用自转/公转搅拌机(商品名“去泡练太郎ar-250”、株式会社thinky制)搅拌1分钟,然后进行15秒脱泡,以此作为1个循环,使用1个循环进行搅拌,得到溶剂混合物。

量取薄片状银粒子(福田金属箔粉工业株式会社制、产品名“agc-239”、薄片状、平均粒径(中值粒径)为2.7μm、比表面积为0.7m2/g、粒径小于0.3μm的粒子的含量为1质量%、粒径0.5μm以下的粒子的含量为3质量%、9.16g)、圆球状二氧化硅间隔件(宇部exsymo制、产品名“hipresicats”、在利用库尔特计数器的测定中平均粒径(中值粒径)为31.14μm、cv值为1.92%、0.03g)后加入所述溶剂混合物中。将所得的混合物利用自转/公转搅拌机(商品名“去泡练太郎ar-250”、株式会社thinky制)搅拌1分钟并脱泡15秒,以此作为1个循环,使用1个循环进行搅拌,得到金属粉烧结浆料(10g)(银粒子的含量为91.6质量%、间隔件粒子浓度为0.94体积%、对应于214pcs/芯片面积)。

[实施例2]

除了取代圆球状二氧化硅间隔件(宇部exsymo制、产品名“hipresicats”、平均粒径(中值粒径)为31.14μm、cv值为1.92%、0.03g)而使用了圆球状二氧化硅间隔件(宇部exsymo制、产品名“hipresicats”、在利用库尔特计数器的测定中平均粒径(中值粒径)为50.8μm、cv值为1.1%、0.09g)以外,与实施例1相同地进行,得到金属粉烧结浆料(10g)(银粒子的含量为91.0质量%、间隔件粒子浓度为2.62体积%、对应于214pcs/芯片面积)。

<导电性材料>

将比较例1、实施例1或2中得到的金属粉烧结浆料使用点胶法涂布于在表面具有金的铜框架上,将在背面具有银电极、外形4650μm×2300μm、厚400μm的、以氮化铝作为基材的基座芯片安装于其上。在基座芯片上安装有半导体发光元件。将借助金属粉烧结浆料安装有基座芯片的基板使用大气烘箱在185℃加热120分钟,其后进行冷却。冷却后,利用光学式的测定显微镜测定基座表面与框架表面的高度的差,根据基座厚度算出浆料厚度。其后,将借助加热后的金属粉烧结浆料安装有基座芯片的基板的一半量投入85℃、85%的高温高湿槽中24小时,实施260℃、10秒的回流(リフロー)。共计实施2次该吸湿回流试验。其后,对吸湿回流试验前和吸湿回流试验后的两样品,沿从基板中剥离基座芯片的方向施加剪切力,测定出基座芯片剥离时的强度,作为接合强度。

另外,将比较例1、实施例1或2中得到的金属粉烧结浆料利用丝网印刷法以厚度100μm涂布于玻璃基板(厚度1mm)上。将涂布有金属粉烧结浆料的玻璃基板使用大气烘箱在185℃加热120分钟,其后冷却。对所得的布线(导电性材料)使用产品名“mcp-t600”(三菱化学株式会社制)利用4端子法测定出电阻。

表1中表示出比较例1及实施例1至2的配合比和浆料厚度、吸湿回流试验前后的芯片剪切力试验的测定结果、电阻的测定结果。

[表1]

如表1所示,与没有添加间隔件粒子的比较例1相比,对于添加了间隔件粒子的实施例1及2,吸湿回流试验前后的芯片剪切力强度维持率全都提高,观察到改善。另外在粒径与浆料厚度中观察到相关性。实施例1及2中,对于电阻也维持了足够小的值。

利用实施方式的金属粉烧结浆料,可以形成厚的浆料,可以降低由热应力造成的膨胀收缩时的变形率,因此可以抑制吸湿回流时的接合强度降低。

本实施方式的金属粉烧结浆料例如可以适用于耐热功率布线、部件电极、芯片粘贴、微细凸点、平板、太阳能电池布线等的制造用途及晶片连接等用途、以及组合它们制造的电子部件的制造中。另外,本实施方式的导电性材料的制造方法例如也可以适用于制造使用了led、ld等半导体发光元件的发光装置时。

本发明可以不脱离其精神或基本特征地以其他方式来体现。本发明中给出的实施方式从所有方面考虑都应当被认为是示例性的,而不是限制性的。本发明的范围由所附的权利要求书给出,而不是上述的说明,并且意图将所有与权利要求书的意思和范围等价的变更包含在内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1