一种制备含钝化层的高损伤阈值减反膜方法与流程

文档序号:16660795发布日期:2019-01-18 22:56阅读:443来源:国知局
一种制备含钝化层的高损伤阈值减反膜方法与流程

本发明属于光学镀膜技术领域,具体涉及一种制备含钝化层的高损伤阈值减反膜方法。



背景技术:

随着半导体激光器输出功率的不断提升,半导体激光器腔面损伤和薄膜稳定性逐渐成为限制半导体激光器输出功率进一步提升的关键因素。

半导体激光器腔面损伤主要由灾难性光学损伤(cod)引起。cod主要由环境中杂质和有源区高表面态对激光能量的吸收,导致腔面温度急剧升高引起的,最终导致器件损毁。

而半导体激光器腔面通常还需要镀制减反膜,在激光器工作时,减反膜紧临腔面的前几层材料内电场强度最强,对应的吸收激光能量多,极易形成高温区域,破坏薄膜同时导致半导体激光器腔面温度升高。由于镀制的薄膜紧靠腔面,薄膜中一些缺陷同样会吸收激光能量并产生高温,破坏薄膜的同时又会促进腔面温度的进一步提升,加速cod的发生。另外,当镀制薄膜之后,腔面吸附的杂质和有源区高表面态无法进行优化,因此只能通过优化薄膜制备工艺和质量来提高cod阈值。

薄膜稳定性主要由激光诱导损伤阈值(lidt)导致。减反膜中的杂质(如:吸附水分、碳氢化合物、碳物质等)和缺陷(如:节瘤、微观缺陷等)吸收激光能量,导致薄膜局部区域温度骤然升高,由于减反膜的热‐机械响应,最终导致减反膜发生损伤,进而使得器件无法正常运行。

因此只有同时提高cod和lidt才能最终实现激光器输出功率进一步提升。常规半导体激光器腔面膜直接由金属氧化膜制备而成,然而氧化物薄膜中的氧原子会渗透到激光器有源区砷化镓材料中,形成高吸收的氧化镓,钝化膜的存在能够有效阻挡氧化膜中的氧原子扩散到有源区中,且钝化膜本身具有较高的化学稳定性,不与有源区材料发生反应。镀制具有钝化层的减反膜能够有效抑制cod,但由于钝化膜通常对激光具有吸收作用,导致具有钝化层的减反膜lidt降低。因此提高具有钝化层的减反膜lidt成为激光器输出功率提升的关键因素。



技术实现要素:

为解决上述背景技术中存在的问题,本发明提出一种制备含钝化层的高损伤阈值减反膜方法,该方法具有针对性强、简单易行的特点,该方法极大提高含钝化层的减反膜的lidt,从而提高半导体激光器的稳定性,最终实现半导体激光器输出功率进一步提升。

本发明解决上述问题的技术方案是:一种制备含钝化层的高损伤阈值减反膜方法,其特殊之处在于,包括以下步骤:

1)清洁基底;

2)将基底放入电子束真空镀膜机中,控制电子束真空镀膜机内真腔室本底真空度保持在5×10-6mbar~5.5×10-5mbar下,基底温度为室温;

3)使用离子源对基底表面清洗;

4)使用电子束蒸发方式镀制钝化膜;

5)镀制钝化膜之后,将基底温度提升至200℃~300℃,同时保持真空度为1×10-5~5×10-5mbar,保持此状态30~120分钟;

6)使基底温度自然降温,当基底温度降至100℃以下后,保持10-60分钟;

7)在钝化膜上用高折射率膜料和低折射率膜料进行交替镀膜,直至最后一层膜镀制完成;

8)利用电子束真空镀膜机内真腔室冷却至室温后,拿出基底,镀制完成。

进一步地,上述步骤7)中在高折射率膜料和低折射率膜料进行交替镀膜时,每个膜层镀完后均采用步骤5)和步骤6)进行热退火。

进一步地,上述步骤1)中清洁基底,具体为:将基底放入乙醇中,利用超声波进行清洗;然后使用无水乙醇和去离子水交替冲洗,再用高纯度氮气吹干。

进一步地,上述步骤3)中使用离子源对基底表面清洗,具体为:离子源为氩离子,氩离子流量为5sccm~9sccm,阳极电压为90v~140v,电流为2000ma~6000ma。

进一步地,上述步骤4)中使用电子束蒸发方式镀制钝化膜时,使用氩离子辅助沉积或升高基底温度至100℃。

进一步地,上述步骤5)中,将基底温度提升至200℃~300℃,是使用电子束真空镀膜机自带的加热板将加热基底至200℃~300℃。

进一步地,上述基底可以是gaas或algaas。

进一步地,上述钝化膜可以是znse、金刚石或zns。

进一步地,上述高折射率膜料为tio2、hfo2、ta2o5、zro2等氧化物,所述低折射膜料为sio2。

本发明的优点:

1、本发明一种制备含钝化层的高损伤阈值减反膜方法,其利用真空镀膜机加热板和真空环境实现了对含钝化层的减反膜中钝化层进行热退火,无需将样品取出腔室进行热退火,避免了环境中杂质对钝化膜表面的污染;

2、本发明一种制备含钝化层的高损伤阈值减反膜方法,一方面促使微观粒子进一步扩散,使得非化学剂量比钝化膜转变为化学剂量比钝化膜;修补薄膜中存在的一些微观缺陷,释放由沉积过程中产生的应力;另一方面高温可以驱除薄膜中吸附的水分,极大提高薄膜堆积密度和降低薄膜吸收,同时一定程度上提高薄膜的机械力,最终提高了含钝化层的减反膜损伤阈值;

3、本发明一种制备含钝化层的高损伤阈值减反膜方法,优化了钝化膜特性,使其能够提高阻挡减反膜中氧元素对半导体激光腔面的侵入,有利于半导体激光器稳定性的提升;

4、本发明一种制备含钝化层的高损伤阈值减反膜方法,使含钝化层的减反膜吸收得到显著降低,提高含钝化层减反膜的损伤阈值,有利于半导体激光器稳定性的提高,使之能够适应更为复杂的环境。

附图说明

图1为采用本发明方法后和采用传统方法后的薄膜吸收对比图;

图2为采用本发明方法后和采用传统方法后的薄膜损伤阈值。

具体实施方式

为使本发明实施方式的目的、技术方案和优点更加清楚,下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。因此,以下对在附图中提供的本发明的实施方式的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施方式。基于本发明中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。

一种制备含钝化层的高损伤阈值减反膜方法,包括以下步骤:

1)清洁基底;

2)将基底放入电子束真空镀膜机中,控制电子束真空镀膜机内真腔室本底真空度保持在5×10-6mbar~5.5×10-5mbar下,基底温度为室温;

3)使用离子源对基底表面清洗;

4)使用电子束蒸发方式镀制钝化膜;

5)将基底温度提升至200℃~300℃,同时保持真空度为1×10-5mbar~5×10-5mbar,保持此状态30~120分钟;

6)使基底温度自然降温,当基底温度降至100℃以下后,保持10~60分钟;

7)在钝化膜上用高折射率膜料和低折射率膜料进行交替镀膜,直至最后一层膜镀制完成;

8)利用电子束真空镀膜机内真空腔室冷却至室温后,拿出基底,镀制完成。

进一步地,上述步骤7)中在高折射率膜料和低折射率膜料进行交替镀膜时,每个膜层镀完后均采用步骤5)和步骤6)进行热退火。

进一步地,上述步骤1)中清洁基底,具体为:将基底放入乙醇中,利用超声波进行清洗;然后使用无水乙醇和去离子水交替冲洗,再用高纯度氮气吹干。

进一步地,上述步骤3)中使用离子源对基底表面清洗,具体为:离子源为氩离子,氩离子流量为5sccm~9sccm,阳极电压为90v~140v,电流为2000ma~6000ma。

进一步地,上述步骤4)中使用电子束蒸发方式镀制钝化膜时,使用氩离子辅助沉积或升高基底温度至100℃。

进一步地,上述步骤5)中,将基底温度提升至200℃~300℃,是使用电子束真空镀膜机自带的加热板将加热基底至200℃~300℃。

进一步地,上述基底可以是gaas或algaas。

进一步地,上述钝化膜可以是znse、金刚石或zns。

进一步地,上述高折射率膜料为tio2、hfo2、ta2o5、zro2等氧化物,所述低折射膜料为sio2。

实施例:

将样品分成两组a和b,将a组样品使用传统方式进行镀膜,将b组样品使用本发明方法进行镀膜。

a组制备方式为:将gaas衬底放入超声清洗设备中,首先使用丙酮作为清洗液,在超声波电流为0.4a下,清洗5min,然后再将清洗液替换为无水乙醇,清洗5min,重复上面步骤三到五次,然后使用去离子水冲洗gaas衬底并用氮气枪吹干。将吹干的gaas衬底放入烘烤箱中,烘烤一个小时;然后将gaas衬底放入电子束镀膜机中并抽真空,当真空度达到6×10-6mbar时,使用离子源对gaas衬底进行清洗,离子源电流为2a,氩气束流为5sccm;开始蒸镀znse薄膜,电子束流约10ma,薄膜沉积速率为0.5nm/s,薄膜厚度约103nm;完成znse之后,镀制sio2和hfo2,最终使znse与hfo2还有sio2组合成为增透膜。

b组制备方式为:将gaas衬底放入超声清洗设备中,首先使用丙酮作为清洗液,在超声波电流为0.4a下,清洗5min,然后再将清洗液替换为无水乙醇,清洗5min,重复上面步骤三到五次,然后使用去离子水冲洗gaas衬底并用氮气枪吹干。将吹干的gaas衬底放入烘烤箱中,烘烤一个小时。然后将gaas衬底放入电子束镀膜机中并抽真空,当真空度达到6×10-6mbar时,使用离子源对gaas衬底进行清洗,离子源电流为2a,氩气束流为5sccm。开始蒸镀znse薄膜,电子束流约10ma,薄膜沉积速率为0.5nm/s,薄膜厚度约103nm。完成znse之后,依旧保持分子泵运行,当真空度再次达到6×10-6mbar时,开始使用加热板对基底加热,达到200℃之后,保温1小时。完成保温之后,再减低基底温度至100℃,然后开始镀制sio2和hfo2,并最终使znse与hfo2还有sio2组合成为增透膜。

两组样品吸收测试如图1,采用本发明方法的b组增透膜的吸收要低于采用传统镀膜方法的吸收。

薄膜抗激光能力如图2所示,相比于传统方法,采用本发明方法后,损伤阈值从18.2j/cm2提高至20.3j/cm2

以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的系统领域,均同理包括在本发明的专利保护范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1