一种刀具表面类金刚石复合膜的制作方法

文档序号:16918835发布日期:2019-02-19 19:11阅读:342来源:国知局
一种刀具表面类金刚石复合膜的制作方法

本发明涉及刀具表面复合膜领域,尤其涉及一种刀具表面类金刚石复合膜。



背景技术:

现有技术中,为了提高刀具的耐磨性和使用寿命,一般采用改善刀具材料,或改变刀具加工工艺的方法,然而这种方法成本较高,并且对刀具的性能提升并不明显。尤其是加工刀具刃口非常锋利,一般采用不锈钢材料并热处理,硬度达到50hrc以上来保证刀刃口的耐磨性;但是为了提高刃口的锋利程度,刀具刃口宽度需要薄至十几微米,基底硬度不足以大幅提升刀的耐磨性能,而普通化学热处理如气体氮化等很难在如此薄的材料上处理而不改变产品的形状尺寸和基材机械性能。对于工业广泛应用的刀具件主要的失效途径并非工况下的开裂,破损等破坏性失效,而是配件长期的相对运动导致的磨损失效。类金刚石非晶碳基薄膜具有优异的摩擦学特征,在润滑缺失的干摩擦,润滑不足的半干摩擦及润滑充分的边界润滑条件下均能表现出低摩擦与低磨损特性。同时,在腐蚀性介质中,类金刚石非晶碳基薄膜也体现了优异的耐腐蚀性能。然而,传统类金刚石非晶碳基薄膜的厚度较薄(一般小于3μm),致使其优异的减摩。传统类金刚石非晶碳基薄膜的界面结构单一,其单层(基底直接沉积类金刚石非晶碳基薄膜)或双层(过渡层+类金刚石非晶碳基薄膜)结构的结合强度低(小于10n),在高剪切应力作用下难以维持低磨损率,而且单层与双层结构难以有效避免薄膜内因薄膜本征应力引起的孔隙贯穿,液压油对基体的腐蚀作用仍然明显,从而使其服役寿命大大降低。



技术实现要素:

本发明的目的在于提供一种结合强度大,寿命长的刀具表面类金刚石复合膜。

为实现上述目的,本发明采用以下技术方案:

一种刀具表面类金刚石复合膜,包括由刀具表面向外依次形成的金属底层,过渡层及功能层,所述功能层为类金刚石层,所述过渡层由三种膜层堆叠形成,各膜层均先采用磁控溅镀后采用激光熔覆的方法由里至外依序成型。

所述金属底层是cr层或al层,并先采用磁控溅镀后采用激光熔覆的方法成型,其厚度在10~50nm之间。

所述金属底层采用磁控溅镀的工艺参数为:基板负偏压70v,铬靶或铝靶电流2a,基板转速2rpm,氮气流量5sccm,c2h2流量3.5sccm;所述金属底层采用激光熔覆的工艺参数为功率1000-2500w,氩气流量1200-2400ml/min,扫描速度2-8mm/s,激光头倾斜角0-30度,离焦量10-30mm。

所述过渡层的三种膜层由里至外依序是cral层,cralti层和cralticn层。

所述过渡层三种膜层的厚度由里至外依序为50~70nm、100~200nm、200~300nm。

所述cral层采用磁控溅镀的工艺参数为:基板负偏压70-100v,铬靶电流2-4a,基板转速2-8rpm,氮气流量5-10sccm,铝靶电流2-4a,c2h2流量3-7sccm;

所述cralti层采用磁控溅镀的工艺参数为:基板负偏压70-100v,铝靶电流2-4a,基板转速2-8rpm,氮气流量5-10sccm,铬靶电流2-4a,钛靶电流2-4a,c2h2流量3-7scc;

所述cralticn层磁控溅镀的工艺参数为:基板负偏压70-100v,碳靶电流2-4a,铝靶电流2-4a,基板转速2-8rpm,氮气流量5-10sccm,铬靶电流2-4a,钛靶电流2-4a,c2h2流量3-7sccm;

所述cral层,cralti层和cralticn层采用激光熔覆的工艺参数均为:功率1000-2500w,氩气流量1200-2400ml/min,扫描速度2-8mm/s,激光头倾斜角0-30度,离焦量10-30mm。

所述类金刚石层为掺锆类金刚石层,该类金刚石层采用磁控溅镀后采用激光熔覆的方法成型。

所述掺锆类金刚石层采用磁控溅镀的工艺参数为:基板偏压70-100v,锆靶电流1-3a,基板转速2-8rpm,氮气流量5-10sccm,碳靶电流4-6a,c2h2流量3-10sccm;

所述掺锆类金刚石层采用激光熔覆的工艺参数为功率1000-2500w,氩气流量1200-2400ml/min,扫描速度2-8mm/s,激光头倾斜角0-30度,离焦量10-30mm。

本发明采用以上技术方案,具有以下有益效果:

1、过渡层中各膜层均采用先磁控溅镀再激光熔覆的方法成型,充分发挥磁控溅镀膜层的内应力小以及激光熔覆膜层的硬度大的优点,实现过渡层硬度大和内应力小的有效结合,而硬度大和应力小都有助于实现类金刚石层厚度的增加,最终形成的复合膜的厚度达15μm以上,并且可以有效缓冲厚膜功能层带来的巨大应力,从而保障复合膜与刀具基材的结合力,同时能够有效降低复合膜的表面缺陷。此外,采用激光熔覆可以提高膜层间的结合度,提高过渡层的整体力学性能。

2、本发明的复合膜能够保持刀刃的锋利程度同时不改变刀具基材的组织结构,膜层采用涂层技术,不改变刀刃的锋利性能,同时能够将刀刃完全的包裹起来,类金刚石层本身具有极高的硬度,具有极好的抗划伤和抗磨损能力。

附图说明

以下结合附图和具体实施方式对本发明做进一步详细说明:

图1为本发明的示意图。

具体实施方式

如图1所示,本发明刀具表面类金刚石复合膜,包括由刀具表面向外依次形成的金属底层1,过渡层2及功能层3,所述功能层3为类金刚石层,所述过渡层2由三种膜层堆叠形成,各膜层均先采用磁控溅镀后采用激光熔覆的方法由里至外依序成型。

过渡层的三种膜层由里至外依序是cral层,cralti层和cralticn层。三种膜层相邻两膜层之间相差一个元素,因此相邻膜层间的热膨胀系数差异相对小,使得过渡层内部的应力小,裂纹少,附着性更好,从而有助于提高类金刚石薄膜的整体力学性能。

实施例1

金属底层是cr层,并先采用磁控溅镀后采用激光熔覆的方法成型,其厚度为10nm。金属底层采用磁控溅镀的工艺参数为:基板负偏压70v,铬靶电流2a,基板转速2rpm,氮气流量5sccm,c2h2流量3.5sccm;所述金属底层采用激光熔覆的工艺参数为功率1000w,氩气流量1200ml/min,扫描速度2mm/s,激光头倾斜角0度,离焦量10mm。

过渡层的三种膜层的厚度由里至外依序为50nm、100nm、200nm。

所述cral层采用磁控溅镀的工艺参数为:基板负偏压70v,铬靶电流2a,基板转速2rpm,氮气流量5sccm,铝靶电流2a,c2h2流量3sccm;

所述cralti层采用磁控溅镀的工艺参数为:基板负偏压70v,铝靶电流2a,基板转速2rpm,氮气流量5sccm,铬靶电流2a,钛靶电流2a,c2h2流量3scc;

所述cralticn层磁控溅镀的工艺参数为:基板负偏压70v,碳靶电流2a,铝靶电流2a,基板转速2rpm,氮气流量5sccm,铬靶电流2a,钛靶电流2a,c2h2流量3sccm;

所述cral层,cralti层和cralticn层采用激光熔覆的工艺参数均为:功率1000w,氩气流量1200ml/min,扫描速度2mm/s,激光头倾斜角0度,离焦量10mm。

所述类金刚石层为掺锆类金刚石层,该类金刚石层采用磁控溅镀后采用激光熔覆的方法成型。

所述掺锆类金刚石层采用磁控溅镀的工艺参数为:基板偏压70v,锆靶电流1a,基板转速2rpm,氮气流量5sccm,碳靶电流4a,c2h2流量3sccm;

所述掺锆类金刚石层采用激光熔覆的工艺参数为功率1000w,氩气流量1200ml/min,扫描速度2mm/s,激光头倾斜角0度,离焦量10mm。

实施例2

金属底层是al层,并先采用磁控溅镀后采用激光熔覆的方法成型,其厚度为50nm。金属底层采用磁控溅镀的工艺参数为:基板负偏压70v,铝靶电流2a,基板转速2rpm,氮气流量5sccm,c2h2流量3.5sccm;所述金属底层采用激光熔覆的工艺参数为功率2500w,氩气流量2400ml/min,扫描速度8mm/s,激光头倾斜角30度,离焦量30mm。

所述过渡层三种膜层的厚度由里至外依序为70nm、200nm、300nm。

所述cral层采用磁控溅镀的工艺参数为:基板负偏压100v,铬靶电流4a,基板转速8rpm,氮气流量10sccm,铝靶电流4a,c2h2流量7sccm;

所述cralti层采用磁控溅镀的工艺参数为:基板负偏压100v,铝靶电流4a,基板转速8rpm,氮气流量10sccm,铬靶电流4a,钛靶电流4a,c2h2流量7scc;

所述cralticn层磁控溅镀的工艺参数为:基板负偏压100v,碳靶电流4a,铝靶电流4a,基板转速8rpm,氮气流量10sccm,铬靶电流4a,钛靶电流4a,c2h2流量7sccm;

所述cral层,cralti层和cralticn层采用激光熔覆的工艺参数均为:功率2500w,氩气流量2400ml/min,扫描速度8mm/s,激光头倾斜角30度,离焦量30mm。

所述类金刚石层为掺锆类金刚石层,该类金刚石层采用磁控溅镀后采用激光熔覆的方法成型。

所述掺锆类金刚石层采用磁控溅镀的工艺参数为:基板偏压100v,锆靶电流3a,基板转速8rpm,氮气流量10sccm,碳靶电流6a,c2h2流量10sccm;

所述掺锆类金刚石层采用激光熔覆的工艺参数为功率2500w,氩气流量2400ml/min,扫描速度8mm/s,激光头倾斜角30度,离焦量30mm。

实施例3

金属底层是cr层,并先采用磁控溅镀后采用激光熔覆的方法成型,其厚度为25nm。所述金属底层采用磁控溅镀的工艺参数为:基板负偏压70v,铬靶或铝靶电流2a,基板转速2rpm,氮气流量5sccm,c2h2流量3.5sccm;所述金属底层采用激光熔覆的工艺参数为功率1800w,氩气流量1700ml/min,扫描速度5mm/s,激光头倾斜角15度,离焦量20mm。

所述过渡层三种膜层的厚度由里至外依序为60nm、150nm、250nm。

所述cral层采用磁控溅镀的工艺参数为:基板负偏压80v,铬靶电流3a,基板转速5rpm,氮气流量7sccm,铝靶电流3a,c2h2流量5sccm;

所述cralti层采用磁控溅镀的工艺参数为:基板负偏压80v,铝靶电流3a,基板转速5rpm,氮气流量7sccm,铬靶电流3a,钛靶电流3a,c2h2流量5scc;

所述cralticn层磁控溅镀的工艺参数为:基板负偏压80v,碳靶电流3a,铝靶电流3a,基板转速5rpm,氮气流量7sccm,铬靶电流3a,钛靶电流3a,c2h2流量3-7sccm;

所述cral层,cralti层和cralticn层采用激光熔覆的工艺参数均为:功率1800w,氩气流量1700ml/min,扫描速度5mm/s,激光头倾斜角15度,离焦量20mm。

所述类金刚石层为掺锆类金刚石层,该类金刚石层采用磁控溅镀后采用激光熔覆的方法成型。

所述掺锆类金刚石层采用磁控溅镀的工艺参数为:基板偏压80v,锆靶电流2a,基板转速5rpm,氮气流量7sccm,碳靶电流5a,c2h2流量6sccm;

所述掺锆类金刚石层采用激光熔覆的工艺参数为功率1800w,氩气流量1700ml/min,扫描速度5mm/s,激光头倾斜角15度,离焦量20mm。

为了验证本发明制备方法制得的一种刀具表面类金刚石复合膜层,对上述各实施例中涂覆本发明类金刚石复合膜层进行性能测试,可知,本发明类金刚石复合膜层制备与现有传统类金刚石薄膜为对比,进行工艺,硬度,耐磨损,微结构,应力检测,附着性测试结果如下表:

以上对本专利的较佳实施方式作了详细说明,但是本专利并不限于上述实施方式,在本领域的普通技术人员所具备的知识范围内,还可以在不脱离本专利宗旨的前提下做出各种变化。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1