氮含量高的氮化硅膜的制作方法

文档序号:20012389发布日期:2020-02-22 04:28阅读:264来源:国知局
氮含量高的氮化硅膜的制作方法

本公开内容一般地涉及沉积薄膜的方法。特定而言,本公开内容涉及用于沉积高氮含量的氮化硅膜的工艺。



背景技术:

在基板表面上沉积薄膜是在各种工业中重要的工艺,所述工业包括,半导体处理、扩散阻挡物涂布、及用于磁性读/写头的介电质。一些半导体工业中,特定而言,微型化受惠于薄膜沉积的高水平控制,以在高深宽比结构上产生保形涂层。一种用于以相对控制且保形沉积的方式沉积薄膜的方法是化学气相沉积(cvd)。cvd涉及将基板(例如晶片)暴露于一或多个前驱物,所述前驱物反应而将膜沉积至基板上。可流动化学气相沉积(fcvd)是容许沉积可流动膜的cvd类型,特别是用在缝隙填充应用上。

sin可流动膜通常是用于缝隙填充应用。目前,这样的膜是通过三甲硅烷基胺(trisilylamine,tsa)与自由基形式的nh3作为共反应物而生成。由tsa工艺获得的初沉积的膜包括si及n以作为主要成分。这些膜通常具有范围为0.4:1至0.7:1的氮硅比。具有更高氮含量的膜可用在图案化应用中,以解决蚀刻选择性问题。

因此,需要新的沉积化学条件以容许有更高氮含量的sin膜沉积。



技术实现要素:

本公开内容的一或多个实施方式针对一种沉积sin膜的方法。该方法包括,将基板暴露于硅氮前驱物及nh3等离子体,以沉积可流动sin聚合物;及将该可流动sin聚合物固化,以形成固化sin膜。这些实施方式中,该硅氮前驱物包括下述一或多种:

其中r1-r5独立地为h或c1-c4烷基。

本公开内容的额外实施方式针对一种沉积sin膜的方法。该方法包括,将维持在低于或等于25℃的基板暴露于硅氮前驱物及nh3等离子体,以沉积可流动sin聚合物;及将该可流动sin聚合物固化,以形成固化sin膜,其中该固化sin膜中氮对硅原子的比例大于约1.0。这些实施方式中,该硅氮前驱物包括下述一或多种:

其中r1-r5独立地为h或甲基,且条件是r1-r5中的至少一种是甲基。

本公开内容的进一步实施方式针对固化sin膜,该固化sin膜是通过下述方式形成:在低于或等于约25℃的温度而在没有uv光固化的情况下将基板暴露于硅氮前驱物与nh3等离子体。这些实施方式中,该固化sin膜中氮对硅原子的比例为约1.0至约1.5的范围,且该硅氮前驱物包括下述一或多种:

其中r1-r5独立地为h或c1-c4烷基。

附图说明

以上简要概述本发明的上述详述特征可以被详细理解的方式、以及本发明的更特定描述,可通过参照实施方式来获得,其中一些实施方式绘示于所附图式中。然而,应注意,所附图式仅绘示本发明的典型实施方式,因而不应视为对本发明的范围的限制,因为本发明可允许其他等同有效的实施方式。

图1示出根据本公开内容的一或多个实施方式的基板的横截面示意图;

图2a示出根据本公开内容的一或多个实施方式的可流动膜的沉积;以及

图2b示出根据本公开内容的一或多个实施方式的固化膜的形成。

具体实施方式

描述本发明的数个示例性实施方式之前,应了解本发明并非限于下文描述中阐述的构造或工艺步骤的细节。本发明能有其他实施方式,且能以各种方式实施或执行。

如在此说明书及所附权利要求书中所用,术语“基板”是指有工艺作用于其上的表面、或表面的部分。除非上下文另外清楚指出,本领域技术人员也会了解,对于基板的提及也可仅指基板的一部分。此外,对基板上的沉积的提及可意味着裸基板及上面形成或沉积有一或多个膜或特征的基板。

如本文所用的“基板”是指,在制造工艺期间上面执行膜处理的任何基板或基板上形成的材料表面。举例而言,视应用而定,上面能够执行处理的基板表面包括:下述材料,诸如硅、氧化硅、应变硅、绝缘体上硅(soi)、碳掺杂的氧化硅、氮化硅、掺杂硅、锗、砷化镓、玻璃、蓝宝石;及任何其他材料,诸如金属、金属氮化物、金属合金、及其他导电材料。基板非限制性地包括半导体晶片。基板可暴露于预处理工艺,以抛光、蚀刻、还原、氧化、氢氧化、退火、uv固化、电子束固化、和/或烘烤该基板表面。除了直接在基板本身表面上进行处理之外,在本发明中,所公开的膜处理步骤中的任一步骤也可在下层上执行,该下层形成于基板上,如在下文中更详细公开的,且术语“基板表面”旨在包括如上下文所指的此类下层。因此,举例而言,在膜/层或部分的膜/层已沉积于基板表面上时,有新沉积的膜/层的暴露表面变成该基板表面。

本公开内容的一或多个实施方式针对经由使用新颖的硅氮前驱物沉积氮化硅膜的方法。本公开内容的实施方式利用多种cvd工艺。一些实施方式中,使用等离子体增强cvd(pecvd)工艺。pecvd工艺类似于与以等离子体方式供应一或多种反应物结合的本领域通常已知的cvd工艺。不受限于理论,pecvd工艺利用存在于等离子体反应物中的自由基,以促成原本通过常规的热反应无法获得的反应。一些实施方式中,使用可流动cvd(fcvd)工艺。fcvd工艺类似于本技术中通常已知的cvd工艺,区别在于,沉积的材料为“可流动的”,使得该材料沿着基板表面移动,以填充基板特征。在fcvd工艺中沉积的可流动材料一般经固化而将所述可流动材料凝固(solidify)成固化膜,该固化膜不再能够沿着基板表面移动。

一些实施方式中,膜沉积工艺包括,将基板暴露于硅氮前驱物及nh3等离子体,以沉积可流动sin聚合物。该可流动聚合物经固化而形成固化sin膜。

图1示出基板100的横截面视图,基板100具有两个特征110(例如,沟槽或通孔)。图中特征的数目仅为了说明的目的,而不应视为对本公开内容的范围的限制。本领域技术人员会了解,可以没有特征或有任何数目的特征。特征110的形状可为任何适合的形状,所述形状包括但不限于沟槽及圆柱状通孔。如在这方面所用,术语“特征”意味着任何深宽比大于或等于约2:1的有意的表面不规则。该特征的深宽比是特征的深度d相对于特征的宽度w的比例。比起较低深宽比的特征,更高的深宽比特征会具有更窄/更长的形状。一些实施方式中,该特征所具有的深宽比大于或等于约3:1、4:1、5:1、6:1、7:1、8:1、9:1、10:1、15:1、20:1、25:1或30:1。为了本公开内容,沟槽具有顶部、两个侧壁,这两个侧壁从表面向下延伸至底部。如所说明的,每一侧壁可实质上正交底部,或可相对于底部以有别于90度的角度倾斜,使得在表面处的开口大于特征的下部处的开口。

参考图1,基板100可包括两种材料;第一材料120与第二材料130。一些实施方式中,第一材料120与第二材料130是相同材料,使得特征110由相同材料限制在侧边与底部上。一些实施方式中,第一材料120与第二材料130是不同的,使得特征的底部115是与特征110的侧壁111、112不同的材料。

特征110从基板表面125延伸进入基板100达一距离d而至底部115。特征110具有第一侧壁111与第二侧壁112,而界定特征110的宽度w。侧壁与底部形成的开放区域也称作缝隙。填充该缝隙的材料称作缝隙填充物(gapfill)。

参考图2a与2b,本公开内容的一或多个实施方式针对膜沉积工艺,所述膜沉积工艺利用硅氮前驱物与等离子体(例如,氨)。一些实施方式中,该硅氮前驱物与等离子体反应物同时流进处理腔室中。该硅氮前驱物与等离子体可在处理腔室中混合,或在进入该处理腔室之前混合。一些实施方式中,这些反应物依序流进该处理腔室,以避免前驱物及等离子体反应物的气相混合。

一些实施方式中,硅氮前驱物包括一化合物,该化合物具有通式(i)

其中r取代基(r1-r5)中的每一个独立地选自h或c1-c4烷基。为了本公开内容的目的,c1-c4烷基意味具有1至4个碳原子的任何基团。c1-c4烷基基团的实例包括但不限于:甲基、乙基、丙基、异丙基、丁基、异丁基、二级丁基、及第三丁基基团。一些实施方式中,r基团的全部基团都相同。一些实施方式中,r取代基中的至少一个是甲基基团。一些实施方式中,r基团中的至少一个是非氢原子。一些实施方式中,r基团中的至少一个包括乙基基团、丙基基团、异丙基基团、丁基基团、异丁基基团、二级丁基基团、或第三丁基基团。

一些实施方式中,硅氮前驱物基本上由化学式(i)的化合物组成,其中r1-r5各自独立地为h或c1-c4烷基。如在这方面所用,术语“基本上由……组成”意味着,硅氮前驱物中的反应性物种为,在摩尔基础上,有大于或等于约95%的该指定物种。一些实施方式中,该硅氮前驱物包括下述的一或多种:

一些实施方式中,该硅氮前驱物包括具有通式(ii)的化合物

其中r取代基(r1-r5)的每一个独立地选自h或c1-c4烷基。c1-c4烷基的实例包括但不限于甲基、乙基、丙基、异丙基、丁基、异丁基、二级丁基、及第三丁基基团。一些实施方式中,所有的r基团相同。一些实施方式中,r取代基中的至少一个是甲基基团。一些实施方式中,r基团中的至少一个是非氢原子。一些实施方式中,r基团中的至少一个包括乙基基团、丙基基团、异丙基基团、丁基基团、异丁基基团、二级丁基基团、或第三丁基基团。

一些实施方式中,硅氮前驱物基本上由化学式(ii)的化合物组成,其中r1-r5各自独立地为h或c1-c4烷基。一些实施方式中,该硅氮前驱物包括下述的一或多种:

一些实施方式中,该硅氮前驱物包括具有通式(iii)的化合物

其中r取代基(r1-r2)的每一个独立地选自h或c1-c4烷基。c1-c4烷基的实例包括但不限于甲基、乙基、丙基、异丙基、丁基、异丁基、二级丁基、及第三丁基基团。一些实施方式中,所有的r基团相同。一些实施方式中,r取代基中的至少一个是甲基基团。一些实施方式中,r基团中的至少一个是非氢原子。一些实施方式中,r基团中的至少一个包括乙基基团、丙基基团、异丙基基团、丁基基团、异丁基基团、二级丁基基团、或第三丁基基团。

一些实施方式中,硅氮前驱物基本上由化学式(iii)的化合物组成,其中r1-r2独立地为h或c1-c4烷基。一些实施方式中,该硅氮前驱物包括下述的一或多种:

可用一或多个脉冲或连续地提供该硅氮前驱物。该前驱物的流速可为任何适合的流速,包括但不限于下述流速:在约1sccm至约1000sccm的范围内、或在约2sccm至约500sccm的范围内、或在约3sccm至约200sccm的范围内、或在约5sccm至约100sccm的范围内、或在约10sccm至约50sccm的范围内、或在约15sccm至约25sccm的范围内。一些实施方式中,该前驱物的流速小于或等于约50sccm、约45sccm、约40sccm、约35sccm、约30sccm、约25sccm、约20sccm、或约15sccm。可于任何适合的压力下提供该前驱物,该压力包括但不限于下述压力:在约5毫托至约25托耳的范围内、或约100毫托至约20托耳的范围内、或约5托耳至约20托耳的范围内、或约50毫托至约2000毫托的范围内、或约100毫托至约1000毫托的范围内、或约200毫托至约500毫托的范围内。

意欲如本文所用的“脉冲”或“配剂(dose)”是指间歇式或不连续地引入处理腔室的反应物的量。每一脉冲内的特定化合物的量可随时间变化,取决于脉冲持续时间。任何特定的反应物可包括单一化合物或两种或更多种化合物的混合物/组合。

每一脉冲/配剂的持续时间是可变的,且可经调整以适应例如处理腔室的体积容量以及与处理腔室耦接的真空系统的能力。此外,反应物的配剂时间可根据下述因子而变化:反应物的流速、反应物的温度、控制阀的类型、运用的处理腔室的类型、以及反应物的成分反应并形成适合的膜的能力。配剂时间也可根据所形成的膜的类型及基板的几何形状而变化。配剂时间应该够长,以提供足以吸附/化学吸附至实质上基板的整体表面上并在上面形成反应性物种的层的反应物体积。

一些实施方式中,该反应物包括惰气、稀释剂气体和/或载气。所述惰气、稀释剂气体和/或载气可与反应性物种混合,且可脉冲输送或具有连续流动。一些实施方式中,该载气以约1至约20000sccm的范围内的固定流速流进处理腔室。该载气可为不干涉膜沉积的任何气体。例如,该载气可包括下述的一或多种:氩气、氦气、氢气、氮气、氖气、或类似物、或上述气体的组合。一或多个实施方式中,该载气在流进处理腔室之前先与该反应性物种混合。

可在任何适合的位置生成氨等离子体。可在处理腔室内生成或点燃等离子体(例如,直接等离子体),或者能够在处理腔室外侧生成等离子体,且使该等离子体流进处理腔室(例如,远程等离子体)。一些实施方式中,在处理腔室外部生成等离子体,例如,通过远程等离子体源来产生。一些实施方式中,远程等离子体的生成可发生在沉积腔室的上游,使得反应性物种与沉积膜直接接触。

针对氨等离子体描述该等离子体。然而,本领域技术人员会了解,该等离子体能够具有有别于氨的反应性物种。例如,该等离子体可包括氮或联胺。该氨等离子体可经由对于本领域技术人员已知的、任何适合的等离子体生成工艺或技术生成。例如,等离子体可由微波(mw)频率产生器或射频(rf)产生器中的一或多种生成。可取决于使用的特定反应性物种而调整等离子体频率。适合的频率包括但不限于2mhz、13.56mhz、40mhz、60mhz及100mhz。

一些实施方式中,nh3等离子体是使用远程等离子体源而生成。一些实施方式中,等离子体功率小于或等于约300w。一或多个实施方式中,等离子体功率小于或等于约250w、200w、150w、100w、50w、或25w。一些实施方式中,等离子体功率是在约10w至约200w的范围、或在约25w至约175w的范围、或在约50w至约150w的范围。

一些实施方式中,等离子体是在远程等离子体源中生成,且流至处理腔室的处理区域中,使得存在于等离子体中的自由基能够与硅氮前驱物或是基板或基板上的膜反应。一些实施方式中,远程等离子体配置成使得在处理腔室的处理区域中有比离子更大量的自由基。

一些实施方式中,作为等离子体源的替代或是除了等离子体源之外,使用热丝来生成nh3自由基。如在本说明书中及所附的权利要求书中所用,术语“热丝”意味着这样的元件:所述元件能够被加热至足以在流过该元件的流体中生成自由基的温度。一些实施方式中,热丝是一或多个金属灯丝(例如,钨)。一些实施方式中,热丝是包括以下项中的一或多种的灯丝:钨、钽、或钌。一些实施方式中,该灯丝的温度维持在约200℃至约1500℃的范围、或约1000℃至约1500℃的范围、或约1100℃至约1400℃的范围。一些实施方式中,该灯丝的温度维持在低于约1500℃、1400℃、1300℃、或1200℃的温度。在其中运用热丝产生自由基物种的实施方式中,该基板维持在冷的温度(也就是低于或等于约25℃)。

沉积期间,可控制基板100的温度。一些实施方式中,基板100冷却至小于或等于约25℃的温度。这样的冷却可通过任何适合的手段完成,所述手段包括但不限于:改变基板支撑件的温度,或是将冷却气体流至基板表面。一些实施方式中,基板支撑件包括冷却器,可控制该冷却器以传导式改变基板温度。一或多个实施方式中,所运用的气体(包括反应物和/或载气)经冷却而局部改变基板温度。一些实施方式中,冷却器定位在腔室内邻近基板表面,以对流式改变基板温度。

参考图2a,基板100暴露于硅氮前驱物及反应物,以在基板上形成可流动膜210。图2a中所图示的可流动膜210仅在特征中;然而,本领域技术人员会了解,这仅为了说明的目的。

可流动膜210可沉积在维持于任何适合的温度的基板上。一些实施方式中,该基板维持在下述温度:约-100℃至约25℃的范围、或约-75c至约20℃的范围、或约-50℃至约10℃的范围、或约-25℃至约0℃的范围。不受理论所限制,温度维持在低温,以促进硅氮前驱物聚合。一些实施方式中,基板维持在低于约25℃、20℃、15℃、10℃、5℃、0℃、-10℃、-20℃、-30℃、-40℃、-50℃、-60℃、-70℃、-80℃或-90℃的温度。

可流动膜210可在任何适合压力下形成。一些实施方式中,用于形成可流动膜210的压力为下述压力:在约0.5托耳至约50托耳的范围、或在约0.75托耳至约25托耳的范围、或在约1托耳至约10托耳的范围、或在约2托耳至约8托耳的范围、或在约3托耳至约6托耳的范围。

参考图2b,沉积后,将可流动膜210固化,以形成固化膜220。可流动膜210可通过任何适合手段固化。一些实施方式中,可流动膜210是通过暴露于等离子体内或来自热丝的自由基而固化。一些实施方式中,可流动膜210是通过暴露于紫外线(uv)辐射而固化。一些实施方式中,无需使用uv辐射即固化可流动膜210。一些实施方式中,实质上仅通过自由基的暴露固化可流动膜210。如在本说明书及所附的权利要求书中所用,术语“实质上仅通过自由基的暴露固化”意味大于或等于约90%、95%、98%、或99%的可流动膜210是使用自由基而固化。

一些实施方式中,固化的膜经过后沉积处理工艺。一些实施方式中,该后沉积处理工艺包括抛光、蚀刻、还原、氧化、氢氧化、退火、uv固化、电子束固化、或烘烤基板表面或任何沉积的膜中的至少一个工艺。

参考2b图,固化膜220形成于基板100上。在该缝隙内,缝隙填充物的部分膜沿着侧壁111、112及底部115形成。当此膜形成,若在底部被缝隙填充物材料填充之前缝隙顶部关闭,则存在接缝形成的可能性。接缝形成更可能在更高深宽比特征中发生,因为特征顶部的膜倾向夹挤关闭,使得空隙封闭于沉积的缝隙填充物内。如在这方面所用,术语“接缝”意味着侧壁111、112之间的任何空间或空隙,其中该空隙空间的容积大于该缝隙或其他特征的容积的1%。一些实施方式中,沉积的固化sin膜实质上无接缝。

所公开的实施方式的固化膜具有更高的氮原子对硅原子的比例。一些实施方式中,固化sin膜具有大于或等于约0.7、0.8、0.9、或1.0的氮原子对硅原子的比例。一些实施方式中,该固化sin膜具有在下述范围的氮原子对硅原子的比例:下限为约1.0、1.1、1.2、或1.33,上限为约1.33、1.4、或1.5。一些实施方式中,该固化sin膜实质上不含碳原子。如在这方面所用,术语“实质上不含碳原子”意味着,在原子基础上,碳原子构成小于或等于该固化膜中原子的约5%、2%、或1%。

此说明书中对于“一个实施方式”、“某些实施方式”、“一或多个实施方式”、或“一实施方式”的提及意味着,在本公开内容的至少一个实施方式中纳入与该实施方式相关描述的特定特征、结构、材料、或特性。因此,在此说明书全文各处出现诸如“一或多个实施方式中”、“某些实施方式中”、“一或多个实施方式中”、或“一实施方式中”之类的词汇非必然指本公开内容的相同实施方式。再者,所述特定特征、结构、材料、或特性可在一或多个实施方式中以任何适合方式组合。

尽管在本文已参考特定实施方式描述本公开内容,但本领域技术人员将了解这些实施方式仅为对本公开内容的原则与应用的说明。对于本领域技术人员显而易见的是,可在不背离本公开内容的精神与范围的情况下对本公开内容的方法与设备进行各种修改与变型。因此,本公开内容可包括在所附的权利要求书的范围内的修改及变型以及它们的等效形式。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1