铝合金制备装置的制作方法

文档序号:17899604发布日期:2019-06-13 16:15阅读:262来源:国知局
铝合金制备装置的制作方法

本发明涉及铝合金的制备装置技术领域。



背景技术:

细小的铸造铝合金组织能够获得优异的力学性能,通常铸造合金细化方法有添加细化剂、机械振动、超声波、电磁搅拌、快速冷却等,添加细化剂和快速冷却主要是通过提高形核率来细化铝合金组织,而机械振动、超声波和电磁搅拌主要是通过破碎铝合金中的枝晶来细化组织。

铝合金添加细化剂是铝合金工业生产中最重要且最常用的一种合金细化方法,常见的铝合金细化剂有al-ti-b,al-ti-c,al-ti-b-c,al-ti-b-r(r为稀土元素)及al-m-p(m为金属元素)等中间合金。al-ti-b是细化剂是一种非常重要的中间合金细化剂,具有良好的细化效应,其主要通过氟盐反应法、熔炼法、电解法、自蔓延高温合成等。其中氟盐反应法是最常用的方法,但是污染大,形成的tib2颗粒不易控制。熔炼法及自蔓延高温合成生成物的数量和尺寸控制难度大的特点。



技术实现要素:

本发明所要解决的技术问题是如何提供一种可以减小tib2颗粒尺寸,提高其在中间合金中的弥散效果,同时减少细化剂制备的环境污染的铝合金制备装置。

为解决上述技术问题,本发明所采取的技术方案是:一种铝合金制备装置,其特征在于:包括炉体,所述炉体内的下部设置有熔炼坩埚,所述熔炼坩埚内设置有铝原料,所述熔炼坩埚的外侧设置有加热器,所述加热器用于对熔炼坩埚内的铝原料进行加热,所述熔炼坩埚上侧的炉体上设置有合成升降杆,所述合成升降杆的上端位于所述炉体外,所述升降杆的下端位于所述炉体内,且所述升降杆的下端设置有电脉冲器,所述电脉冲器的下端设置有引燃电极,所述合成容器包括上盖和下盖,所述上盖与下盖固定连接,且所述上盖与所述下盖之间设置有导热隔板,导热隔板与所述上盖之间形成第一合金预制块的放置空间,所述第一合金预制块的放置空间内设置有第一合金预制块,所述导热隔板与所述下盖之间形成第二合金预制块的放置空间,所述第二合金预制块的放置空间内设置有第二合金预制块,所述引燃电极的下端延伸至第一合金预制块放置空间内并与所述第一合金预制块接触,所述下盖上设置有若干根搅拌扇叶,且下部的所述下盖上设置有喷射口,所述电脉冲器上侧的合成升降杆上设置有保护盖,所述保护盖用于盖住所述熔炼坩埚的上盖。

优选的,所述搅拌扇叶呈圆周状设置在所述下盖的外周上。

进一步的技术方案在于:所述炉体上设置有排气口。

进一步的技术方案在于:所述炉体上设置有抽真空口。

进一步的技术方案在于:所述导热隔板的制作材料为钨、钽或石墨,其上设置若干小孔用于增加导热性,厚度在0.1mm-10mm之间。

进一步的技术方案在于:所述炉体外设置有升降杆驱动装置,用于驱动所述升降杆进行升降以及旋转运动。

采用上述技术方案所产生的有益效果在于:本发明所述装置和方法首先将tih2粉、铝粉及硼氢化钛粉混合均匀并压制成第二合金预制块;将硼粉、钛粉及铝粉压制成第一合金预制块,并将两种块体放置或者压制在一起,引燃第一合金预制块后,第二合金预制块受热tih2粉及硼氢化钛粉分解并进一步发生自蔓延反应,最终第二合金预制块内通过自蔓延反应形成细小tib2颗粒、含氢钛铝熔体及氢气,氢气的形成瞬间产生高压,将tib2颗粒及含氢钛铝熔体液滴喷射至预先熔炼好的纯铝熔体中,经过除气处理,除渣后,形成al-5%ti-xb中间合金。所述装置和方法可以减小tib2颗粒尺寸,提高其在中间合金中的弥散效果,同时减少细化剂制备的环境污染,进而提高了制备的铝合金的力学性能。

附图说明

下面结合附图和具体实施方式对本发明作进一步详细的说明。

图1是本发明实施例所述装置的结构示意图;

图2是本发明实施例所述装置在制备铝合金过程中的示意图;

其中:1:合成升降杆;2:炉体,3:保护盖,4:电脉冲器,5:引燃电极,6:上盖,7:导热隔板,8:下盖;9:搅拌扇叶,10:喷射口,11:加热器;12:纯铝熔体,13:熔炼坩埚,14:排气口,15:抽真空口,16:第一合金预制块,17:第一合金预制块。

具体实施方式

下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施例的限制。

如图1所示,本发明实施例公开了一种铝合金制备装置,包括炉体2,所述炉体2上设置有排气口14,方便的通过排气口向炉体外排气,应当理解的是,所述排气口上还设置有阀门;所述炉体2上设置有抽真空口15,通过所述抽真空口可以方便的对所述炉体进行抽真空操作。所述炉体2内的下部设置有熔炼坩埚13,所述熔炼坩埚13内设置有铝原料,所述熔炼坩埚13的外侧设置有加热器11,所述加热器11用于对熔炼坩埚13内的铝原料进行加热,所述熔炼坩埚13上侧的炉体2上设置有合成升降杆1,所述合成升降杆1的上端位于所述炉体2外,所述升降杆1的下端位于所述炉体2内,且所述升降杆的下端设置有电脉冲器4,所述炉体2外设置有升降杆驱动装置,用于方便的根据需要驱动所述升降杆进行升降以及旋转运动。

如图1所示,所述电脉冲器4的下端设置有引燃电极5,所述合成容器包括上盖6和下盖8,所述上盖6与下盖8固定连接,且所述上盖6与所述下盖8之间设置有导热隔板7,导热隔板7与所述上盖6之间形成第一合金预制块16的放置空间,所述第一合金预制块16的放置空间内设置有第一合金预制块16;所述导热隔板7与所述下盖8之间形成第二合金预制块17的放置空间,所述第二合金预制块17的放置空间内设置有第二合金预制块17;所述引燃电极5的下端延伸至第一合金预制块放置空间内并与所述第一合金预制块16接触,所述下盖8上设置有若干根搅拌扇叶9,且下部的所述下盖8上设置有喷射口10,优选的,所述搅拌扇叶9呈圆周状设置在所述下盖8的外周上;所述电脉冲器4上侧的合成升降杆1上设置有保护盖3,所述保护盖3用于盖住所述熔炼坩埚13的上盖。

进一步的,所述导热隔板7的制作材料为钨、钽或石墨,其上设置若干小孔用于增加导热性,厚度在0.1mm-10mm之间。

本发明实施例还公开了一种铝合金制备方法,包括如下步骤:

称量硼粉与钛粉将其混合均匀并进行烘干,将混合均匀的粉末压制成第一合金预制块16;

称量tih2粉、铝粉及硼氢化钛粉将其混合均匀并进行烘干,将混合均匀的粉末压制成第二合金预制块17;

将第一合金预制块16放置到炉体内合成容器的上盖内,将第二合金预制块17放入合成容器的下盖8内,且第一合金预制块16与第二合金预制块17之间利用导热隔板7隔开;将合成容器上盖6与合成容器下盖8紧固在一起,将其吊至在炉体2内的合成升降杆1下端的引燃电极上,并使引燃电极与所述第一合金预制块直接接触;

向炉体的熔炼坩埚13内,放入纯铝块,启动熔炼坩埚13外侧的加热器11给纯铝块加热,使其熔化;

将合成容器通过合成升降杆1浸入到熔炼坩埚13内的纯铝熔体12内,如图2所示,利用合成升降杆上的保护盖3盖住熔炼坩埚13,同时启动所述升降杆上的电脉冲器4,电脉冲器4通过引燃电极5引燃第一合金预制块16,第一合金预制块16将热量传递给第二合金预制块17,在快速反应阶段,第一合金预制块17内部的tih2粉和硼氢化钛粉迅速分解放出氢气,形成细小的纳米钛粉和硼粉,钛粉和硼粉在高温下触发自蔓延反应,形成细小的tib2颗粒及硼颗粒;

同时在氢气的瞬间高压下,钛铝熔体携带tib2颗粒及硼颗粒从所述下盖上的喷射口喷射进入预先熔炼好的所述坩埚内的纯铝熔体中,同时启动合成升降杆1旋转来搅拌熔体,使得tib2颗粒弥散进入熔体中;

经过炉体上的抽真空口15给炉体2抽真空,不断旋转所述升降杆使所述搅拌扇叶9旋转,以便于氢气的排出和废渣的上浮,待真空度稳定在10-5pa之后,停止合成升降杆1运动,将合成容器提拉出熔炼坩埚13;

给加热器11断电,使得熔炼坩埚13快速凝固,待凝固后取出制备的al-5%ti-xb中间合金锭,去除上表面的浮渣,即可制备出al-5%ti-xb中间合金锭。

优选的,第一合金预制块中硼粉与钛粉的摩尔比为2:1-2;所述第二合金预制块中tih2粉与硼氢化钛粉的摩尔比为1-2:2,铝粉占摩尔比为5%-30%。

综上,本发明所述装置和方法首先将tih2粉、铝粉及硼氢化钛粉混合均匀并压制成第二合金预制块;将硼粉、钛粉及铝粉压制成第一合金预制块,并将两种块体放置或者压制在一起,引燃第一合金预制块后,第二合金预制块受热tih2粉及硼氢化钛粉分解并进一步发生自蔓延反应,最终第二合金预制块内通过自蔓延反应形成细小tib2颗粒、含氢钛铝熔体及氢气,氢气的形成瞬间产生高压,将tib2颗粒及含氢钛铝熔体液滴喷射至预先熔炼好的纯铝熔体中,经过除气处理,除渣后,形成al-5%ti-xb中间合金。所述装置和方法可以减小tib2颗粒尺寸,提高其在中间合金中的弥散效果,同时减少细化剂制备的环境污染,进而提高了制备的铝合金的力学性能。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1