生长非常均匀的碳化硅外延层的制作方法

文档序号:3397854阅读:312来源:国知局
专利名称:生长非常均匀的碳化硅外延层的制作方法
技术领域
本发明涉及外延生长碳化硅,具体涉及在合适基体上制造非常均匀碳化硅外延层的化学气相沉积方法。
背景技术
本发明涉及生长碳化硅外延层。作为半导体材料,碳化硅由于能够用于高能量、高频率和高温电子器件而特别优越。碳化硅有特别高的热导,并且在其击穿前经得起高电场和高电流密度两者。碳化硅的宽带隙使得它即便在高温依然是低泄漏电流。出于这些和其他原因,碳化硅特别合乎功率器件的要求,亦即可设计它们在相当高的电压下运行。
然而碳化硅却是难以制造的材料。生长工艺要在相当高的温度下进行,对于外延生长至少大约1500℃以上,对于升华生长则要接近2200℃。另外,形成碳化硅可超过150种多型,其中大多数仅以很小的热力学差别来区分。结果,无论是外延层还是整体晶体,碳化硅晶体的生长都是一种附有挑战的工艺。还有,碳化硅特别坚硬(工业上常常用作磨料),这就造成难于将它加工和成形至合适的半导体器件。
尽管如此,近十年来,碳化硅的生长技术仍然取得很大进展并有所反映,例如US 4912063、4912064、Re.34861、4981551、5200022和5459107等,所有这些专利都转让或独家许可给本发明受让人。与本发明共同转让的这些及其他专利在碳化硅生长技术和其后由碳化硅制造合适的半导体器件方面引起世界范围的兴趣。
一种特定的生长技术叫作“化学气相沉积”或“CVD”。在这种方法中,将原料气体(诸如对碳化硅时的硅烷SiH4和丙烷C3H8)引入加热的反应舱室,该舱室还包括原料气体在其表面反应形成外延层的基体。为了有助于控制生长反应的速度,一般都引入带有载气的原料气体,与载气一起构成最大容积的气流。
碳化硅的化学气相沉积(CVD)都要精选一些项目如温度分布,气体速度,气体浓度,化学性质和压力。为制造特定外延层(epilayers)对使用条件的选择常常包括许多因素,例如所要求的生长速度、反应温度、作业时间、气体容积、设备成本,掺杂均匀性以及层厚度。
特别是同其他因素相匹敌的均匀层厚度,它能在随后由外延层制造的半导体器件中趋于提供更加一致的性能。相反,失去均匀性的薄层趋于损伤器件性能,甚至会使这些薄层不适合制造器件。
然而在传统CVD方法中,会发生公知的“消耗”现象,就是原料气体和载气通过反应舱室时原料气体浓度的损失。具体言之,传统CVD体系中,原料和载气平行于基体和外延层表面流动。由于原料气体反应形成外延层,它们的浓度在气体入口或反应器“上流”端部最高而在“下流”端部最低。那么,由于在原料气体通过反应器的旅行期间原料气体的浓度要降低,就会使外延层趋于在上流端部更厚而在下流端部更薄。如上所述,这种均匀性的损失会对许多情况不利,特别是在要求较厚的外延层或者在某些特定器件或器件结构中要求外延层较厚的情况下就特别麻烦。
在其他半导体材料(如硅)的生长技术中,表现的问题可通过直接的技术诸如旋转其上将生长外延层的基体(通常是硅片)来解决。然而这种技术生长碳化硅外延层时要在更高温度下进行,则变得更加复杂更加困难。碳化硅生长方法使用的基座一般必须由高纯石墨附高纯碳化硅涂层来形成。当这种材料形成运动部件时,它们趋于更加复杂并且趋于产生因碳化硅研磨特性而带来的粉尘。因此,对碳化硅而言,这种机械的和与运动有关的解决方案一般不能令人满意,所以,迫切需要一种能产生更加均匀外延层的碳化硅外延生长的化学气相沉积技术,而且还不能对方法带来额外的杂质或机械或化学复杂性。
发明目的和概述因此,本发明的一个目的是提供一种得到更均匀碳化硅外延层的方法。通过能增强碳化硅外延层均匀性并且特别能用来得到更厚外延层的一种改良化学气相沉积方法而实现本发明目的。该方法包括将反应器加热到碳化硅原料气体在反应器内基体上形成外延层的温度;然后让原料气体和载气流过加热的反应器在基体上形成碳化硅外延层,同时载气包括氢气和第二种气体的混和气,其中第二种气体的热导要低于氢气热导,使得原料气体在通过反应器时它的消耗比使用单一氢气作载气时的更低。在特定实施方案中,还优选第二种气体对化学气相沉积反应呈化学惰性。
本发明另一个目的包括厚度高度均匀的碳化硅外延层,其证据是沿横截面的标准厚度偏差。
根据以下结合附图的发明详述将使本发明的前述和其他目的和优点以及实现方式更加清楚。


图1概要说明本发明使用的作示例的化学气相沉积体系;图2和3曲线是现有技术的硅片厚度与自生长外延层上流端部起的距离之关系;图4曲线是本发明方法的硅片厚度与自生长外延层上流端部起的距离之关系;图5曲线是用本发明方法在单一反应器中于三个相邻的硅片上生长外延层时硅片厚度与自上流端部距离之关系;图6照片是用扫描电镜(“SEM”)对带有本发明生长外延层的基体剖开横截面照相得到。
发明详述本发明是一种改良的化学气相沉积方法,该方法增加碳化硅外延层的均匀性并能得到特别有用的更厚的外延层。综观该方法,本发明包括将反应器加热到碳化硅原料气体在反应器内基体上形成外延层的温度;然后让原料气体和载气流过加热的反应器在基体上形成碳化硅外延层,同时载气包括氢气和第二种气体的混和气,其中第二种气体的热导要低于氢气热导,使得原料气体在通过反应器时它的消耗比使用单一氢气作载气时的更低。在特定实施方案中,还优选第二种气体对化学气相沉积反应呈现化学惰性。
在优选实施方案中,第二种气体包括氩气。氩气对本发明有许多优点。特别是氩气的热导明显低于氢气热导。氩气的存在就减轻了原料气体的热导,随之减缓了原料气体通过反应器时消耗的速率。氩气的另一个优点是“高贵”气体,意指它在任何大多数情况下趋于避免同其他元素或化合物反应。因此,氩气对外延层生长基体,对正在生长的外延层或者对体系中的其他气体都可避免任何不合要求的影响。然而应当了解,第二种载气并不限于氩气,而可进行功能性选择,只要(1)载气的热导适度和(2)能避免与原料气体、基体或外延层起不合要求的反应。
在优选实施方案中,载气是用大量氢气和少量第二种载气混和而成。在最优选的实施方案中,氩气和氢气形成混和气体,混和气体优选至少75vol%(体积)的氢气流量,而最优选至多大约90vol%的氢气流量。另外,混和气体并非必须限于氢气和较低热导的气体。如果需要,也可存在另一种气体(如氦气),条件是全部混和气体要满足前述功能性限制条件。
应当了解,本文体积流量意指基于每分钟流过的体积,由化学气相沉积中使用的一般测量气体量的方法测定。
在加热的反应器内,温度应当足够高到能使碳化硅外延层生长,但又要低于氢气载气趋于刻蚀碳化硅的温度。体系温度优选保持在低于大约1800℃,最优选在1500-1650℃之间。超过1800℃温度时,趋于发生不同类型的反应;例如见Kordina等人的文章,碳化硅″热壁″CVD和HTCVD的生长,Phys.Stat.501(B)202,321(1997)。
发现本发明在原料和载气直接流过碳化硅基体时特别有用,最优选的一种基体选择选自4H和6H多型,并且流过反应器时直接平行于外延生长表面。
图1是示范性用于本发明的反应体系示意图。这种化学气相沉积体系的基本结构和配置一般为本领域技术人员所熟知,而且无需过多试验就能用来实施本发明。
图1中,整个CVD体系记作10。该体系包括反应器舱室11,其中含有基座12。基座12一般用反应器外部电极13进行感应技术(如射频)加热。基体14置于基座12上使来自电极13的射频辐射加热基座12。基座再加热基体13。
体系包括图标分别为15和16的原料气体和载气供给器。有一种记作17的适当通道或管路系列直接连接反应器11并流过反应器,由曲线20表示。应当了解,曲线20仅仅只是简单说明和示意的目的,绝非表示气体在化学气相沉积体系中的确切流动图案。然后,气体通过类似一套管路或通道21在反应器下流端部流出。
大量对比实施例充分说明本发明优越性并概括在表1和图2-5中。收集的所有数据来自Cree Research,Inc.进行的试验,位于Durham,North Carolina,本发明的受让人。如上所述,用现有技术(氢气作单一载气)和本发明(氢气和氩气的混和气体作载气)两种方法在碳化硅基体上生长碳化硅外延层。每种情况都用硅烷和丙烷作原料气体,条件是其流速明显小于载气流速。表1

用扫描电镜(SEM)测量试样。硅片沿流动方向剖开。然后将它们放在SEM边缘上。由于薄层比基体的掺杂低许多,则能观察到薄层和基体之间的对比度(图6)。因此能测量薄层厚度。如图2-5所示,沿剖开边缘对几个等距点以此方式进行测量,就能计算厚度的均匀性。也有许多其他方法测量厚度均匀性,此处不再赘述。然而为了再现表1所示均匀性,一般对所有(测量)技术都要将结合“外延-冠”(例如紧靠硅片圆周2mm)的数据点去掉。
在越过所得硅片直径10-15个位点之间测量所得外延层的厚度。然后对每个硅片测量平均厚度(亦即统计学平均值),标准偏差和百分比偏差(表达为平均厚度的百分比的标准偏差)。为了防止边缘效应对现有技术或本发明的结果产生不利影响,计算前应从总数去掉一个或两个数据点。
应当了解,并非因人为地增强结果而任意去掉这些数据点。作为替代,为了避免包括“外延-冠”而去掉硅片边缘的一个或两个数据点,外延-冠通常在外延生长中发现并且一般与消耗作用无关。
如图2,3和4所示,本发明在外延层厚度均匀性方面提供明显的改良。例如,用氢气作单一载气时(图2和3),去掉外延冠测量的数据点后百分比偏差是5.66%和2.66%。然而用本发明时,与单一氢气得到5.66%的同样流速情况下百分比偏差为2.34%。在沿气体流动方向使用几个依次排列的硅片时,本发明的优越效果更加显著。图5说明这种效果,并表明同样条件下生长三个硅片与一个硅片时的均匀性并肩比美。
图2说明现有技术用氢气作单一载气且流速为44l/min时边缘厚度的变化。图3说明用氢气作单一载气流速为60l/min时边缘厚度的变化。图5特别说明用多个硅片生长体系时本发明的优越性。如图5所示,试验本发明方法越过三个硅片的偏差同现有技术越过一个硅片的偏差(如图3所示)类似。
因此,本发明另一方面包括碳化硅外延层,当外延冠测量的数据点从总数中去掉时其带有沿横截面的厚度的标准偏差低于3%。在优选实施方案中,当外延冠的两个数据点从总数中去掉时其标准偏差低于2%,在最优选的实施方案中,标准偏差低于1%。
当然应了解,术语外延层隐含基体的存在,在优选实施方案中,基体是选自4H和6H多型碳化硅的碳化硅单晶基体。
本文所用术语“平均值”,“标准偏差”,“试样”和“总数”皆为其常规含义。这些数值和定义皆为统计学领域所熟知,因此其定义和计算方式不再详细讨论。
氢气和氩气混和气体作载气超过纯氩气作载气,因为氩气相当难于纯化并且昂贵,根据经验观察的基础,它似乎是伤害材料质量而氢气似乎纯化生长材料。要说不同,氢气作载气表现出具有某些除气性能。由于它的低热导,纯氩气作载气还将趋于延缓生长速度使其背离一般所要求的条件。
选择氩气和氢气混和的比例将取决于诸多因素。然而这些因素皆本领域技术人员所熟知,因此,一旦了解本发明的概念精神,本领域技术人员无需过多试验就能选择好混和气体。但是作为实例(非限制性),氢气中混和氩气的量将取决于诸多项条件如热区长度,氩气成本,总气流,气体纯度和区域温度。大多数情况下,热区扩展的(距离)越长且预期或要求的温度越高时,为减轻消耗作用氩气使用的越多。
另外,尽管理论上没有限制最不希望使用的氩气量是多少,然而氩气的价格(如上所述是昂贵的)实际存在。
第三个因素是总气流。在CVD体系中较低的总气流通常是有益的,因为它将减轻真空系统的载荷,要求较少的能量并减少湍流,而且还避免冷却基座。
氩气纯度代表另一个因素。由于氩气不能象氢气那样纯化,用量优选最小化要达到伴随杂质的相应最小化。幸亏因为氩气的热导仅为氢气热导的大约十分之一,相当小份数的氩气就足够实施本发明了。
在生长较厚薄层时,化学气相沉积期间有关均匀厚度控制的所有问题都将恶化。因此本发明对生长较厚薄层提供一种均衡的更显而易见的改良。还有,由于本发明只需要混合气体,就避免了其他降低消耗的体系中的移动部件和机械复杂性。
在说明书和附图中讨论了本发明的代表性实施方案,尽管使用了专门术语,皆属一般使用和说明,绝非限制,本发明范围列于权利要求书。
权利要求
1.一种改良的化学气相沉积方法,它增强碳化硅外延层的均匀性并且对得到较厚外延层特别有用,该方法包括将反应器加热到碳化硅原料气体在反应器内基体上形成外延层的温度;和让原料气体和载气流过加热的反应器在基体上形成碳化硅外延层;其特征在于载气包括氢气和第二种气体的混和气体,其中第二种气体的热导要低于氢气热导,使得原料气体在通过反应器时它的消耗比使用单一氢气作载气时的更低。
2.根据权利要求1的方法,其中第二种载气包括氩气。
3.根据权利要求1的方法,其中第一种载气选自氦气和氦气与氢气的混和气体。
4.根据权利要求1的方法,其中混和载气的步骤包括将较大量氢气与较小量第二种载气进行混和。
5.一种在适当基体上通过化学气相沉积形成碳化硅外延层的方法,其中碳化硅原料气体与第一种载气混和并让它进入温度加热到在反应器内基体上形成碳化硅外延层的反应器;其特征在于混和第二种载气和第一种载气,其中第二种载气的热导低于第一种载气的热导,并且其中第二种载气的存在量能充分调节温度以减少或消除原料气体在碳化硅于基体上外延生长期间的消耗,但该量要低于让温度降低过多并防止原料气体不反应形成外延层。
6.根据权利要求1或5的方法,其中第二种载气对化学气相沉积反应和碳化硅呈化学惰性。
7.根据权利要求1或5的方法,其中原料气体包括含硅化合物和含碳化合物。
8.根据权利要求5的方法,包括将体系加热到低于大约1800℃温度。
9.根据权利要求5的方法,其中加热反应器的温度在大约1500-1650℃之间,在其间硅烷和丙烷将在基体上反应形成碳化硅外延层。
10.根据权利要求1或5的方法,包括让气流以平行于外延层生长表面的方向流过反应器。
11.一种碳化硅外延层,其特征在于去掉外延冠测量的数据点后沿其横截面厚度的标准偏差低于3%。
12.权利要求11的碳化硅外延层,它在单晶碳化硅基体上。
13.根据权利要求12的碳化硅外延层,其中所述碳化硅基体选自4H和6H多型碳化硅。
14.权利要求11的碳化硅外延层,沿其横截面厚度的标准偏差低于2%。
15.权利要求11的碳化硅外延层,沿其横截面厚度的标准偏差低于1%。
16.权利要求11,14或15的碳化硅外延层,它在单晶碳化硅基体上。
17.一种在多个基体上通过化学气相沉积形成碳化硅外延层的方法,包括混和碳化硅原料气体与第一种载气;让原料气体进入反应器,其内含有多个沿气流通道线性排列的基体并使载气和原料气体以上流到下流平行于外延生长表面的方向流过;和加热反应器到原料气在反应器内基体上反应形成碳化硅外延层的温度;其特征在于混和第二种载气和第一种载气,其中第二种载气的热导低于第一种载气的热导,并且其中第二种载气的存在量能充分调节温度以减少或消除原料气体在碳化硅于基体上外延生长期间的消耗,但该量要低于让温度降低过多并防止原料气体不反应形成外延层。
18.根据权利要求5或17的方法,其中第一种载气包括氢气且第二种载气包括氩气。
19.根据权利要求5或17的方法,其中混和载气的步骤包括将较大量第一种载气与较小量第二种载气进行混和。
20.根据权利要求18的方法,其中氢气和氩气混和气体包括75vol%的氢气流量。
21.根据权利要求20的方法,其中氢气和氩气混和气体包括90vol%的氢气流量。
22.根据权利要求17的方法,其中原料气体包括硅烷和丙烷。
23.根据权利要求22的方法,其中反应器的温度加热到大约1500-1650℃之间。
24.根据权利要求1,5或17的方法,包括让原料气体和载气流过选自4H或6H多型的碳化硅基体。
全文摘要
公开一种改良的化学气相沉积方法,该方法能增强碳化硅外延层的均匀性并且对得到较厚外延层特别有用。该方法包括将反应器加热到碳化硅原料气体在反应器内基体上形成外延层的温度;和让原料气体和载气流过加热的反应器在基体上形成碳化硅外延层,同时载气包括氢气和第二种气体的混和气体,其中第二种气体的热导要低于氢气热导,使得原料气体在通过反应器时它的消耗比使用单一氢气作载气时的更低。
文档编号C23C16/32GK1282386SQ98812328
公开日2001年1月31日 申请日期1998年12月14日 优先权日1997年12月17日
发明者O·C·E·科迪纳, K·G·伊尔温, M·J·派斯雷 申请人:克里公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1