高纯度碳材料和被覆有陶瓷膜的高纯度碳材料的制作方法

文档序号:3450459阅读:95来源:国知局
专利名称:高纯度碳材料和被覆有陶瓷膜的高纯度碳材料的制作方法
技术领域
本发明涉及杂质含量极低的碳材料,更详细地说,涉及硅单晶、碳化硅单晶(SiC)、氮化镓(GaN)、氟化钙(CaF2)单晶等半导体产业和原子能产业中使用的,或作为陶瓷膜被覆用基材使用的高纯度碳材料。此外,还涉及以这些高纯度碳材料作为基材的被覆有陶瓷膜的高纯度碳材料。
背景技术
碳材料不仅耐热性、各种机械特性优异,还具有难以与其它金属反应的优点,已广泛用于半导体、机械、原子能产业等。
然而,近年来,无论是使用硅单晶的半导体,还是使用以碳化硅、氮化镓为代表的化合物单晶的半导体的市场已大幅扩大,随即对碳材料的要求也越来越严格。另外作为除此之外的用途,为了使半导体高度集成化,需要产生半导体烧蚀(焼付は)(以下,称之为光蚀刻)用短波长准分子激光光源,碳材料也被用于制造产生该光源的CaF2单晶。
半导体光蚀刻要求有高分辨率,为实现该目的,已逐渐使用CaF2产生氟化氪线(248nm)、氟化氩线(193nm)、氟气线(157nm)等短波长准分子激光。于是,由于迄今为止使用的无定形光学材料不能透过193nm的光,因此,已逐渐使用由荧石(CaF2单晶)构成的透镜。以下,对CaF2单晶的制造进行具体的说明。CaF2单晶通过bridgman法和Czochralski(CZ)法制造。例如,如果通过bridgman法制造CaF2单晶,在下述专利文献1中公开了将石墨材料用作加热器等炉内部件使用。
另一方面,通常由于石墨材料在其气孔和石墨层间滞有金属杂质,因而不能直接使用。因此,申请人在下述专利文献2、3中建议将用含有卤素的气体等对石墨材料进行高纯度化处理、使金属杂质(灰分)降到5ppm或以下的高纯度石墨材料,供半导体、原子能使用。此外,近年来,在下述专利文献中还提到了用于化合物半导体制造的氮含量低的碳材料。
专利文献1特开2000-137101号公报专利文献2特开昭4-18964号公报专利文献3特公平6-35325号公报专利文献4特开2002-249376号发明内容然而,现状是即使将上述各专利文献中所示的降低了金属杂质和氮含量的高纯度石墨材料用作为炉内部件,只要存在氧、氯、磷、硫等杂质,制造CaF2单晶时的产量会极低,产量最多不过10%。
因此,本发明的目的是提供一种所谓的高纯度碳材料,其不仅减少了碳材料气孔中所含的氧、氮、氯、磷、硫,还可减少了与构成石墨材料的碳原子结合的氧、氮、氯、磷、硫、硼。
本发明者们为解决上述课题,进行了精心的研究,结果发现了适合于除去各种杂质元素的高纯度化处理条件,通过这个发现,可以解决上述课题,即减少与碳原子结合的氧、氮、氯、磷、硫、硼,从而完成本发明。
也就是说,本发明的高纯度碳材料,通过SIMS分析法测定的氧的含量为1×1018原子/cm3或以下。其理由是,例如,制造碳化硅单晶时,必须尽可能降低氧浓度,因为通过使用1×1018原子/cm3或以下的碳材料,可以得到具有优异半导体特性的单晶。氧的含量更优选为3×1017原子/cm3或以下,特别优选为1×1017原子/cm3或以下。
此外,本发明的高纯度碳材料,通过SIMS分析法测定的氯的含量为1×1016原子/cm3或以下。其理由是,例如,若将碳材料作为碳化硅外延生长用的炉内夹具使用,通过使氯浓度为5×1015原子/cm3或以下,可以大幅减少混入外延生长膜中的氯。氯的含量更优选为8×1015原子/cm3或以下,特别优选为5×1015原子/cm3或以下。
此外,本发明的高纯度碳材料,通过SIMS分析法测定的氮的含量为5×1018原子/cm3或以下。在制造碳化硅单晶时,必须尽可能降低作为主要杂质混入的氮的浓度。例如,通过使用氮含量为5×1018原子/cm3或以下的碳材料,可以大幅减少碳化硅单晶中的氮浓度。氮的含量更优选为5×1017原子/cm3或以下,特别优选为5×1016原子/cm3或以下。
此外,本发明的高纯度碳材料,通过SIMS分析法测定的磷的含量为1×1016原子/cm3或以下。因为如果将磷的含量为1×1016原子/cm3或以下的碳材料作为碳化硅单晶制造用的夹具,可以大幅减少单晶中的磷浓度。磷的含量更优选为3×1015原子/cm3或以下,特别优选为1×1015原子/cm3或以下。
此外,本发明的高纯度碳材料,通过SIMS分析法测定的硫的含量为1×1016原子/cm3或以下。如果将硫的含量为1×1016原子/cm3或以下的碳材料作为加热器使用制造CaF2单晶,可以大幅提高透过率。硫的含量更优选为5×1015原子/cm3或以下,特别优选为3×1015原子/cm3或以下。
此外,本发明的高纯度碳材料,通过SIMS分析法测定的硼的含量为5×1016原子/cm3或以下。因为硼是碳化硅制造时混入的主要杂质之一,例如,通过将硼的含量为5×1016原子/cm3或以下的碳材料用作为制造用夹具,可以制得硼浓度低的具有优异半导体特性的碳化硅单晶。硼的含量更优选为1×1016原子/cm3或以下,特别优选为5×1015原子/cm3或以下。
如此,可以提供一种所谓的高纯度碳材料,其不仅减少了碳材料气孔中含有的氧、氮、氯、磷、硫,还减少了易于与构成石墨材料的碳原子结合的氧、氮、氯、磷、硫、硼。
此外,由于本发明的高纯度碳材料可以抑制碳化硅单晶、硅单晶、氮化镓或氟化钙单晶等制造过程中结晶缺陷的发生,因此适合用于上述各种晶体的制造。除此之外,还适合用作为碳化硅和氮化镓、硅等外延生长用的夹具。
此外,本发明的高纯度碳材料还可以用作被碳化硅、氮化硼、碳化钽等陶瓷膜被覆的陶瓷膜被覆高纯度碳材料的基底材料。
上述的高纯度碳材料作为陶瓷膜被覆的高纯度碳材料的基底材料,只要其表面被碳化硅、氮化硼、碳化钽等陶瓷膜被覆,就可以得到杂质浓度小的陶瓷膜被覆的高纯度碳材料。


图1本发明的高纯度碳材料的制造方法的流程图。
实施发明的最佳方式首先,对本发明的高纯度碳材料进行说明。
本发明的高纯度碳材料是将通常被定义为碳材料的材料进行了高纯度化处理所得到的材料。例如,为(1)加入粉碎成微粒状的天然石墨、人造石墨、石油焦炭、煤焦炭、沥青焦炭、碳黑、中间相炭(mesocarbon)中的1种以上与沥青、煤焦油、煤焦油沥青、热固性树脂等粘合材料,将其混合、粉碎、成型,烧结,得到烧结碳材料,根据进一步的需要,将其石墨化成石墨化碳材料;(2)将苯酚树脂等热固性树脂碳化从而得到无定形(玻璃状)碳材料;(3)通过树脂碳化(レジンチヤ一)法,将选自上述沥青、苯酚树脂等的粘合材料反复涂覆·浸渍、成型、烧结、树脂浸渍在聚丙烯腈(PAN)类、沥青类、人造丝类等各种碳纤维中制得碳纤维强化碳复合材料,或者代替树脂浸渍或被覆了热分解碳的碳纤维强化碳复合材料;(4)将天然石墨、人造石墨粉末膨胀几十~几百倍后,将压缩成型的薄片状石墨等进行高纯度化处理所得到的材料。
接着,对本发明的高纯度碳材料的制造方法进行说明。
图1中显示了本发明的高纯度碳材料的制造方法的流程图。
本发明的高纯度碳材料的制造方法是在例如氯、三氯甲烷、二氯甲烷、一氯甲烷、氟、三氟甲烷、二氟甲烷、一氟甲烷、一氯三氟甲烷、二氯一氟甲烷、三氯一氟甲烷、一氯乙烷、一氯一氟乙烷、一氯二氟乙烷、一氯三氟乙烷、二氯乙烷、二氯一氟乙烷、二氯二氟乙烷、二氯三氟乙烷、三氯乙烷、三氯一氟乙烷、三氯二氟乙烷、四氯乙烷等的卤素或其化合物的气体气氛下,在2400℃或以上(优选为2450℃或以上)进行高纯度化,主要除去硼(B)和钒(V)等金属杂质(高纯度化工序)。
之后,减压至压力为0.2Pa-0.1MPa(优选为0.5Pa-0.05MPa),在卤素或其化合物的气体气氛下,在2000℃或以上(优选为2050℃-2400℃)进行高纯度化,除去形成挥发性卤化物的金属杂质(超高纯度化工序)。
然后,将进行了这样高纯度处理的碳材料,在减压至100Pa或以下(优选为50Pa或以下)的真空炉内,在1400℃-1600℃,优选为1450℃-1550℃下,加热5小时以上(优选10小时以上),除去氮和氧等挥发性的杂质(脱(氮气)气体工序)。
最后,继脱(氮气)气体工序之后,在加热至1400℃-1600℃(优选为1450℃-1550℃)的真空炉中,引入100Pa-1000Pa(优选为200Pa-900Pa)的氢气,除去容易形成挥发性氢化物的杂质,同时,为了使被处理物碳材料在暴露于大气中时,氮(N)、氧(O)、磷(P)、硫(S)等杂质难以附着在碳材料上,对碳材料的表面进行氢化(氢化工序)。
通过这些处理,除去碳材料气孔或碳原子间化学结合的杂质,同时还可以防止杂质的再次附着。
在此,列出本发明高纯度碳材料制造方法的一个例子。
1.高纯度化工序在常压下,将作为被处理物的碳材料放置在加热至2400℃-2800℃状态的常压石墨化炉内,通入二氯二氟甲烷。由此,可以高效地除去硼(B)和钒(V)。
2.超高纯度化工序将碳材料放置在加热至2000℃-2400℃的真空加热炉内,在10000Pa-50000Pa下,分别通入氯气(Cl2)和二氯二氟甲烷,流量根据被处理物的量而改变,标准大约为0.1-1NLM/kg。主要是除去金属杂质。
3.脱(氮气)气体工序将碳材料放置在减压至100Pa或以下的真空炉内,在1400℃-1600℃下加热10小时-50小时。主要除去氮气和氧气等挥发性的杂质。
4.氢化工序向加热至1400℃-1600℃的真空炉中导入100Pa-1000Pa的氢气,同时保持1小时-10小时。除去容易形成挥发性氢化物的杂质,同时,使作为被处理物的碳材料的表面吸附氢,在将其暴露于大气中时,可防止氮(N)、氧(O)、磷(P)、硫(S)等杂质再次粘附在碳材料上。
接着,对SIMS(二次离子质谱)分析法进行说明。
SIMS分析法是通过用加速至数百-20kV的离子(通常是O2+、Cs+、Ga+)溅射材料表面,通过测定飞出的带正或负电的粒子质量分析材料组成的一种组成分析方法。SIMS分析法的最大特点是可以检出材料所含有的1H至238U的全部元素。SIMS分析法根据照射的离子的量,分为静态SIMS分析法和动态SIMS分析法。在本发明的评价中,使用后者动态SIMS分析法。
本发明所述的高纯度碳材料的杂质浓度测定中所使用的SIMS分析装置是CAMECA IMS-3f·4f·4.5f。根据所测定的元素改变所使用的一次离子的种类。对于硼(B)、铝(Al)、钛(Ti)、钒(V)、铬(Cr)、铁(Fe)、镍(Ni)来说,使用O2+作为一次离子,对于氮(N)、氧(O)、氟(F)、磷(P)、硫(S)、氯(Cl)来说,使用Cs+作为一次离子。使用这些一次离子蚀刻5-10μm的深度后,以浓度稳定时的值作为该元素的浓度。
测定中使用的试验片是将下述实施例和下述比较例的试样预先加工成7mm×7mm×1mm的碳材料以及在这些碳材料表面上用热CVD法堆积了陶瓷膜的被覆陶瓷膜碳材料。
(实施例1)首先,使用常压石墨化和高纯度化炉,制造碳材料作为本发明高纯度碳材料的基底材料。
然后,缓慢加热常压石墨化和高纯度化炉中的加热元件,在1atm下,将石墨化的东洋炭素(株)产的尺寸为20mm×20mm×2mm的各向同性碳材料加热至2450℃,同时,在8小时内通入卤素或其化合物气体,例如二氯二氟甲烷(流量限据容器内填充的被加热炭材料的量而进行增减,例如1-7NLM)(高纯度化工序)。
接着,在由高纯度化工序得到高纯度化炭材料后,在减压下保持炉内为2250℃,同时,再次通入卤素或其化合物气体,例如二氯二氟甲烷。将容器内压力减至1000Pa,在此状态下处理5小时(超高纯度化工序)。
之后,在容器内压力保持为10Pa下冷却至1450℃,于1450℃保持8小时(脱(氮气)气体工序)。
进行脱(氮气)气体工序后,向炉内导入氢气,同时于100Pa保持1小时(氢化工序)。
之后,向容器内导入作为稀有气体的氩气,冷却至室温。冷却至室温后,为了不暴露于大气中,将其与氩气一起封装在聚乙烯树脂膜制成的袋内保存。
(实施例2)暂且将通过与实施例1同样的方法经过高纯度化工序和超高纯度化工序的石墨材料从处理炉中取出。此时,为了尽可能不暴露于大气中,将其与氩气一起封装在聚乙烯树脂膜制成的袋内保存。然后,将该石墨材料从聚乙烯树脂膜制成的袋中取出,再次放置在炉内,再加热至1450℃,同时将容器内压力减至10Pa,进行48小时的热处理(脱(氮气)气体工序)。接着,进行规定时间的热处理后,向炉内导入氢气,同时于100Pa保持1小时(氢化工序)。向容器内导入作为稀有气体的氩气,冷却至室温。冷却至室温后,为了不暴露于大气中,将其与氩气一起封装在聚乙烯树脂膜制成的袋内保存。
(实施例3)
作为脱(氮气)气体工序,将容器压力减至10-2Pa后,在1450℃下,进行24小时的脱(氮气)气体工序,之后在1450℃下,进行氢化工序,除此之外,与实施例1进行同样的操作。
(实施例4)制造与实施例1相同的与东洋炭素(株)产的同样尺寸的C/C材料(碳纤维强化碳复合材料),通过与实施例1相同的方法进行处理。
(实施例5)通过与实施例1同样的方法,对东洋炭素(株)产的尺寸为20mm×20mm×1mm的膨胀石墨薄片材料进行处理。
(实施例6)将通过与实施例1中使用的物质相同的试样和同样的方法得到的经高纯度化工序的石墨材料,在2100℃下,进行5小时的超高纯度化工序。之后,在1400℃下,进行20小时的脱(氮气)气体工序,同样在1400℃下,导入氢气,在100Pa下,进行1小时的氢化工序,将由此得到的材料作为实施例6的试样。
(实施例7)将通过与实施例1中使用的物质相同的试样和同样的方法得到的经高纯度化工序的石墨材料,在2100℃下,进行5小时的超高纯度化工序。之后,在1500℃下,进行20小时的脱(氮气)气体工序,同样在1500℃下,导入氢气,在100Pa下,进行1小时的氢化工序,将由此得到的材料作为实施例7的试样。
(实施例8)按与实施例1同样的方法,将经高纯度化和超高纯度化工序、脱(氮气)气体工序、氢化工序的石墨材料作为基底材料,在其表面上使用热CVD法被覆100μm厚度的SiC,将此材料作为实施例8的试样。
(比较例1)对通过与实施例1相同的试样和同样的方法得到的经高纯度化工序的石墨材料,不进行超高纯度化工序、脱(氮气)气体工序,在氮气中冷却,将其在大气中保存,以此材料作为比较例1的试样。
(比较例2)将只完成了超高纯度化工序的石墨材料不进行脱(氮气)气体工序,在氮气中冷却,将其在大气中保存,以此材料作为比较例2的试样。
(比较例3)对通过与实施例1同样的方法得到的经高纯度化和超高纯度化工序的石墨材料,不进行脱(氮气)气体工序,在氮气中冷却,将其在大气中保存,以此材料作为比较例3的试样。
(比较例4)作为脱(氮气)气体工序,将容器内压力减压至10Pa后,在1450℃下,进行48小时的脱(氮气)气体工序。之后不继续实施氢化工序。除此之外,与实施例1进行同样的操作。以如此得到的材料作为比较例4的试样。
(比较例5)作为脱(氮气)气体工序,将容器内压力减压至10Pa后,在1300℃下,进行48小时的脱(氮气)气体工序。同样在1300℃下导入氢气,在100Pa下进行1小时的氢化工序。除此之外,与实施例1进行同样的操作。以如此得到的材料作为比较例5的试样。
(比较例6)不进行高纯度化工序,对石墨材料进行超高纯度化工序、脱(氮气)气体工序、氢化工序,以此材料作为比较例6的试样(比较例7)作为脱(氮气)气体工序,将容器内压力减压至10Pa后,在1200℃下,进行48小时的处理。除此之外,与实施例1进行同样的操作。以如此得到的材料作为比较例7的试样。
(比较例8)对与实施例4中使用的物质相同的东洋炭素(株)产的C/C材料,进行与比较例1同样的处理,将如此得到的材料作为比较例8的试样。
(比较例9)对与实施例5中使用的物质相同的东洋炭素(株)产的膨胀石墨薄片材料,进行与比较例1同样的处理,将如此得到的材料作为比较例9的试样。
(比较例10)对通过与实施例3中使用的物质相同的试样和相同的方法得到的经高纯度化工序和超高纯度化工序处理的石墨材料,在其表面上通过与实施例8同样的方法被覆SiC膜,以此材料作为比较例10的试样。
通过上述SIMS分析法,对实施例1-7和比较例1-9的石墨材料中的杂质浓度进行测定。实施例1-7的试样的杂质浓度统一列在表1中,比较例1-9的试样的杂质浓度归纳于表2中。实施例8和比较例10的SiC中的杂质浓度也通过上述SIMS分析法测定。实施例8和比较例10的各试样的杂质浓度归纳于表3中。
表1 (单位原子/cm3)

表3

试验期内每天8:00给料,下午2:00捡蛋,结果如表4表4

表4经t检验,对照组与试验组比较差异不显著。而同期饲料成本试验组每吨1500元,对照组每吨1625元,每吨相差125元,每生产百公斤鸡蛋可节约成本20元,效益可观。
二、猪用配合料(猪配2)试验情况选择40头体重25 kg左右的三元杂交猪按试验要求分为2组,每组20头,预试期7天,进行驱虫和防疫注射,采用群饲,充分喂料,自由饮水,正试期62天。对照组和试验组日粮组成如表5(重量百分比)表5

此外,通过使用硼浓度也低的实施例1-4和7的石墨材料,可以制造供体(donor)密度低的SiC半导体。
此外,实施例6的降低了硼浓度的石墨材料,还可以作为CZ法等硅单晶生长用的夹具使用,可以大幅降低所得硅单晶的硼浓度。
另外,如果将上述各个实施例的石墨材料作为原子炉内使用的石墨减速材料和高温气体炉的燃料体石墨块等的原子炉内使用的石墨部件,由于杂质浓度减少,可以抑制放射化。
由表3可以看出,通过将杂质浓度低的石墨材料作为SiC被覆用的石墨基底材料使用,除金属杂质外,硼和氮等SiC膜中的杂质的浓度也被降低。同时,通过将实施例8所述的SiC被覆的石墨材料作为硅半导体等制造夹具使用,可以降低硅外延生长膜中的杂质浓度。
另外,本发明可以在不脱离权利要求的范围内进行设计修改,但不局限定于实施例等。
权利要求
1.一种高纯度碳材料,其中,通过SIMS分析法所测定的氧含量为1×1018原子/cm3或以下。
2.权利要求1所述的高纯度碳材料,其中,通过SIMS分析法所测定的氯含量为1×1016原子/cm3或以下。
3.权利要求1或2所述的高纯度碳材料,其中,通过SIMS分析法所测定的氮含量为5×1018原子/cm3或以下。
4.权利要求1-3中任一项所述的高纯度碳材料,其中,通过SIMS分析法所测定的磷含量为1×1016原子/cm3或以下。
5.权利要求1-4中任一项所述的高纯度碳材料,其中,通过SIMS分析法所测定的硫含量为1×1016原子/cm3或以下。
6.权利要求1-5中任一项所述的高纯度碳材料,其中,通过SIMS分析法所测定的硼含量为5×1016原子/cm3或以下。
7.一种高纯度碳材料,其中,通过SIMS分析法所测定的硼含量为1×1016原子/cm3或以下。
8.权利要求7所述的高纯度碳材料,其中,通过SIMS分析法所测定的氮含量为5×1018原子/cm3或以下。
9.权利要求1-8中任一项所述的高纯度碳材料,其用于碳化硅单晶、硅单晶、氮化镓单晶或氟化钙单晶的制造。
10.权利要求1-8中任一项所述的高纯度碳材料,其用作碳化硅、氮化镓、硅的外延生长用夹具。
11.权利要求1-8中任一项所述的高纯度碳材料,其用作陶瓷膜被覆用的基底材料。
12.一种被覆陶瓷膜的高纯度碳材料,其中,以权利要求1-8中任一项所述的高纯度碳材料作为基底材料,表面被陶瓷膜被覆。
全文摘要
本发明提供用于制造半导体等单晶的高纯度碳材料、用作陶瓷膜被覆用基底材料的高纯度碳材料和陶瓷膜覆盖的高纯度碳材料,该材料减少了容易与碳原子结合的氧气、氮气、氯气等气体和磷、硫、硼这样通过热容易与碳原子结合的元素。本发明的高纯度碳材料通过SIMS分析法所测定的氧的含量为1×10
文档编号C01B31/26GK1623894SQ20041009210
公开日2005年6月8日 申请日期2004年10月9日 优先权日2003年10月10日
发明者藤田一郎, 野上晓 申请人:东洋炭素株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1