一种带有硫化铝外壳的硫化铜纳米粉末材料及其制备方法

文档序号:3455707阅读:560来源:国知局
一种带有硫化铝外壳的硫化铜纳米粉末材料及其制备方法
【专利摘要】本发明公开了一种带有硫化铝(Al2S3)外壳的硫化铜(CuS)纳米粉末材料及其制备方法,属于纳米材料制备【技术领域】。该纳米粉末材料为核壳结构,内核为CuS纳米颗粒,外壳为Al2S3层;所述CuS纳米颗粒内核的粒径为10~100nm,所述Al2S3外壳层为非晶Al2S3层,其厚度为1~10nm。本发明采用等离子电弧放电法,将铜粉和铝粉按一定原子百分比压制成块体作为阳极材料,采用石墨作为阴极材料,引用氩气和硫化氢气作为工作气体,阴极与阳极之间保持一定距离,阴阳极之间起电弧放电,即得带有Al2S3外壳的CuS纳米粉末材料。本发明制备过程简单、无后处理工序及成本低,易于实现工业化生产。
【专利说明】一种带有硫化铝外壳的硫化铜纳米粉末材料及其制备方法

【技术领域】
[0001]本发明属于纳米材料制备【技术领域】,具体涉及一种带有硫化铝(Al2S3)外壳的硫化铜(CuS)纳米粉末材料及其制备方法。

【背景技术】
[0002]金属硫化物是一类非常重要的半导体材料。金属硫化物纳米材料在光催化材料、发光材料、非线性光学材料和光敏传感器材料等方面的广阔应用前景引起人们强烈的研究兴趣。硫化物半导体在我们的生产与生活中起到了越来越重要的作用。作为一种有独特性质的CuS,亦引起人们特别关注,因为当温度超过其临界温度时,CuS会产生磁性和导电性能的转变。在太阳能电池、加氢脱硫催化反应,以及光电导材料和锂-硫电池阴极材料等方面都有着广泛的应用。目前,多种形貌的CuS纳米材料被相继合成出来,如纳米晶、纳米棒、三角状纳米棱柱、三维花状等。然后由于CuS纳米材料在应用中由于体积收缩变化带来的破裂问题已经严重影响到CuS纳米材料的实际应用。为了更好的解决这一问题,研究人员采用了核壳结构这一特殊的微观结构,给CuS纳米材料包裹上一层外壳,以达到保护作用。现在被广泛应用的外壳材料为碳材料,但是碳材料无法为S离子的传输提供足够平滑的通道。因此,开发一种硫化物外壳的CuS纳米材料,已经成为现在的研究热点。经检索,带有Al2S3外壳的CuS纳米粉末材料未见报导。


【发明内容】

[0003]本发明的目的是提供一种带有硫化铝(Al2S3)外壳的硫化铜(CuS)纳米粉末材料及其制备方法。
[0004]本发明提供了一种带有硫化招(Al2S3)外壳的硫化铜(CuS)纳米粉末材料,该纳米材料为核壳结构,内核为硫化铜(CuS)纳米颗粒,外壳为硫化招(Al2S3)层;所述CuS纳米颗粒内核的粒径为10?lOOnm,所述Al2S3外壳层为非晶Al2S3层,其厚度为I?10nm。
[0005]本发明还提供了上述带有硫化招(Al2S3)外壳的硫化铜(CuS)纳米粉末材料的制备方法,该材料是利用等离子体电弧放电技术,在工作气体下原位制备得到;其中:
[0006]采用石墨电极为阴极,铜铝粉末块体为阳极靶材,阴极石墨电极与阳极铜铝粉末块体之间保持2?30mm的距离;电弧放电的电压为10?40V ;工作气体为氩气和硫化氢气体。
[0007]所述阳极为铜铝粉末块体,将铜粉和铝粉在压强IMpa?IGpa下压制成块体作为等离子电弧炉的阳极材料,所述阳极材料中铜所占的原子百分比为95?99%。
[0008]所述工作气体氩气的分压为0.01?0.5Mpa,硫化氢气体的分压为0.01?
0.3MPa。
[0009]相对于现有技术,本发明的突出优点在于
[0010]I)本发明首次制备出了带有硫化招(Al2S3)外壳的硫化铜(CuS)纳米粉末材料;
[0011]2)本发明制备过程条件简单,易于控制,为带有Al2S3外壳的CuS纳米粉末材料的实际应用提供了条件;
[0012]3)本发明所制备纳米粉末材料,由于Al2S3外壳的存在能有效控制CuS纳米颗粒在充放电过程之中的破裂问题,使带有Al2S3外壳的CuS纳米粉末材料成为锂-硫电池负极强有力的候选材料。

【专利附图】

【附图说明】
[0013]图1为制备本发明带有硫化铝(Al2S3)外壳的硫化铜(CuS)纳米粉末材料的装置示意图;
[0014]其中:1、上盖;2、阴极;3、阀;4、革巴;5、观察窗;6、挡板;7、铜阳极;8、夹头;9、石墨坩埚;10、直流脉动电源;a、冷却水;b、氩气;c、硫化氢气。
[0015]图2为本发明制备的带有硫化铝(Al2S3)外壳的硫化铜(CuS)纳米粉末材料的X-射线衍射(XRD)图谱;
[0016]根据JCPDS PDF卡片(JCPDS卡,N0.79-2321),可以检索出所得带有硫化铝(Al2S3)外壳的硫化铜(CuS)纳米粉末材料主相为CuS晶相构成,由于Al2S3是非晶态,且处于外壳,所以XRD无法检测出Al2S3相。
[0017]图3为本发明制备的带有硫化铝(Al2S3)外壳的硫化铜(CuS)纳米粉末材料的透射电子显微镜(TEM)图像;
[0018]从图中可以看出所得产物具有核壳结构,CuS纳米颗粒内核的粒径为10?lOOnm,Al2S3层的厚度为I?1nm0
[0019]图4为本发明所制备的带有硫化铝(Al2S3)外壳的硫化铜(CuS)纳米粉末材料的高分辨透射电子显微镜图像;
[0020]从图中可以看出所得带有硫化招(Al2S3)外壳的硫化铜(CuS)纳米粉末材料内核为CuS,外壳为非晶的Al2S3外壳。

【具体实施方式】
[0021 ] 下面结合实施例对本发明作进一步的描述,但本发明不局限于下述实施例。
[0022]实施例1
[0023]将图1所示的装置上盖I打开,用石墨作阴极2固定在夹头8上,所消耗阳极靶材4的成分为纯铜粉与纯铝粉(原子比99:1)压成的块体,放在通冷却水的铜阳极7上,在通冷却水的铜阳极和靶材之间是石墨坩埚9。阴极石墨电极与阳极铜铝粉末块体之间保持30mm的距离。盖上装置上盖I,通冷却水a,通过阀3把整个工作室抽真空后,通入IS气b和硫化氢气C,氩气的分压为0.5Mpa,硫化氢气的分压为0.3Mpa,接通直流脉动电源10,电压为40V。弧光放电过程中调节工作电流与电压保持相对稳定。制得带有硫化铝(Al2S3)外壳的硫化铜(CuS)纳米粉末材料,具有核壳结构,晶态CuS纳米颗粒内核的粒径为10?10nm,非晶Al2S3层的厚度为I?1nm0
[0024]实施例2
[0025]将图1所示的装置上盖I打开,用石墨作阴极2固定在夹头8上,所消耗阳极靶材4的成分为纯铜粉与纯铝粉(原子比95:5)压成的块体,放在通冷却水的铜阳极7上,在通冷却水的铜阳极和靶材之间是石墨坩埚9。阴极石墨电极与阳极铜铝粉末块体之间保持2_的距离。盖上装置上盖I,通冷却水a,通过阀3把整个工作室抽真空后,通入氩气b和硫化氢气C,氩气的分压为0.0lMpa,硫化氢气的分压为0.0lMpa,接通直流脉动电源10,电压为1V0弧光放电过程中调节工作电流与电压保持相对稳定。制得带有硫化铝(Al2S3)外壳的硫化铜(CuS)纳米粉末材料,具有核壳结构,晶态CuS纳米颗粒内核的粒径为10?10nm,非晶Al2S3层的厚度为I?1nm0
[0026]实施例3
[0027]将图1所示的装置上盖I打开,用石墨作阴极2固定在夹头8上,所消耗阳极靶材4的成分为纯铜粉与纯铝粉(原子比98:2)压成的块体,放在通冷却水的铜阳极7上,在通冷却水的铜阳极和靶材之间是石墨坩埚9。阴极石墨电极与阳极铜铝粉末块体之间保持1mm的距离。盖上装置上盖I,通冷却水a,通过阀3把整个工作室抽真空后,通入IS气b和硫化氢气C,氩气的分压为0.1Mpa,硫化氢气的分压为0.1Mpa,接通直流脉动电源10,电压为20V。弧光放电过程中调节工作电流与电压保持相对稳定。制得带有硫化铝(Al2S3)外壳的硫化铜(CuS)纳米粉末材料,具有核壳结构,晶态CuS纳米颗粒内核的粒径为10?10nm,非晶Al2S3层的厚度为I?1nm0
[0028]实施例4
[0029]将图1所示的装置上盖I打开,用石墨作阴极2固定在夹头8上,所消耗阳极靶材4的成分为纯铜粉与纯铝粉(原子比97:3)压成的块体,放在通冷却水的铜阳极7上,在通冷却水的铜阳极和靶材之间是石墨坩埚9。阴极石墨电极与阳极铜铝粉末块体之间保持1mm的距离。盖上装置上盖I,通冷却水a,通过阀3把整个工作室抽真空后,通入IS气b和硫化氢气C,氩气的分压为0.1Mpa,硫化氢气的分压为0.1Mpa,接通直流脉动电源10,电压为20V。弧光放电过程中调节工作电流与电压保持相对稳定。制得带有硫化铝(Al2S3)外壳的硫化铜(CuS)纳米粉末材料,具有核壳结构,晶态CuS纳米颗粒内核的粒径为10?10nm,非晶Al2S3层的厚度为I?1nm0
[0030]实施例5
[0031]将图1所示的装置上盖I打开,用石墨作阴极2固定在夹头8上,所消耗阳极靶材4的成分为纯铜粉与纯铝粉(原子比98:2)压成的块体,放在通冷却水的铜阳极7上,在通冷却水的铜阳极和靶材之间是石墨坩埚9。阴极石墨电极与阳极铜铝粉末块体之间保持1mm的距离。盖上装置上盖I,通冷却水a,通过阀3把整个工作室抽真空后,通入IS气b和硫化氢气C,氩气的分压为0.2Mpa,硫化氢气的分压为0.2Mpa,接通直流脉动电源10,电压为30V。弧光放电过程中调节工作电流与电压保持相对稳定。制得带有硫化铝(Al2S3)外壳的硫化铜(CuS)纳米粉末材料,具有核壳结构,晶态CuS纳米颗粒内核的粒径为10?10nm,非晶Al2S3层的厚度为I?1nm0
[0032]实施例6
[0033]将图1所示的装置上盖I打开,用石墨作阴极2固定在夹头8上,所消耗阳极靶材4的成分为纯铜粉与纯铝粉(原子比98:2)压成的块体,放在通冷却水的铜阳极7上,在通冷却水的铜阳极和靶材之间是石墨坩埚9。阴极石墨电极与阳极铜铝粉末块体之间保持20mm的距离。盖上装置上盖I,通冷却水a,通过阀3把整个工作室抽真空后,通入IS气b和硫化氢气C,氩气的分压为0.4Mpa,硫化氢气的分压为0.1Mpa,接通直流脉动电源10,电压为30V。弧光放电过程中调节工作电流与电压保持相对稳定。制得带有硫化铝(Al2S3)外壳的硫化铜(CuS)纳米粉末材料,具有核壳结构,晶态CuS纳米颗粒内核的粒径为10?10nm,非晶Al2S3层的厚度为I?1nm0
[0034]实施例7
[0035]将图1所示的装置上盖I打开,用石墨作阴极2固定在夹头8上,所消耗阳极靶材4的成分为纯铜粉与纯铝粉(原子比98:2)压成的块体,放在通冷却水的铜阳极7上,在通冷却水的铜阳极和靶材之间是石墨坩埚9。阴极石墨电极与阳极铜铝粉末块体之间保持20mm的距离。盖上装置上盖I,通冷却水a,通过阀3把整个工作室抽真空后,通入IS气b和硫化氢气C,氩气的分压为0.1Mpa,硫化氢气的分压为0.1Mpa,接通直流脉动电源10,电压为40V。弧光放电过程中调节工作电流与电压保持相对稳定。制得带有硫化铝(Al2S3)外壳的硫化铜(CuS)纳米粉末材料,具有核壳结构,晶态CuS纳米颗粒内核的粒径为10?10nm,非晶Al2S3层的厚度为I?1nm0
【权利要求】
1.一种带有硫化招外壳的硫化铜纳米粉末材料,其特征在于,该纳米材料为核壳结构,内核为硫化铜纳米颗粒,外壳为硫化铝层; 所述硫化铜纳米颗粒内核的粒径为10?10nm ;所述硫化铝外壳层为非晶硫化铝层,其厚度为I?10nm。
2.如权利要求1所述带有硫化招外壳的硫化铜纳米粉末材料的制备方法,其特征在于:该材料是利用等离子体电弧放电技术,在工作气体下原位制备得到;其中: 采用石墨电极为阴极,铜铝粉末块体为阳极,阴极石墨电极与阳极铜铝粉末块体之间保持2?30mm的距离;电弧放电的电压为10?40V ;工作气体为氩气和硫化氢气体;所述阳极材料中铜所占的原子百分比为95?99% ;所述IS气的分压为0.01?0.5Mpa,硫化氢气体的分压为0.01?0.3MPa。
【文档编号】C01G3/12GK104261458SQ201410557601
【公开日】2015年1月7日 申请日期:2014年10月20日 优先权日:2014年10月20日
【发明者】孙玉萍, 刘先国, 郭满荣, 李平 申请人:安徽工业大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1