一种低温液相生产微纳米结构的制备方法与流程

文档序号:12448444阅读:324来源:国知局
一种低温液相生产微纳米结构的制备方法与流程

本发明涉及一种多用途微纳米结构材料的低温液相生产方法,属于新材料技术与微纳米材料领域。



背景技术:

具有微纳米结构的硅材料具有特殊的光学,电学和机械性质,可以作为一种储能材料用在锂离子电池负极中,提高材料的耐用性,并大大提高锂离子电池负极的容量和锂离子电池的能量密度;也可以用在电子器件中,作为一种特殊性能的半导体纳米器件;可以用作一种光伏材料;或用作光电子器件;或用作化学或生物传感器。

现有的类似技术为参考文献1中的方法:在一个四颈烧瓶中加入高熔点有机溶剂(如二十八碳烷烃,三十碳烷烃),然后加入金或铋的纳米晶体种子,用氮气保护下通入硅烷(Si3H8)做硅源,在390-430℃下回流10分钟,生长得到硅纳米线产品。

该方法的缺点一是需要使用有毒易爆的硅烷原料,必须在安全的手套箱内操作,原料也很昂贵;二是金属纳米种子合成麻烦;三是得到的产品只是纳米线,不能得到三维结构产品。

参考文献:

1.Andrew T.Heitsch,Dayne D.Fanfair,Hsing-Yu Tuan and Brian A.Korgel.Solution-Liquid-Solid(SLS)growth of silicon nanowires.Journal of the American Chemical Society,2008,130,5436-5437

2.K.W.Kolasinski.Catalytic growth of nanowires:Vapor-liquid-solid,vapor-solid-solid,solution-liquid-solid and solid-liquid-solid growth.Current Opinion in solid state and materials science 10(2006)182-191.

传统的硅微纳米结构的生成方法还有以下几种:激光刻蚀法,CVD(化学气相沉积),PVD (物理气相沉积),超临界法和化学腐蚀剂刻蚀法。

激光刻蚀法:指使用激光在硅片上烧蚀出微米或纳米结构,不能对硅颗粒进行处理得到微纳米结构,不能对硅颗粒进行大规模生产。

CVD,PVD分别是利用化学或物理方法提供硅源来生长硅结构,一般需要高温,真空和易燃易爆有毒的硅烷做硅源,不适合大规模生产。

超临界法需要高温高压,大规模生产要求高,不经济。



技术实现要素:

本发明提供了一种低温液相生产微纳米结构的方法,其克服了背景技术中以上方法所存在的不足。

本发明解决其技术问题的所采用的技术方案是:

一种低温液相生产微纳米结构的方法,它包括如下步骤:

1)在硅片或硅微粉上沉积一层金属薄层或金属纳米颗粒层;

2)将沉积了金属薄层的硅片或硅微粉放入装有高沸点的烷烃的容器;

3)往容器中通惰性气体以保持惰性气体气氛,一直到产品制备结束;

4)将容器加热升温到200-550℃,保持一定的时间,保持时间可以很短,也可以较长,取决于产品结构的需要;

5)冷却至30℃以上使烷烃保持液态同时又方便过滤操作的温度,将含有硅粉和液态的烷烃倒出过滤,得到的滤渣即为初级产品。

在本发明中,初级产品用酸液处理,金属即溶解到溶液中,过滤干燥后得到最终产品,在某些应用场合初级产品也可以当作最终产品使用。

在本发明中,硅粉或硅片,其形貌可以是任意形貌,比如球体,椭球体,正方体,长方体等。

在本发明中,硅材料的纯度可以是从1%至接近100%。比如硅含量很高的半导体硅材料, 硅含量一般的工业硅材料或硅含量较低的合金材料。

在本发明中,所述的硅片厚度范围优选为100纳米-10毫米;所述的硅微粉优选粒径范围为10纳米-10毫米,

在本发明中,金属薄层或金属纳米颗粒为能与硅形成低熔点的共晶物的金属元素。

在本发明中,前述的金属种类包括铋(Bi),金(Au),铟(In),镓(Ga),铅(Pb),锑(Sb),银(Ag),锡(Sn),镍(Ni),铝(Al),锌(Zn),锗(Ge),镉(Cd),汞(Hg),铊(Tl),铜(Cu)铍(Be)等,

在本发明中,金属薄层或金属纳米颗粒层的厚度范围为1-1000纳米,

在本发明中,沉积方法包括化学沉积法或物理沉积法,例如化学还原法,化学气相法,气相热蒸发法,离子溅射法等。

在本发明中,所述的高沸点的烷烃为沸点超过200℃(或碳原子数为十四以上)的烷烃,其种类包括碳原子数大于十四的直链烷烃或其混合物。如二十八烷烃,二十九烷烃。

本技术方案与背景技术相比,它具有如下优点:

1、本发明主要的优点在于使用溶液相生产适合对硅颗粒的大规模放大生产,温度不高,经济。不需要易燃易爆的硅烷做硅源,安全。

2、直接使用硅颗粒做硅源,相比其他方法用硅烷做硅源要经济,而且更容易形成三维结构。

3.金属催化剂的沉积方法采用化学还原法,简单经济,沉积量易于调节。文献1方法采用金属纳米颗粒,需要另外合成,步骤增多,成本高。

4.金属直接沉积到硅基底上,两者直接接触,有利于硅纳米线的生长。

5.在低温的液相中生长具有微纳米结构的硅材料。

附图说明

下面结合附图和实施例对本发明作进一步说明。

图1为在不同形态硅粉下得到的不同材料产品结构的示意图。

图2为金和硅的合金相图和生长机理。

图3为铋(Bi)金属沉积在硅上的扫描电子显微镜(SEM)图。

图4为实施例1在硅粉上实验的结果。

图5为实施例2在硅片上实验的结果。

具体实施方式

实施例1

1.在100mL浓度为2.5mmol/L HAuCl4+2%HF的沉积溶液中加入1g平均直径为10um(即D50为10um)的硅粉加入该沉积液,搅拌大约5分钟,即可得到平均厚度大约为10nm的金薄膜沉积层(金属薄层的厚度可以按照硅粉表面积来计算所需金属的量)。将沉积完成后的硅粉过滤出来,用去离子水洗几遍后烘干。

2.将沉积烘干后的硅微粉放入装有正二十八烷烃的三颈烧瓶中,

3.往烧瓶中通惰性气体30分钟以上以驱除空气,氧气,保持惰性气体气氛一直到实验结束,

4.将容器缓慢加热升温到380度,保持10分钟,

5.自然冷却至60度,将含有硅粉和液态的烷烃倒出过滤,得到的滤渣即为生长了硅纳米线并含有金的初级产品。

6.将初级产品在王水中浸泡10分钟,金被溶解到溶液中,过滤,清洗,干燥得到如图4的最终产品。

实施例2

1.在厚度为2mm,1×1cm的p型硅片上沉积一层平均厚度约为10nm的金属铋薄层(金 属铋的沉积方法是化学还原法,即在含有10%的氢氟酸和0.1M BiF3的溶液中,将硅片浸泡30秒即得到图3所示表面沉积了金属铋的硅片样品),

2.将沉积了金属铋薄层的硅片放入装有高沸点的二十八烷烃的容器,

3.往容器中通惰性气体30分钟以上以驱除空气,氧气,保持惰性气体气氛一直到实验结束。

4.将容器加热升温到300度,保持10分钟,

5.自然冷却至60度,将含有硅片和液态的烷烃倒出过滤,用丙酮清洗硅片后用硝酸处理溶解掉金属铋,即得到如图5所示的生长了硅纳米线的产品。

实施例3

1.在100mL浓度为2.5mmol/L HAuCl4的溶液中加入1g平均直径为10um(即D50为10um)的硅粉,搅拌均匀后加热至微沸,加入1mL 5%的柠檬酸钠还原剂溶液(其他还原剂试剂也可以),保持微沸慢速搅拌约2分钟以上,即可得到沉积了金薄膜层的硅粉。将沉积完成后的硅粉过滤出来,用去离子水洗几遍后烘干。

2.将沉积烘干后的硅微粉放入装有正二十八烷烃的三颈烧瓶中,

3.往烧瓶中通惰性气体30分钟以上以驱除空气,氧气,保持惰性气体气氛一直到实验结束,

4.将容器缓慢加热升温到380度,保持10分钟,

5.自然冷却至60度,将含有硅粉和液态的烷烃倒出过滤,得到的滤渣即为生长了硅纳米线并含有金的初级产品。

6.将初级产品在王水中浸泡10分钟,金被溶解到溶液中,过滤,清洗,干燥得到如图4的最终产品。

以上所述,仅为本发明较佳实施例而已,故不能依此限定本发明实施的范围,即依本发明专利范围及说明书内容所作的等效变化与修饰,皆应仍属本发明涵盖的范围内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1