可熔合成形的、不含碱金属的、具有中等热膨胀系数的玻璃的制作方法

文档序号:12393357阅读:135来源:国知局

本申请根据35U.S.C.§119要求于2011年8月12日提交的美国临时申请登记No.61/522956和于2012年8月8日提交的美国临时专利申请登记No.13/569756的优先权,本文以这些申请为基础并将其全文通过引用结合于此。

技术领域

本发明总体涉及不含碱金属的玻璃,以及具体来说,涉及不含碱金属的、具有高应变点和/或中等膨胀系数的、可熔合成形的铝硅酸盐玻璃和/或硼铝硅酸盐玻璃,所述玻璃可用于光伏应用,例如薄膜光伏器件。



背景技术:

用于二硒化铜铟镓(CIGS)光伏模块的基板玻璃通常包含Na2O,因为已证明Na从玻璃扩散进入CIGS可显著改善模块效率。但是,因为在CIGS的沉积和/或结晶过程中,难以控制扩散Na的量,有些器件制造商更喜欢在沉积CIGS之前,沉积一层合适的Na化合物层如NaF,在这种情况下,存在于基板玻璃中的任何碱金属都需要通过使用阻挡层来包含。此外,对于碲化镉(CdTe)光伏模块而言,任何Na对CdTe层的污染都会降低模块效率,因此,典型的含Na基板玻璃如钠钙玻璃需要存在阻挡层。因此,在CIGS、硅、结晶硅片或者CdTe模块中使用不含碱金属的基板玻璃可无需使用阻挡层。



技术实现要素:

本文公开的具有中等热膨胀系数和/或不含碱金属的玻璃特别适用于CdTe光伏器件,且可增加电池的效率。

一个实施方式是一种玻璃,以摩尔%计,其包含:

55-75%SiO2

5-20%Al2O3

0-15%B2O3

0-10%MgO;

0-15%SrO;

0-16%CaO;以及

0-9%BaO.

其中,MgO+CaO+BaO+SrO是13-20%,其中所述玻璃基本上不含碱金属,以及其中所述玻璃的液相线粘度大于或等于100,000泊(poise)。

这些玻璃是用于二硒化铜铟镓(CIGS)光伏模块的优选材料,在所述模块中,优化电池效率所需的钠不能来自基板玻璃,而应来源于单独的由NaF之类的含钠材料组成的沉积层。目前,CIGS模块基板通常用通过浮法制造的钠钙玻璃板制成。不过,使用应变点更高的玻璃基板可使CIGS能在更高的温度下接受处理,这有望给电池效率带来有利的改进。

因此,本文所述的不含碱金属的玻璃特征在于,其应变点≥600℃,且热膨胀系数范围是35-50x 10-7/℃,从而将基板与CIGS层的热膨胀不匹配降低到最小或者更好的匹配CdTe的热膨胀。

最后,本发明的优选组合物的应变点远大于650℃,由此使得CIGS或CdTe的沉积/结晶可以在可能的最高加工温度下实施,从而额外的增加效率。

在以下的详细描述中给出了本发明的附加特征和优点,其中的部分特征和优点对本领域的技术人员而言由所述内容而容易理解,或按文字描述和权利要求书实施本发明而被认识。

应理解,前面的一般性描述和以下的详细描述都只是本发明的示例,用来提供理解要求保护的本发明的性质和特性的总体评述或框架。

包括的附图提供了对本发明的进一步理解,附图被结合在本说明书中并构成说明书的一部分。附图呈现了本发明的一个或多个实施方式,并与说明书一起用来解释本发明的原理和操作。

附图说明

仅通过以下详述或与附图一起可更好地理解本发明。

图1是根据一些实施方式的光伏器件特征的示意图。

具体实施方式

下面详细说明本发明的各实施方式。

本文所用术语“基板”可以根据光伏电池的构造用来描述基板或者覆板。例如,如果所述基板在组装入光伏电池时位于光伏电池的入射光侧,则所述基板是覆板。所述覆板可以为光伏材料提供保护,使其免受冲击和环境劣化,同时允许太阳光谱中合适的波长透过。另外,可以将多个光伏电池组装成光伏模块。光伏器件可以表示电池、模块或同时包括此二者。

本文所用的术语“相邻”可以定义为紧邻。相邻的结构可以互相发生物理接触,也可以不发生物理接触。相邻的结构可以包括设置在它们之间的其他的层和/或结构。

除非在具体情况下另外指出,本文所列出的数值范围包括上限和下限值,且旨在包括范围的端点,该范围之内的所有整数和分数。本发明的范围并不限于定义范围时所列举的具体值。此外,当以范围、一种或更多种优选范围、或者优选的数值上限以及优选的数值下限的形式表述某个量、浓度或其它值或参数的时候、应当理解相当于具体揭示了通过将任意一对范围上限或优选数值与任意范围下限或优选数值结合起来的任何范围,而不考虑这种成对结合是否具体揭示。最后,当使用术语“约”来描述范围的值或端点时,应理解本发明包括所参考的具体值或者端点。

如本文所使用,术语“约”指数量、尺寸、公式、参数和其它数量和特征不是精确的或无需精确的,但可以按照要求是接近的和/或更大或者更小,如反射公差、转化因子、四舍五入、测量误差等等,以及本领域技术人员所知的其它因子。一般的,不管是否明确说明,数量、尺寸、公式、参数或其它数量或特征都是“约”或“接近”。

如本文所使用,术语“或”是可兼的;具体来说,相“A或B”指“A,B,或者同时包括A和B”。本文中,排他性的“或”通过术语如“要么A要么B”和“A或B之一”来指定。

使用不定冠词“一个”或“一种”对本发明的元件和部件进行描述。使用这些冠词时指存在一种或至少一种这些元件或组件。尽管这些冠词通常用于预示修饰的名词是单数名词,但除非另有说明,本文所用的冠词“一个”或“一种”也包括复数。类似的,同样除非另有说明,如本文所使用,定冠词“该”也预示修饰的名词可以是单数或复数。

应注意,权利要求书中的一项或多项权利要求使用术语“其特征在于”作为过渡语。出于限定本发明的目的,应当指出,在权利要求中用该术语作为开放式过渡短语来引出对一系列结构特征的描述,应当对其作出与更常用的开放式引导语“包括”类似的解释。

如本文所使用,玻璃组合物包括0重量%的化合物定义为没有故意将该化合物、分子或元素添加到该组合物中,但该组合物可能仍然包括该化合物,通常是以不确定的数量或痕量的方式。类似的,“基本上不含碱金属”、“基本上不含钠”、“基本上不含钾”、“不含钠”、“不含碱金属”、“不含钾”等定义为没有故意将该化合物、分子或元素添加到该组合物中,但该组合物可能仍然包括钠、碱金属或钾,但是以接近不确定的数量或痕量的方式。这些不确定的数量不是故意包含进入批料的,但可能以微量方式作为杂质存在于用来提供玻璃主要组分的原料中。

一个实施方式是一种玻璃,以摩尔%计,其包含:

55-75%SiO2

5-20%Al2O3

0-15%B2O3

0-10%MgO;

0-15%SrO;

0-16%CaO;以及

0-9%BaO.

其中,MgO+CaO+BaO+SrO是13-20%,其中所述玻璃基本上不含碱金属,以及其中所述玻璃的液相线粘度大于或等于100000泊(poise)。

在一个实施方式中,以摩尔%计,所述玻璃包含:

55-75%SiO2

5-13%Al2O3

0-15%B2O3

0-10%MgO;

0-15%SrO;

0-16%CaO;以及

0-9%BaO。

在一个实施方式中,以摩尔%计,所述玻璃包含:

55-75%SiO2

0-20%Al2O3

6-12%B2O3

0-10%MgO;

0-15%SrO;

0-16%CaO;以及

0-9%BaO。

在一个实施方式中,以摩尔%计,所述玻璃包含:

55-75%SiO2

5-13%Al2O3

6-12%B2O3

0-10%MgO;

0-15%SrO;

0-16%CaO;以及

0-9%BaO。

在一个实施方式中,以摩尔%计,所述玻璃包含:

55-75%SiO2

8-13%Al2O3

6-12%B2O3

0-7%MgO;

0-12%SrO;

0-16%CaO;以及

0-9%BaO。

在一个实施方式中,以摩尔%计,所述玻璃包含:

58-69%SiO2

8-13%Al2O3

6-12%B2O3

0-7%MgO;

0-12%SrO;

0-16%CaO;以及

0-9%BaO。

在一个实施方式中,以摩尔%计,所述玻璃包含:

73-75%SiO2

6-9%Al2O3

0%B2O3

1-3%MgO;

0%SrO;

13-16%CaO;以及

1-3%BaO。

在一个实施方式中,以摩尔%计,所述玻璃包含:

60-67%SiO2

8-12%Al2O3

6-12%B2O3

0.05-7%MgO;

0-12%SrO;

0.5-9%CaO;以及

0.5-8%BaO。

所述玻璃基本上不含碱金属,例如碱金属的含量可小于或等于0.05摩尔%,例如为0摩尔%。根据一些实施方式,所述玻璃不含故意加入的碱金属。

所述玻璃基本上不含钠,例如钠的含量可小于或等于0.05摩尔%,例如为0摩尔%。根据一些实施方式,所述玻璃不含故意加入的钠。

所述玻璃基本上不含钾,例如钾的含量可小于或等于0.05摩尔%,例如为0摩尔%。根据一些实施方式,所述玻璃不含故意加入的钾。

所述玻璃基本上不含钠和钾,例如钠的含量可小于或等于0.05摩尔%,例如为0摩尔%。根据一些实施方式,所述玻璃不含故意加入的钠和钾。

在一些实施方式中,所述玻璃包括55-75%的SiO2,例如58-69%的SiO2,或者例如60-67%的SiO2,或者例如73-75%的SiO2

如上所述,根据一些实施方式,所述玻璃包括0-15%的B2O3,例如6-12%。相对于不含B2O3的玻璃,通过向玻璃中加入B2O3可以降低熔融温度、降低液相线温度、增大液相线粘度、以及改进机械耐久性。

根据一些实施方式,所述玻璃包括MgO+CaO+BaO+SrO的量是13-20摩尔%。可以将MgO加入玻璃中,以降低熔融温度和增大应变点。相对于其它的碱土金属(例如CaO、SrO、BaO),加入MgO会不利地降低CTE、因此,可以采取其它的调节措施将CTE保持在所需的范围内。合适的调节措施的示例包括牺牲CaO来增加SrO。

在一些实施方式中,所述玻璃可包括0-15摩尔%的SrO,例如,大于0-15摩尔%,例如1-12摩尔%的SrO。在某些实施方式中,所述玻璃不含故意配入的SrO、当然,SrO也可以作为其它批料中的污染组分包含在其中。SrO有助于提高热膨胀系数、可以通过控制SrO和CaO的相对比例来改进液相线温度、由此改进液相线粘度。SrO不能像CaO或MgO那样有效地改进应变点、用SrO代替此二者中的任一种都会使熔融温度升高。BaO对热膨胀系数的影响,如果没有更大,也与SrO类似。BaO趋于降低熔融温度和降低液相线温度。

在一些实施方式中,所述玻璃包含0-16摩尔%CaO,例如,大于0-15,或者例如,0-12摩尔%的CaO,例如0.5-9摩尔%的CaO。CaO有助于更高的应变点、更低的密度和更低的熔融温度。

根据一实施方式,所述玻璃还包括0-0.5摩尔%的澄清剂。所述澄清剂可以是SnO2.

根据一实施方式,所述玻璃还包括0-2摩尔%的TiO2、MnO、ZnO、Nb2O5、Ta2O5、ZrO2、La2O3、Y2O3、P2O5、或其组合。这些任选的组分可用来进一步定制玻璃性质。

在一些实施方式中,所述玻璃基本不含Sb2O3、As2O3或其组合、例如,所述玻璃包含等于或小于0.05摩尔%的Sb2O3或As2O3或其组合。例如,所述玻璃可以包含0摩尔%的Sb2O3或As2O3或其组合。

因此,在一种实施方式中,所述玻璃的应变点大于或等于600℃,例如,大于或等于610℃,例如,大于或等于620℃,或者例如,大于或等于630℃,或者例如,大于或等于640℃,或者例如,大于或等于650℃。在一些实施方式中,所述玻璃的热膨胀系数是35x 10-7/℃-50x 10-7/℃,例如39x 10-7/℃-50x 10-7/℃。在一些实施方式中,所述玻璃的热膨胀系数是35x 10-7/℃-50x 10-7/℃,且应变点是大于或等于600℃。

所述玻璃可熔合成形,即本领域技术人员所知的熔合成形玻璃。所述熔合拉制法使用溢流槽(isopipe),该溢流槽包括用来接受熔融的玻璃原料的沟槽。这些沟槽沿着沟槽的长度,在沟槽两侧具有顶部开放的堰。当在沟槽内装入熔融材料的时候,熔融的玻璃从堰上溢流。在重力的作用下,熔融玻璃从溢流槽的外表面流下。这些外表面向下和向内延伸,使得它们在拉制容器下方的边缘处结合。两个流动玻璃表面在此边缘处结合并熔合起来,形成单独的流动板材。所述熔合下拉法的优点在于、由于从沟槽溢流的两块玻璃膜会熔合在一起,因此制得的玻璃板的任一外表面都没有与设备的任意部件相接触。因此,表面性质不会受所述接触的影响。

液相线粘度大于或等于100kP(100000泊)的玻璃都是可熔合成形的。液相线粘度范围在10kP-小于100kP的玻璃通常是可用浮法成形的,但不可熔合成形。一些实施方式是不含碱金属玻璃,其Tstr>630℃,α范围是4-5ppm/℃,以及液相线粘度(ηliq)大于100000泊。因此,它们理想地适合通过熔合法成形为板材。此外,许多这种玻璃的200泊温度(T200)远低于1550℃,使它们称为廉价熔合法的理想备选者。

在一个实施方式中,所述玻璃是板材的形式。所述板材形式的玻璃可以进行强化,例如进行热回火。

根据一个实施方式,所述玻璃是光学透明的。

如图1所示,在一个实施方式中,所述光伏器件100包含板材形式的玻璃10。所述光伏器件可以包含一块以上的玻璃板,例如作为基板和/或覆板。在一个实施方式中,所述光伏器件100包含作为基板或覆板的玻璃板10或18、与基板相邻的导电材料12以及与导电材料相邻的活性光伏介质16。在一种实施方式中,该器件包括的2块玻璃片,一块作为覆板,一块作为基板,该玻璃片包括本文所述的组合物。邻近所述基板或覆板的功能层可包括二硒化铜铟镓、无定形硅、结晶硅、一种或更多种结晶硅片、碲化镉或其组合。在一个实施方式中,所述活性光伏介质包含CIGS层。在一个实施方式中,所述活性光伏介质包含碲化镉(CdTe)层。在一个实施方式中,所述光伏器件包含功能层,所述功能层包含二硒化铜铟镓或碲化镉。在一个实施方式中,所述光伏器件中的功能层是二硒化铜铟镓。在一个实施方式中,所述功能层是碲化镉。

根据一种实施方式,所述光伏器件还包括一个或多个中间层14,如含钠层(例如,包括NaF的层)或者设置在覆板或基板和该功能层之间的或相邻的阻挡层。在一个实施方式中,所述光伏器件还包含位于覆板或基板与透明导电氧化物(TCO)层之间或者与覆板或基板和透明导电氧化物(TCO)层相邻的阻挡层,其中TCO层位于功能层与阻挡层之间或者与功能层和阻挡层相邻。TCO可存在于包含CdTe功能层的光伏器件中。在一个实施方式中,阻挡层直接设置在玻璃上。在一个实施方式中,所述器件包括多个中间层如含钠层(例如,包括NaF的层),以及设置在覆板与基板之间的相邻钠计量层(sodium metering layer)。

在一个实施方式中,所述玻璃板是光学透明的。在一个实施方式中,所述作为基板和/或覆板的玻璃板是光学透明的。

根据一些实施方式、所述玻璃板的厚度等于或小于4.0毫米、例如等于或小于3.5毫米、例如等于或小于3.2毫米、例如等于或小于3.0毫米、例如等于或小于2.5毫米、例如等于或小于2.0毫米、例如等于或小于1.9毫米、例如等于或小于1.8毫米、例如等于或小于1.5毫米、例如等于或小于1.1毫米、例如0.5-2.0毫米、例如0.5-1.1毫米、例如0.7-1.1毫米。尽管这些是示例性的厚度,但是玻璃板的厚度可以包括0.1毫米至最高达4.0毫米(包括4.0毫米)范围内任意包含小数位的数值。

将不含碱金属玻璃分别作为CdTe、CIGS模块的覆板和基板的备选,已经变得越来越引入关注。在前一种情况中,避免了碱金属对CdTe、膜层叠件的导电氧化物层的污染。此外,因为无需阻挡层(如,在常规的钠钙玻璃中是需要的)简化了制备方法。在后一种情况中,CIGS模块制造商可以通过沉积独立的含Na层的具体组成和厚度,更好的控制优化吸收剂性能所需的Na的量,并使递送到CIGS的Na是更加可再现的。

实施例

表1、表2、表3、表4、表5、表6、以及表7显示了根据本发明的实施方式的示例性玻璃。一些示例性玻璃的性质数据也见表1、表2、表3、表4、表5、表6、以及表7中。在所有的表中,Tstr(℃)是应变点,它是粘度等于1014.7泊时的温度,通过弯曲梁法或纤维伸长法测量。表中α(10-7/℃)是热膨胀系数(CTE),它要么是0-300℃要么是25-300℃的尺寸变化量,具体是哪种情况取决于测量方法。CTE通常用膨胀法测量。ρ(克/立方厘米)是用阿基米德法(ASTM C693)测量的密度。T200(℃)是200泊(P)温度。这是熔体粘度为200P时的温度,通过HTV(高温粘度)测量法测量,该方法使用同心柱粘度计。Tliq(℃)是液相线温度。这是在标准梯度舟液相线测量法(ASTM C829-81)中观察到第一粒晶体时的温度。ηliq是液相线粘度,单位是千泊(kilopoise),因此100kP=100000P。这是对应于液相线温度的熔体粘度。

表1.

表2.

表3.

表4.

表5.

表6.

表7.

对本领域的技术人员显而易见的是,可以在不偏离本发明的精神或范围的情况下对本发明进行各种修改和变化。因此,本发明应涵盖对本发明的这些修改和变动,只要这些修改和变动在所附权利要求及其等同方案的范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1