一种单壁碳纳米管/金属薄膜传感器及其制备方法与应用与流程

文档序号:12812840阅读:427来源:国知局
一种单壁碳纳米管/金属薄膜传感器及其制备方法与应用与流程

本发明涉及一种基于蜘蛛丝状单壁碳纳米管(ssl-swnts)/纳米金属复合薄膜的传感器的制备技术及其应用,属于纳米材料领域。



背景技术:

随着科技进步和互联网+的高速发展,可穿戴智能设备逐渐成为电子产品的一个新热点。从苹果手表到小米手环,可穿戴智能设备在人们的心率监测、睡眠监测以及疾病预防等方面发挥着重要作用。可穿戴智能设备的核心器件是传感器,核心技术是开发和研制出灵敏度高、使用寿命长、功能多的高性能传感器。但现有的传感器仍面临着诸多挑战,例如在人类健康监视方面,所需监视的对象往往是脉搏、呼吸、温度等变化非常微小的信号,这就要求传感器在保持性能稳定的前提下具有很高的灵敏度。另外,所需监视的信号类型各种各样,如应变型的、温度型的等,因此传感器最好能集多种功能于一身。

目前,制备柔性传感器的材料包括纳米管、纳米线、纳米片薄膜,或纳米颗粒(nps)薄膜等。其中基于导电nps薄膜的传感器因其具有较高的灵敏度而受到广泛研究,其原理是在弯曲或拉伸过程中nps之间的距离发生变化,从而引起其电阻变化。然而,当基板弯曲或伸展到极限时,nps薄膜会产生不可逆破坏,大大降低了其作为传感器应有的持久性与可靠性。另外,由于具有优良的机械灵活性和导电性,碳纳米管(cnts)、石墨烯与金属纳米线等能够大大提高传感器的循环使用寿命。例如,有人制备了一种褶皱的单壁碳纳米管(swnts)薄膜,该薄膜在140%的应变下经多次拉伸,性能仍能保持不变,显示出超高的稳定性。然而,cnts、石墨烯与金属纳米线往往对应变不敏感,限制了其在传感器领域的应用。

为了克服循环性能与灵敏性不能兼得的难题,人们又将nps薄膜与cnts或石墨烯结合,制备的传感器既具有优良的循环性能,又具有高的灵敏性。例如,有一种基于cnts/纳米银(ag)颗粒复合薄膜的电子触须能探测到非常微小的压力变化,并且循环1000次性能基本不变。还有人利用电子束蒸发在石墨烯薄膜上蒸镀纳米金属粒子(au,ni,cu,ag),该复合膜传感器可用于检测人体的脉搏。虽然用这些复合薄膜所制备的传感器的性能有了很大的提高,但是仍有两个缺点限制了其应用:1)传感器的稳定性、灵敏度和循环使用寿命还有待进一步提升;2)大部分报道的传感器只能监测单一信号,功能单一。



技术实现要素:

本发明的目的在于提供一种基于蜘蛛丝状单壁碳纳米管(ssl-swnts)/纳米金属复合薄膜传感器的制备方法,并将其制作成柔性可穿戴式传感器应用于检测了人体的各种健康指标,如脉搏、呼吸、关节活动、体温等领域。该传感器的制备方法具有工艺简单、操作容易、成本低、可控性好,灵敏度高、使用寿命长、功能多,并可进行大规模生产等特点,是一种制备高性能传感器的理想方法。

本发明所提供的技术方案具体如下:

一种基于蜘蛛丝状单壁碳纳米管(ssl-swnts)/纳米金属复合薄膜的传感器的制备方法,包括以下步骤:

(1)将清洗过的金属箔置于化学气相沉积炉(cvd炉)中石英管内的下游区,将催化剂置于石英管内的上游区;将cvd炉在100-1000sccm氩气气氛下以5-20℃/min的速率升温到800-1100℃,,然后将催化剂移至石英管内温度为60-150℃的区域进行升华,同时从上游区通入2-20sccm的碳源反应5-300min;所述的催化剂为二茂铁、二茂镍、二茂钴中的一种;

(2)关闭碳源,施加外磁场,其他参数保持不变,维持5-300min;关闭外磁场,通入5-30sccm的碳源,将催化剂移至石英管内温度为20-35℃的区域,其他参数保持不变,维持5-300min;反应结束后,先关闭碳源,然后将石英管自然冷却至室温,即在金属箔的一侧表面上得到蜘蛛丝状单壁碳纳米管薄膜;

(3)将金属箔未覆盖蜘蛛丝状单壁碳纳米管薄膜的一面与0.1-1mol/l的稀酸接触反应,待金属箔被溶解完全后,用预拉伸的有机薄膜捞起漂浮在溶液面上的蜘蛛丝状单壁碳纳米管薄膜,依次用去离子水和清洗,最后吹干,得到有机薄膜支撑的蜘蛛丝状单壁碳纳米管薄膜;

(4)将有机薄膜支撑的蜘蛛丝状单壁碳纳米管薄膜和金属靶放入溅射仪中,抽真空30-300min后通入氮气,当放电电流达到5-20ma时启动溅射仪;溅射120-1000s后关闭溅射仪,取出有机薄膜支撑的蜘蛛丝状单壁碳纳米管/纳米金属复合薄膜;所述的金属靶由au、ag、cu、pt、ni、fe、al中的一种或几种组成;

(5)在有机薄膜支撑的蜘蛛丝状单壁碳纳米管/纳米金属复合薄膜的两端涂上银浆,连上导线,即得到蜘蛛丝状单壁碳纳米管/纳米金属复合薄膜传感器。

步骤(1)中所述的金属箔为铝箔、铁箔或镍箔;所述的碳源为乙炔、甲烷或乙烯。

步骤(2)中外磁场的强度为0.1-1t。

步骤(3)中所述的稀酸为稀硫酸或稀盐酸;所述的有机薄膜为聚二甲基硅氧烷、聚甲基丙烯酸甲酯或聚乙烯醇;所述有机薄膜的长为2-10cm,宽为0.5-2cm,其预拉伸的应变为10%-100%。

步骤(4)中溅射仪为磁控溅射仪、离子溅射仪或原子沉积仪。

步骤(4)中金属靶的纯度为99%-99.99%。

一种基于蜘蛛丝状单壁碳纳米管/纳米金属复合薄膜的传感器,由上述制备方法制备得到。

上述基于蜘蛛丝状单壁碳纳米管/纳米金属复合薄膜的传感器在传感器领域的应用。

本发明基于以下原理:

1)本发明利用纳米金属薄膜在拉伸时产生的裂纹与岛屿(cracksandislands)引起电阻变化,获得高应变灵敏度,即“力-电效应”;

2)利用温度变化时,biss-swcnts与纳米金属薄膜之间的电子交换与耦合效应,获得高的温度灵敏度,即“温-电效应”。另外,具有超高力学性能的ssl-swnts形成可伸缩的导电网络薄膜,使传感器在10000次拉伸后仍能保持结构完整。这种独特的性能使我们的传感器非常合适监测人体健康状态的微小变化,如脉搏、呼吸、关节活动、体温变化等。

在本发明中,我们利用同时具有优良物理性能(高透光率与高电导率)与超高力学性能(高韧性和高强度),而且能承受很大变形的蜘蛛丝状swnts(ssl-swnts)薄膜作导电材料,然后在其上面沉积一层纳米金属薄膜(包括:au、ag、cu、pt、ni、fe、al及其它们的合金等)作敏感材料,构建一个可穿戴的柔性传感器。该传感器不仅具有灵敏的力-电效应,还具有灵敏的温-电效应,而具有超高力学性能的biss-swcnts薄膜则能使整个传感器的结构保持完整,因此该传感器具有灵敏度高、循环使用寿命长、响应时间短和多功能等优点。

本发明具有以下优点和有益效果:

(1)本发明利用溅射仪技术在ssl-swnts表面溅射纳米金属薄膜,并组装成传感器,该传感器同时具有高的灵敏度,长的循环使用寿命和多的功能。

(2)本发明工艺简单、操作容易、成本低、可控性好,可进行大规模生产等。

附图说明

图1为实施例1制备的ssl-swnts/ag复合薄膜在无应变情况下的扫描电子显微镜(sem)形貌图。

图2为实施例2制备的ssl-swnts/ag复合薄膜在50%应变情况下的sem形貌图。

图3为实施例3制备的基于ssl-swnts/ag复合薄膜的传感器的相对电阻变化-应变曲线图。

图4为实施例4制备的基于ssl-swnts/ag复合薄膜的传感器的循环性能测试图。

图5为实施例5制备的基于ssl-swnts/au复合薄膜的传感器的电阻变化-应变关系图。

具体实施方式

下面结合附图和实施例对本发明作进一步阐述,但并不因此将本发明限制于所述的实施例范围之内。

实施例1

本实施例中制备ssl-swnts/ag复合薄膜的具体步骤如下:将铝箔用乙醇反复清洗后放置在cvd炉石英管内的下游区,将催化剂二茂铁置于石英管内的上游区。将cvd炉在1000sccm氩气气氛下升温到1100℃,升温速率为20℃/min;将催化剂二茂铁移至于石英管内温度为150℃的区域进行升华,同时从上游区通入20sccm的乙炔反应20min。关闭乙炔,施加1t的外磁场,其他参数保持不变,维持5min。随后关闭外磁场,通入20sccm的乙炔,同时将二茂铁催化剂移至石英管内温度为20-35℃的区域,其他参数保持不变,维持10min;反应结束后,先关闭乙炔,然后将石英管自然冷却至室温,即在铝箔的一侧表面上得到ssl-swnts。将铝箔上未覆盖ssl-swnts的一面与1mol/l的hcl溶液接触反应,铝箔被溶解掉后ssl-swnts将漂浮在溶液面上。将ssl-swnts用长为5cm、宽为1cm、预拉伸量为50%的pdms薄膜捞起,并在去离子水中清洗,彻底去除残余的hcl和其他杂质。将pdms薄膜支撑的ssl-swnts用乙醇清洗后再用氮气吹干。将pdms薄膜支撑的ssl-swnts放入小型离子溅射仪中,在溅射仪中放入99.9%的银靶,开启真空泵,30min后通入氮气,通过氮气的通入量来控制放电电流,当放电电流达到5ma时启动溅射仪,120s后关闭溅射仪,取出pdms薄膜支撑的ssl-swnts/ag复合薄膜。对其进行扫描电子显微镜(sem)观察,其形貌如图1所示。

实施例2

本实施例中制备ssl-swnts/ag复合薄膜的实验条件与实施例1相同。将制备好的ssl-swnts/ag复合薄膜沿径向拉伸50%后对其进行sem观察,其形貌如图2所示。

实施例3

本实施例中制备基于ssl-swnts/ag复合薄膜的传感器的具体步骤如下:将铝箔用乙醇反复清洗后放置在cvd炉石英管内的下游区,将催化剂二茂铁置于石英管内的上游区。将cvd炉在100sccm氩气气氛下升温到800℃,升温速率为5℃/min;将催化剂二茂铁移至石英管内温度为60℃的区域进行升华,同时从上游区通入10sccm的乙炔反应10min。关闭乙炔,施加0.1t的外磁场,其他参数保持不变,维持10min。随后关闭外磁场,通入5sccm的乙炔,将二茂铁催化剂移至石英管内温度为20-35℃的区域,其他参数保持不变,维持10min;反应结束后,先关闭乙炔,然后将石英管自然冷却至室温,即在铝箔的一侧表面上得到ssl-swnts。将铝箔上未覆盖ssl-swnts的一面与0.1mol/l的hcl溶液接触反应,铝箔被溶解掉后ssl-swnts将漂浮在溶液面上。将ssl-swnts用长为10cm、宽为2cm、预拉伸量为100%的pdms薄膜捞起,并在去离子水中清洗,彻底去除残余的hcl和其他杂质。将带有ssl-swnts的pdms薄膜用乙醇清洗后再用氮气吹干。将pdms薄膜支撑的ssl-swnts放入小型离子溅射仪中,在溅射仪中放入99.9%的银靶,开启真空泵,300min后通入氮气,通过氮气的通入量来控制放电电流,当放电电流达到20ma时启动溅射仪,溅射240s后关闭溅射仪,取出pdms薄膜支撑的ssl-swnts/ag复合薄膜。在pdms薄膜支撑的ssl-swnts/ag复合薄膜两端涂上银浆,连上铜导线,即得到基于ssl-swnts/ag复合薄膜的传感器。将传感器的铜导线两端分别连接在电化学工作站的工作电极和参比电极上,通过拉伸传感器使其产生从0%至50%的应变,同时在电化学工作站上记录的电流变化即为所得的“相对电阻变化-应变”曲线,如图3所示。该曲线表明基于ssl-swnts/ag复合薄膜的传感器的灵敏度非常高。

实施例4

本实施例中制备基于ssl-swnts/ag复合薄膜的传感器的实验条件与实施例3相同。将传感器的铜导线两端分别连接在电化学工作站的工作电极和参比电极上。快速拉伸传感器使其产生5%的应变,然后释放应变。不断重复拉伸与释放,电化学工作站上记录的电流变化即为所得的循环性能测试结果,如图4所示。该图表明基于ssl-swnts/ag复合薄膜的传感器的循环性能非常好。

实施例5

本实施例中制备基于ssl-swnts/au复合薄膜的传感器的具体步骤如下:将铁箔用乙醇反复清洗后放置在cvd炉石英管内的下游区,将催化剂二茂镍置于石英管内的上游区。将cvd炉在100sccm氩气气氛下升温到1000℃,升温速率为20℃/min;将催化剂二茂镍移至石英管内温度为60℃的区域进行升华,同时从上游区通入10sccm的甲烷反应10min。关闭甲烷,施加0.5t的外磁场,其他参数保持不变,维持10min。随后关闭外磁场,通入5sccm的甲烷,将二茂镍催化剂移至石英管内温度为20-35℃的区域,其他参数保持不变,维持10min;反应结束后,先关闭甲烷,然后将石英管自然冷却至室温,即在铁箔的一侧表面上得到ssl-swnts。选定铁箔上不含ssl-swnts的一面放置在0.1mol/l的稀硫酸溶液表面,铁箔被溶解掉后ssl-swnts将漂浮在溶液面上。将ssl-swnts用长为10cm,宽为2cm,预拉伸量为20%的pdms薄膜捞起,并在去离子水中清洗,彻底去除残余的硫酸和其他杂质。将带有ssl-swnts的pdms薄膜用乙醇清洗后再用氮气吹干。将pdms薄膜支撑的ssl-swnts放入小型磁控溅射仪中,在溅射仪中放入99.9%的金靶,开启真空泵,300min后通入氮气,通过氮气的通入量来控制放电电流,当放电电流达到10ma时启动溅射仪,溅射240s后关闭溅射仪,取出pdms薄膜支撑的ssl-swnts/au复合薄膜。在pdms薄膜支撑的ssl-swnts/au复合薄膜两端涂上银浆,连上铜导线,即得到基于ssl-swnts/au复合薄膜的传感器。将传感器的铜导线两端分别连接在电化学工作站的工作电极和参比电极上,通过拉伸传感器使其产生从0%至20%的应变,同时在电化学工作站上记录的电流变化即为所得的“相对电阻变化-应变”关系,如图5所示。该图表明基于ssl-swnts/au复合薄膜的传感器的灵敏度非常高。

从以上结果可以看出,利用离子溅射技术在ssl-swnts表面溅射一层纳米银薄膜所组装的传感器能同时提高灵敏性和循环性能。本发明工艺简单、操作容易、成本低、可控性好,可进行大规模生产。为复合薄膜电子学器件和传感器的实际应用提供了一种切实可行的制作方法。

上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1