一种在高电场下具有稳定铁电性的HoSrMnZn共掺铁酸铋铁电薄膜及其制备方法与流程

文档序号:11222888阅读:425来源:国知局
一种在高电场下具有稳定铁电性的HoSrMnZn共掺铁酸铋铁电薄膜及其制备方法与流程

本发明属于功能材料领域,涉及在功能化的fto/glass基板表面制备在高电场下具有稳定铁电性的hosrmnzn共掺铁酸铋铁电薄膜,具体为bi0.89ho0.08sr0.03fe0.95mn0.03zn0.02o3铁电薄膜。



背景技术:

铁电材料具有自发电极化,这一电极化可以随外加电场变化而反转(开关)。对于铁电薄膜,极化反转所需要的高电场可以在比较低的电压下获得,这一特点使得铁电薄膜可以集成到现代的电子器件中。非挥发性的铁电随机存贮器,特别是高密度的铁电存贮器件在商业领域已经表现出巨大的应用前景,与现在广泛应用的存储器相比,基于铁电材料的铁电随机读取存储器具有非挥发性和读取速度快等优点,因此也有巨大应用前景,而铁电薄膜容易被击穿却极大地限制了其在实际中的应用。

铁酸铋(bifeo3)是一种典型的单相多铁材料,具有简单的钙钛矿结构,是少数在室温下同时具有铁电性和反铁磁性的多铁材料之一,其铁电居里温度为850℃,反铁磁性的尼尔温度为370℃。bifeo3薄膜作为一种典型的铁电材料,引起越来越多的研究者的关注,而bifeo3被证明是非常容易被击穿的,因而在实际应用中受到限制。为改善bifeo3薄膜的抗击穿性能,最为常见的办法就是离子掺杂。目前,还没有关于在高电场下具有稳定铁电性的bi0.89ho0.08sr0.03fe0.95mn0.03zn0.02o3铁电薄膜及其制备方法的相关报道。



技术实现要素:

本发明的目的在于提供一种在高电场下具有稳定铁电性的hosrmnzn共掺铁酸铋铁电薄膜及其制备方法,该方法设备要求简单,实验条件容易达到,掺杂量容易控制,制得的薄膜为bi0.89ho0.08sr0.03fe0.95mn0.03zn0.02o3铁电薄膜,能够有效提高bifeo3薄膜的耐击穿性能,提高其剩余极化值。

为了实现上述目的,本发明采用如下技术方案:

一种在高电场下具有稳定铁电性的hosrmnzn共掺铁酸铋铁电薄膜,该薄膜为bi0.89ho0.08sr0.03fe0.95mn0.03zn0.02o3薄膜,该薄膜为扭曲的菱方钙钛矿结构,空间群为三方相的r3m:r和r3c:h共存。

该薄膜在1khz频率、外加电压为40~95v、外加电场为533~1266kv/cm的条件下,具有剩余极化值为51~141μc/cm2、矫顽场为208~331kv/cm的对称矩形电滞回线。

该薄膜的剩余极化强度随着测试外加电压和外加电场的增加而增加,且在外加电压为95v、外加电场为1266kv/cm时仍未被击穿,具有高电场下稳定的铁电性。

所述的在高电场下具有稳定铁电性的hosrmnzn共掺铁酸铋铁电薄膜的制备方法,包括以下步骤:

步骤1:按摩尔比为0.94:0.08:0.03:0.95:0.03:0.02将硝酸铋、硝酸钬、硝酸锶、硝酸铁、醋酸锰和硝酸锌溶于乙二醇甲醚和醋酸酐的混合溶液中,得到前驱液;

步骤2:将前驱液旋涂在fto/glass基片上,得到湿膜,湿膜经匀胶后在190~220℃下烘烤得干膜,再于540~560℃下在空气中退火,得到晶态bi0.89ho0.08sr0.03fe0.95mn0.03zn0.02o3薄膜;

步骤3:将晶态bi0.89ho0.08sr0.03fe0.95mn0.03zn0.02o3薄膜冷却至室温,重复步骤2直到达到所需厚度,即得到在高电场下具有稳定铁电性的hosrmnzn共掺铁酸铋铁电薄膜。

所述步骤1中前驱液中金属离子的总浓度为0.2~0.4mol/l。

所述前驱液中乙二醇甲醚和醋酸酐的体积比为(2.5~3.5):1。

所述步骤2进行前先将fto/glass基片清洗干净,然后在紫外光下照射,使fto/glass基片表面达到原子清洁度。

所述步骤2中匀胶时的匀胶转速为3800~4000r/min,匀胶时间为12~18s。

所述步骤2中匀胶后的烘烤时间为8~10min。

所述步骤2中的退火时间为8~12min。

相对于现有技术,本发明具有以下有益效果:

本发明提供的在高电场下具有稳定铁电性的hosrmnzn共掺铁酸铋铁电薄膜的制备方法,采用溶胶-凝胶法,以硝酸铋、硝酸钬、硝酸锶、硝酸铁、醋酸锰和硝酸锌为原料(硝酸铋过量5%),以乙二醇甲醚和乙酸酐为溶剂,配制前驱液,再用旋涂法和层层退火的工艺制备了bi0.89ho0.08sr0.03fe0.95mn0.03zn0.02o3薄膜,即在高电场下具有稳定铁电性的hosrmnzn共掺铁酸铋铁电薄膜。本发明选择碱土元素sr和镧系元素ho进行a位掺杂,选择过渡金属mn和zn进行b位掺杂,使原本近似呈钙钛矿结构的铁酸铋晶格扭曲,结构畸变加剧,同时由于sr和ho对bi3+的替代,以及mn元素在退火过程中的变价,可以有效的拟制bi的挥发,减少薄膜中fe2+和氧空位的含量,结构进一步发生畸变,从而增强薄膜在外加电场下的极化强度,并且提高了其耐击穿性能。本发明采用溶胶-凝胶工艺,相比于其他制备薄膜的方法,该方法设备要求简单,实验条件易于实现,成本低廉,反应容易进行,工艺过程温度低,制备过程及掺杂量容易控制,化学组分精确可控,适宜在大的表面和形状不规则的表面上制备薄膜,很容易均匀定量地掺入一些微量元素,可以在短时间内获得原子或分子水平的均匀性,本发明制备的在高电场下具有稳定铁电性的hosrmnzn共掺铁酸铋铁电薄膜均匀性较好,能够有效提高bifeo3薄膜的耐击穿性能,提高其剩余极化值。

本发明制得的在高电场下具有稳定铁电性的hosrmnzn共掺铁酸铋铁电薄膜的致密度高、晶粒尺寸均匀,其化学结构式为bi0.89ho0.08sr0.03fe0.95mn0.03zn0.02o3,该薄膜为扭曲的菱方钙钛矿结构,空间群为三方相的r3m:r和r3c:h共存,本发明通过ho、sr、mn和zn四元共掺杂可以提高bifeo3薄膜的耐击穿性能,使其在高电场下具有稳定的铁电性,这将有利于bifeo3薄膜在高电场下稳定的工作。

进一步的,本发明中通过对前驱液离子浓度以及薄膜厚度的调控,使制备的hosrmnzn共掺铁酸铋铁电薄膜的剩余极化强度随着测试外加电压增加而明显增加,并且使矫顽场较缓慢增加。所制备的hosrmnzn共掺铁酸铋铁电薄膜厚度为750nm,在外加电压95v,外加电场为1266kv/cm时仍未被击穿,且铁电性能良好,剩余极化强度为141μc/cm2,矫顽场为331kv/cm。

附图说明

图1是本发明实施例1制备的在高电场下具有稳定铁电性的hosrmnzn共掺铁酸铋铁电薄膜的xrd图;

图2是本发明实施例1制备的在高电场下具有稳定铁电性的hosrmnzn共掺铁酸铋铁电薄膜的sem断面图;

图3是本发明实施例1制备的在高电场下具有稳定铁电性的hosrmnzn共掺铁酸铋铁电薄膜的电滞回线图。

具体实施方式

下面结合附图和本发明优选的具体实施例对本发明做进一步描述,原料均为分析纯。

实施例1

步骤1:以硝酸铋、硝酸钬、硝酸锶、硝酸铁、醋酸锰和硝酸锌为原料(硝酸铋过量5%),按摩尔比为0.94:0.08:0.03:0.95:0.03:0.02溶于乙二醇甲醚和醋酸酐的混合溶液中,得到金属离子总浓度为0.3mol/l的稳定的前驱液;其中乙二醇甲醚和醋酸酐的体积比为3:1;

步骤2:将fto/glass基片依次置于洗涤剂、丙酮、乙醇中超声波清洗,每次超声波清洗10min后用大量蒸馏水冲洗基片,最后用氮气吹干。然后将fto/glass基片放入烘箱烘烤至干燥,取出静置至室温。再将洁净的基片置于紫外光照射仪中照射40min,使基片表面达到“原子清洁度”。然后将前驱液旋涂在fto/glass基片上,其匀胶转速为3900r/min,匀胶时间为15s,得到湿膜,湿膜在200℃下烘烤9min得干膜,再在550℃下在空气中退火10min,即得晶态bi0.89ho0.08sr0.03fe0.95mn0.03zn0.02o3薄膜;

步骤3:将晶态bi0.89ho0.08sr0.03fe0.95mn0.03zn0.02o3薄膜冷却至室温,重复步骤2,重复18次,即得到在高电场下具有稳定铁电性的hosrmnzn共掺铁酸铋铁电薄膜。

采用x-射线衍射仪测定在高电场下具有稳定铁电性的hosrmnzn共掺铁酸铋铁电薄膜的物相组成结构;用fe-sem测定在高电场下具有稳定铁电性的hosrmnzn共掺铁酸铋铁电薄膜的微观形貌;用radiantmultiferroic仪器测试在高电场下具有稳定铁电性的hosrmnzn共掺铁酸铋铁电薄膜的漏电流密度和铁电性能,用squidmpms-xl-7测试在高电场下具有稳定铁电性的hosrmnzn共掺铁酸铋铁电薄膜室温下的铁磁性能。

对实施例1制得的在高电场下具有稳定铁电性的hosrmnzn共掺铁酸铋铁电薄膜进行以上测试,结果如图1、图2、图3所示。

图1与jcpdsno.74-2016标准卡片吻合,从图1中可知,实施例1制得的在高电场下具有稳定铁电性的hosrmnzn共掺铁酸铋铁电薄膜具有扭曲的菱方钙钛矿结构,空间群为三方相的r3m:r和r3c:h共存,且薄膜结晶性能良好,薄膜样品中没有其他杂质的出现。

图2表明实施例1制得的在高电场下具有稳定铁电性的hosrmnzn共掺铁酸铋铁电薄膜的厚度为750nm。

图3表明实施例1制得的在高电场下具有稳定铁电性的hosrmnzn共掺铁酸铋铁电薄膜在1khz频率下,外加电压为40v、55v、70v、85v和95v,外加电场为533kv/cm、733kv/cm、933kv/cm、1133kv/cm和1266kv/cm时,剩余极化值分别为51μc/cm2,76μc/cm2,99μc/cm2,125μc/cm2和141μc/cm2,矫顽场分别为208kv/cm、244kv/cm、277kv/cm、310kv/cm和331kv/cm。同时从图3中也可以看到随外加电压的增大,hosrmnzn共掺铁酸铋铁电薄膜的剩余极化强度逐渐增强且电滞回线矩形度较好,并且薄膜未被击穿,表明hosrmnzn共掺铁酸铋铁电薄膜在高电场下具有稳定的铁电性。

实施例2

步骤1:以硝酸铋、硝酸钬、硝酸锶、硝酸铁、醋酸锰和硝酸锌为原料(硝酸铋过量5%),按摩尔比为0.94:0.08:0.03:0.95:0.03:0.02溶于乙二醇甲醚和醋酸酐的混合溶液中,得到金属离子总浓度为0.2mol/l的稳定的前驱液;其中乙二醇甲醚和醋酸酐的体积比为2.5:1;

步骤2:将fto/glass基片依次置于洗涤剂、丙酮、乙醇中超声波清洗,每次超声波清洗10min后用大量蒸馏水冲洗基片,最后用氮气吹干。然后将fto/glass基片放入烘箱烘烤至干燥,取出静置至室温。再将洁净的基片置于紫外光照射仪中照射40min,使基片表面达到“原子清洁度”。然后将前驱液旋涂在fto/glass基片上,其匀胶转速为4000r/min,匀胶时间为12s,得到湿膜,湿膜在210℃下烘烤8min得干膜,再在555℃下在空气中退火9min,即得晶态bi0.89ho0.08sr0.03fe0.95mn0.03zn0.02o3薄膜;

步骤3:将晶态bi0.89ho0.08sr0.03fe0.95mn0.03zn0.02o3薄膜冷却至室温,重复步骤2,重复19次,即得到在高电场下具有稳定铁电性的hosrmnzn共掺铁酸铋铁电薄膜。

实施例3

步骤1:以硝酸铋、硝酸钬、硝酸锶、硝酸铁、醋酸锰和硝酸锌为原料(硝酸铋过量5%),按摩尔比为0.94:0.08:0.03:0.95:0.03:0.02溶于乙二醇甲醚和醋酸酐的混合溶液中,得到金属离子总浓度为0.4mol/l的稳定的前驱液;其中乙二醇甲醚和醋酸酐的体积比为3.5:1;

步骤2:将fto/glass基片依次置于洗涤剂、丙酮、乙醇中超声波清洗,每次超声波清洗10min后用大量蒸馏水冲洗基片,最后用氮气吹干。然后将fto/glass基片放入烘箱烘烤至干燥,取出静置至室温。再将洁净的基片置于紫外光照射仪中照射40min,使基片表面达到“原子清洁度”。然后将前驱液旋涂在fto/glass基片上,其匀胶转速为3800r/min,匀胶时间为18s,得到湿膜,湿膜在190℃下烘烤10min得干膜,再在540℃下在空气中退火12min,即得晶态bi0.89ho0.08sr0.03fe0.95mn0.03zn0.02o3薄膜;

步骤3:将晶态bi0.89ho0.08sr0.03fe0.95mn0.03zn0.02o3薄膜冷却至室温,重复步骤2,重复20次,即得到在高电场下具有稳定铁电性的hosrmnzn共掺铁酸铋铁电薄膜。

实施例4

步骤1:以硝酸铋、硝酸钬、硝酸锶、硝酸铁、醋酸锰和硝酸锌为原料(硝酸铋过量5%),按摩尔比为0.94:0.08:0.03:0.95:0.03:0.02溶于乙二醇甲醚和醋酸酐的混合溶液中,得到金属离子总浓度为0.32mol/l的稳定的前驱液;其中乙二醇甲醚和醋酸酐的体积比为3.2:1;

步骤2:将fto/glass基片依次置于洗涤剂、丙酮、乙醇中超声波清洗,每次超声波清洗10min后用大量蒸馏水冲洗基片,最后用氮气吹干。然后将fto/glass基片放入烘箱烘烤至干燥,取出静置至室温。再将洁净的基片置于紫外光照射仪中照射40min,使基片表面达到“原子清洁度”。然后将前驱液旋涂在fto/glass基片上,其匀胶转速为4000r/min,匀胶时间为14s,得到湿膜,湿膜在220℃下烘烤8.5min得干膜,再在560℃下在空气中退火8min,即得晶态bi0.89ho0.08sr0.03fe0.95mn0.03zn0.02o3薄膜;

步骤3:将晶态bi0.89ho0.08sr0.03fe0.95mn0.03zn0.02o3薄膜冷却至室温,重复步骤2,重复17次,即得到在高电场下具有稳定铁电性的hosrmnzn共掺铁酸铋铁电薄膜。

以上所述内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不是全部或唯一的实施方式,本领域普通技术人员通过阅读本发明说明书而对本发明技术方案采取的任何等效的变换,均为本发明的权利要求所涵盖。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1