一种内热串接石墨化炉用跨接电极及其生产方法与流程

文档序号:14935375发布日期:2018-07-13 19:12阅读:236来源:国知局

本发明属于跨接电极生产领域,特别涉及一种内热串接石墨化炉用跨接电极及其生产方法。



背景技术:

用于电弧炉作为导电电极的人造石墨制品是在高温下完成由无定形炭向石墨晶格转变而成为良好的导电材料的,此工艺过程称为石墨化。国际上通用的的石墨化工艺方法主要有艾奇逊法和卡斯特耐法,依据上述两种方法建立的石墨化炉分别称为艾奇逊炉和内串石墨化法(lwg)。由于后者具有炉温高、电耗低、制品自发热等优点在国际上大量使用。但是由于lwg炉所用的跨接电极需要承受3000℃左右的温度和10mpa左右的顶推压力,并需通过120ka以上的大电流,因此要求跨接电极具有总够大的导电界面、相当低的电阻率和高的机械强度。

开封炭素有限公司在引进美国cg技术公司的lwg炉技术,跨接电极使用的是直径902mm的石墨电极进行机械加工制成,额定寿命为2年。由于国内尚没有能够生产如此大直径的石墨制品炭素压机,只能从国外采购成品跨接电极。2004年跨接电极的价格为16497美元,当时共采购20支跨接电极总计约80吨,总价折合人民币约1055.8万元。此价格还不包括增值税和、关税、保险及运输等费用。

在使用过程中由于氧化、断裂等原因造成跨接电极损坏,因此需要新的石墨电极进行更换。由于进口的跨接电极价格昂贵且不易购买,公司曾采购过国内振动成型的整体方形和拼接方形跨接电极,但是由于指标比较低,效果不尽理想。



技术实现要素:

本发明的目的在于提供一种内热串接石墨化炉用跨接电极及其生产方法。本发明填补了国内空白,该产品质量指标和使用性能均能达到国际标准。

基于上述目的,本发明采取如下技术方案:

一种内热串接石墨化炉用跨接电极,包括大粒度油系针状焦、中粒度油系针状焦和小粒度粉子组成的干料以及粘结剂、添加剂、生碎和焙烧碎组份,经粉碎筛分、配料、混捏、成型、焙烧、浸渍、石墨化、加工组装工序制成,该配方组合物按重量百分比计算为:大粒度油系针状焦30-40%、中粒度油系针状焦20-30%、小粒度粉子35-45%,粘结剂占干料总重的25-30%、添加剂中的硬脂酸占干料总重量的0.5-0.8%,添加剂中的fe2o3粉占干料总重的0-1%,生碎占干料总重量的10-20%,焙烧碎占干料总重的0-10%;所述的粘结剂为改质沥青;所述的大粒度油系针状焦的粒度为15-25mm,中粒度油系针状焦粒度为5-15mm,小粒度粉子为200目粉子。

优选地,所述干料由下述重量百分比的各原料组成:大粒度油系针状焦35%、中粒度油系针状焦25%、小粒度粉子40%。

上述内热串接石墨化炉用跨接电极的生产方法,包括如下步骤:

(1)、内热串接石墨化炉用跨接电极预制体的制作

①制电极生制品:将原料油系针状焦粉碎并筛分成规定的大、中、小不同规格的颗粒度,进入自动配料系统进行配料,制得干料,按比例准备生碎、焙烧碎,将干料、生碎、焙烧碎混匀并加热至185-200℃后自动卸入混捏机,加入粘结剂沥青、添加剂硬脂酸和fe2o3粉,在185-200℃的混捏温度下混捏并保持18分钟,制得糊料,将该糊料喷水冷却到130-140℃排入压机,压机在设计的热工温度下进行抽真空,其真空度≤20mmhg,在1500吨捣固压力下捣固并保持12秒,以主柱塞速度为60mm/分的挤压速度进行挤压,使体积密度≥1.72g/cm3,再剪切,得到生制品,待用;

②焙烧、浸渍:将上述待用生制品装入焙烧罐,并按规定的技术要求向焙烧罐中铺设填充料,完成装罐工序后,将焙烧罐送入焙烧炉进行焙烧热处理,在焙烧热处理的过程中,按规定的一次焙烧曲线自动执行升温,在逐渐升温至最高温度1250℃,再自然冷却至200℃出炉,完成一次焙烧工序,而后用抛丸机进行抛丸处理,用浸渍沥青在10-15bar压力下进行高压浸渍处理后,再按照二次焙烧曲线进行二次焙烧,获得合格焙烧品,待用;

所述步骤②中的一次焙烧曲线如下:

所述步骤②中的二次焙烧曲线如下:

③石墨化处理:将上述待用的焙烧品经过平端工序后,再按照首尾相接的方式装入内热串接石墨化炉内,完成装炉工序,再按照设定的送电曲线进行送电石墨化处理,该处理温度最高可达3000℃,获得的石墨化品即为内热串接石墨化炉用跨接电极预制体,待用;所述的送电曲线是根据该产品原料及内部结构特性制定的,在内热串接石墨化炉内进行石墨化处理时,由于硫含量较高容易产生气胀的特点,在对内热串接石墨化送电升温的关键阶段1600-2100℃进行温度和位移测量、按照石墨化过程中不同温度阶段制品的收缩和膨胀原理,而设计的石墨化曲送电曲线。该石墨化送电曲线的技术要求是:预制体焙烧品、单柱装炉、29吨/炉,起始功率2500kw,送电时长24小时,计划耗电量163100kwh。

所述步骤③中的送电曲线如下:

(2)内热串接石墨化炉用跨接电极的制作

将上述待用的内热串接石墨化炉用跨接电极预制体按照规定的技术要求进行技术指标测试,并按照图纸加工成规格的部件,而后按规定的匹配要求进行组装、包装、入库。

所述生碎为在制备电极的过程中糊料经过挤压成型的压型品,因为存在缺陷而被确定为废品,为了节省原料,这类废品破碎后得到生碎,进行再利用。

所述焙烧碎为在制备电极焙烧过程中产生的裂纹废品,经过破碎后称为焙烧碎,同样是为了重新利用,降低成本。

本发明采用上述技术方案,利用进口油系针状焦生产出内热串接石墨化炉用跨接电极预制体,经检测,该电极的体积密度为1.73g/cm3,抗折强度为13.9mp,弹性模量为9.76gpa,电阻率为5.1μωm,热膨胀系数为1.2×10-6/℃,完全达到国际标准。

利用上述技术方案加工制作的跨接电极,导电面积增加了1%,抗折强度提高了30%,电阻率降低了40%。由于导电截面积增大、电阻率降低,其自身电耗大为减少;而且降低了氧化损耗,使用寿命延长;产品的制造成本约为进口的40%左右,从而打破了高新能跨接电极的国际垄断。

附图说明

图1内热串接石墨化炉用跨接电极预制体及其生产方法的工艺流程图;

图2内热串接石墨化炉用跨接电极预制体结构示意图(a为主视图,b为a图的左视图),由图2可知,本发明制得的预制体的长度为3120mm,直径为785mm;

图3是本发明制得的内热串接石墨化炉用跨接电极结构示意图,a为结构示意图图,b为a的a-a剖面图,c为电机的装配图,图c中1为上料块,2为下料块,3为导电胶。

具体实施方式

以下结合具体实施例对本发明的技术方案作进一步详细说明。

实施例1

一种内热串接石墨化炉用跨接电极,包括大粒度油系针状焦、中粒度油系针状焦和小粒度粉子组成的干料以及粘结剂、添加剂、生碎和焙烧碎组份,经粉碎筛分、配料、混捏、成型、焙烧、浸渍、石墨化、加工组装工序制成,该配方组合物按重量百分比计算为:大粒度油系针状焦35%、中粒度油系针状焦25%、小粒度粉子40%,粘结剂占干料总重的25%、添加剂中的硬脂酸占干料总重量的0.5%,添加剂中的fe2o3粉占干料总重的1%,生碎占干料总重量的20%,焙烧碎占干料的10%;所述的粘结剂为中温改质沥青;所述的大粒度油系针状焦的粒度为15-25mm,中粒度油系针状焦粒度为5-15mm,小粒度粉子粒度为200目粉子。

上述内热串接石墨化炉用跨接电极的生产方法,其特征在于,包括如下步骤:

(1)、内热串接石墨化炉用跨接电极预制体的制作

①制电极生制品:将原料油系针状焦粉碎并筛分成规定的大、中、小不同规格的颗粒度,进入自动配料系统进行配料,制得干料,按比例准备生碎、焙烧碎,将干料、生碎、焙烧碎混匀并加热至185-200℃后自动卸入混捏机,加入粘结剂沥青、添加剂硬脂酸和fe2o3粉,在185-200℃的混捏温度下混捏并保持18分钟,制得糊料,将该糊料喷水冷却到130-140℃排入压机,压机在设计的热工温度下进行抽真空,其真空度≤20mmhg,在1500吨捣固压力下捣固并保持12秒,以主柱塞速度为60mm/分的挤压速度进行挤压,使体积密度≥1.72g/cm3,再剪切,得到生制品,待用;

②焙烧、浸渍:将上述待用生制品装入焙烧罐,并按规定的技术要求向焙烧罐中铺设填充料,完成装罐工序后,将焙烧罐送入焙烧炉进行焙烧热处理,在焙烧热处理的过程中,按规定的一次焙烧曲线自动执行升温,在逐渐升温至最高温度1250℃,再自然冷却至200℃出炉,完成一次焙烧工序,而后用抛丸机进行抛丸处理,用浸渍沥青在10-15bar压力下进行高压浸渍处理后,再按照二次焙烧曲线进行二次焙烧,获得合格焙烧品,待用;

所述步骤②中的一次焙烧曲线如下:

所述步骤②中的二次焙烧曲线如下:

③石墨化处理:将上述待用的焙烧品经过平端工序后,再按照首尾相接的方式装入内热串接石墨化炉内,完成装炉工序,再按照设定的送电曲线进行送电石墨化处理,该处理温度最高可达3000℃,获得石墨化品,待用;所述的送电曲线是根据产品原料及内部结构特性制定的,在内串接石墨化炉内进行石墨化处理时,由于硫含量较高容易产生气胀的特点,在对内热串接石墨化送电升温的关键阶段1600-2100℃进行温度和位移测量、按照石墨化过程中不同温度阶段制品的收缩和膨胀原理,而设计的用于的石墨化送电曲线。该石墨化送电曲线的技术要求是:直径785mm焙烧品、单柱装炉、29吨/炉,起始功率2500kw,送电时长24小时,计划耗电量163100kw·h。

所述步骤③中的送电曲线如下:

(2)、内热串接石墨化炉用跨接电极的制作

将上述待用的石墨化品按照规定的技术要求进行技术指标测试,并按照图纸加工成规格的部件,如图3所示,即上料块1和下料块2,在结合面处涂抹导电胶3后进行组装,再包装、入库。

实施例2

一种内热串接石墨化炉用跨接电极,包括大粒度油系针状焦、中粒度油系针状焦和小粒度粉子组成的干料以及粘结剂、添加剂、生碎和焙烧碎组份,经粉碎筛分、配料、混捏、成型、焙烧、浸渍、石墨化、加工组装工序制成,该配方组合物按重量百分比计算为:大粒度油系针状焦35%、中粒度油系针状焦25%、小粒度粉子40%,粘结剂占干料总重的30%、添加剂中的硬脂酸占干料总重的0.8%,添加剂中的fe2o3粉占干料总重的0.5%,生碎占干料总重的10%,焙烧碎占干料的5%;所述的粘结剂为中温改质沥青;所述的大粒度油系针状焦的粒度为15-25mm,中粒度油系针状焦粒度为5-15mm,小粒度粉子粒度为200目粉子。

具体生产过程同实施例1。

实施例3

一种内热串接石墨化炉用跨接电极,包括大粒度油系针状焦、中粒度油系针状焦和小粒度粉子组成的干料以及粘结剂、添加剂、生碎和焙烧碎组份,经粉碎筛分、配料、混捏、成型、焙烧、浸渍、石墨化、加工组装工序制成,该配方组合物按重量百分比计算为:大粒度油系针状焦35%、中粒度油系针状焦25%、小粒度粉子40%,粘结剂占干料总重的28%、添加剂中的硬脂酸占干料总重量的0.6%,生碎占干料总重量的15%;所述的粘结剂为中温改质沥青;所述的大粒度油系针状焦的粒度为15-25mm,中粒度油系针状焦粒度为5-15mm,小粒度粉子为200目粉子。

具体生产过程同实施例1。

本发明采用实施1至3的技术方案,利用进口油系针状焦生产出大规格超高功率石墨料坯,经检测,该电极的体积密度为1.73g/cm3,抗折强度为13.9mp,弹性模量为9.76gpa,电阻率为5.1μωm,热膨胀系数为1.2×10-6/℃,完全达到国际标准。

上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所做的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1