一种低辐射镀膜玻璃的制作方法

文档序号:14897918发布日期:2018-07-10 10:52阅读:478来源:国知局
本发明属于环保节能建筑材料领域,特别涉及一种低辐射镀膜玻璃,该低辐射玻璃具有高透纯净的特点,外观质感更佳。
背景技术
:随着社会的发展,人们对大自然的开发,能源的消耗越来越大。能源的短缺,环境的破坏已让人们意识到节能减排的重要意义,绿色建筑便是如今构建节能减排型社会的重要理念和方式之一。为了推进建筑节能,具有低辐射性能,能将太阳能热辐射过滤成冷光源的低辐射(lowemissivity简称low-e)节能玻璃,俨然成为了节能建筑的重要应用材料。目前,低辐射镀膜玻璃种类较多,外观颜色多元化。现有关于中性色外观的低辐射镀膜玻璃主要是体现在透过色上,专利cn20140607113.8报道了一种中性透过色的单银low-e玻璃,对于其余二维度的颜色没有作说明;专利cn201210430335.8、cn20140607063.3介绍了中性色的双银低辐射镀膜玻璃,主要体现在透过色呈现中性灰的特点;三银镀膜玻璃由于膜层的层数较多,在保证了室外反射色呈中性的情况下,产品的可见光透过率难以得到较大的提高,而且绝大多数的三银产品均呈现出透过色呈黄色的弊病。总体而言,现有的中性色低辐射节能玻璃由于受膜层结构及厚度匹配限制,在保证透过色的情况下,室内反射色则会呈现出紫红或蓝绿色;在保证室外反射色为中性色时,透过色表现出黄绿色,难以达到使室外反射色、室内反射色、透过色均呈现无色,且透过率接近浮法原片的特性,无法将室外环境真实地呈现给室内用户。在一些日照不充足或者采光要求高的地方,应用市场非常受限。技术实现要素:本发明的目的在于克服现有所存在的上述不足,提供一种高透纯净低辐射镀膜玻璃,通过对该镀膜玻璃膜层材质及结构的特定优化选择,使该特定膜层结构的镀膜玻璃,不仅传热系数低、遮阳系数低、热工性能良好,节能性能优异;而且,该镀膜玻璃还具备可见光透过率高,接近浮法白玻自身透过率,采光性能好;使室外反射色、室内反射色、透过色同时呈现出无色纯净的光学特性。为了实现上述发明目的,本发明提供了以下技术方案:一种低辐射镀膜玻璃,包括玻璃基片,在玻璃基片表面依次镀有:在玻璃基片表面依次镀有:第一氧化钛膜层、第二氧化锌膜层、第三银膜层、第四镍铬合金膜层、第五氧化锌膜层和第六氮化硅膜层。进一步,所述低辐射镀膜玻璃采用高真空磁控溅射技术或原子层沉积方式制备。其中,原子层沉积方法(也称ald原子层沉积方法),是一种可以将物质以单原子膜形式一层一层的镀在基底表面的方法。进一步,所述玻璃基片可选用一般的玻璃基底,优选为浮法白玻或超白玻璃。进一步,所述第一氧化钛膜层厚度为15-26nm,优选为20-22nm。所述第二氧化锌膜层厚度为17-27nm,优选为19-25nm。所述第三银膜层厚度为6-10nm,优选为8-9nm。所述第四镍铬合金膜层厚度为0.1-2nm,优选为0.5-1.5nm。所述第五氧化锌膜层的厚度为4-9nm,优选为5-6nm。所述第六氮化硅膜层的厚度为20-25nm,优选为22-24nm。进一步,一种低辐射镀膜玻璃,包括玻璃基片,所述玻璃基片为浮法白玻基片,并在所述浮法白玻基片表面依次镀有:20nm厚的第一氧化钛膜层、16nm厚的第二氧化锌膜层、8nm厚的第三银膜层、2.5nm厚的第四镍铬合金膜层、6nm厚的第五氧化锌膜层和22nm厚的第六层氮化硅膜层。采用上述顺序膜层镀制低辐射玻璃,调节膜层厚度,可以改变膜层之间对可见光的透射、吸收和反射比例。光学原理已知不同厚度的薄膜材料组合时,可以使可见光通过膜层后,反射光发生干涉现象。经发明人生产制造过程中的偶然发现,选用上述膜层材料,并按照上述特定顺序镀膜,在上述膜层厚度范围内,调节各膜层具体厚度,能够使各个波长段的自然光得到适宜的反射、透射,从而使该镀膜玻璃表现出高透率,室外反射色、室内反射色、透过色均呈现出无色的优异光学特性。与现有技术相比,本发明具有以下优点:1、本发明低辐射镀膜玻璃,通过在普通浮法玻璃基片表面依次真空磁控溅射镀覆第一氧化钛膜层、第二氧化锌膜层、第三银膜层、第四镍铬合金膜层、第五氧化锌膜层和第六氮化硅膜层,选用特定膜层材料和膜层结构组合,使具备该特定膜层结构的低辐射镀膜玻璃,具备良好的热学性能、机械性能的同时,表现出高透率,室外反射色、室内反射色、透过色均呈现出无色的优异光学特性。有效克服现有低辐射镀膜玻璃无法同时满足高透率和各方反射色无色的技术难题,对拓宽低辐射镀膜玻璃应用领域具有显著促进意义。2、本发明所述的低辐射玻璃,可见光透过率高,接近浮法原片透过率,满足建筑物的采光需求。而且,其玻璃面、膜面、透过均呈现无色特性,能让室外环境真实反映给屋内住户。由本发明所述低辐射玻璃制备的单片镀膜玻璃,其光学性能检测参数如表1所示:(a*和b*代表色度坐标,其中a*代表红一绿轴,b*代表黄一蓝轴)表13、本发明所述的低辐射玻璃,在满足了高透过率的情况下,其热学性能也能达到用户需求:红外反射率高,膜层辐射率远优于离线low-e玻璃的标准,节能效果显著。由本发明所述低辐射玻璃制备的中空玻璃(6mm+12mma+6mm),其热学性能参数如表2所示:表2产品透过率(%)太阳能透过tsol(%)热传系数u光热比lsg本发明73~7647~501.6~1.81.5~1.64、本发明所述的低辐射玻璃膜层结构,由于外表面氮化硅膜层保护层作用,及各膜层之间的相互粘合协同效果,从而具备很好的化学稳定性,机械稳定性好。其机械性能检测参数如表3所示:表3测试项目tvis检测前(%)tvis检测后(%)δtvis变化膜层抗磨测试(200r)84.883.2-1.6膜层抗磨测试(400r)84.882.7-2.15、本发明所述的低辐射玻璃,膜层结构简单稳定,所需溅射靶材较少,易于实现量产,工业实用价值高。附图说明:图1为本发明所述高透纯净低辐射玻璃的剖面示意图。图中标记:1-浮法白玻璃基片,2-第一氧化钛膜层,3-第二氧化锌膜层,4-第三银膜层,5-第四镍铬合金膜层,6-第五氧化锌膜层,7-第六氮化硅膜层。具体实施方式下面结合试验例及具体实施方式对本发明作进一步的详细描述。但不应将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本
发明内容所实现的技术均属于本发明的范围。实施例1利用真空离线磁控溅射镀膜设备,在6mm的普通浮法白玻基片上,从内到外依次镀制15nm厚的氧化钛膜层、17nm厚的氧化锌膜层、8.7nm厚的银膜层、1.5nm厚的镍铬合金膜层、6nm厚的氧化锌膜层和22nm厚的氮化硅膜层。实施例2利用真空离线磁控溅射镀膜设备,在6mm的普通浮法白玻基片上,从内到外依次镀制:17nm的氧化钛膜层、15nm厚的氧化锌膜层、9nm厚的银膜层、1nm厚的镍铬合金膜层、4nm厚的氧化锌膜层、25nm厚的氮化硅膜层。实施例3利用ald原子层沉积设备,在6mm的超白玻璃基片上,从内到外依次镀制:19nm厚的氧化钛膜层、27nm厚的氧化锌膜层、10nm厚的银膜层、0.5nm厚的镍铬合金膜层、9nm厚的氧化锌膜层、20nm厚的氮化硅膜层。实施例4将实施例1中制备得到的高透纯净低辐射玻璃制成中空玻璃(6mm+12mma+6mm)结构,得到高透纯净低辐射镀膜中空玻璃产品。对比例1(将底层氧化钛膜层,替换为氮化硅膜层,并对应改变相关膜层厚度)利用真空离线磁控溅射镀膜设备,在6mm的普通浮法白玻基片上,从内到外依次镀制:30nm厚的氮化硅膜层、16nm厚的氧化锌膜层、4nm厚的银膜层、4.5nm厚的镍铬合金膜层、9nm厚的氧化锌膜层、30nm厚的氮化硅膜层。对比例2(省略第五氧化锌膜层,并对应改变各膜层厚度值)利用真空离线磁控溅射镀膜设备,在6mm的普通浮法白玻基片上,从内到外依次镀制:26nm厚的氧化钛膜层、16nm厚的氧化锌膜层、13nm厚的银膜层、4.5nm厚的镍铬合金膜层、30nm厚的氮化硅膜层。对比例3(相同膜层材料,但膜层厚度有改变)利用真空离线磁控溅射镀膜设备,在6mm的普通浮法白玻基片上,从内到外依次镀制:26nm厚的氧化钛膜层、30nm厚的氧化锌膜层、13nm厚的银膜层、4.5nm厚的镍铬合金膜层、15nm厚的氧化锌膜层、30nm厚的氮化硅膜层。性能测试按照gb/t18915.2-2013测定上述实施例及对比例制得的低辐射镀膜玻璃钢化后的光学参数,进行对比,结果见表4-9所示:(其中,l*代表亮度值,a*和b*代表色度坐标,其中a*代表红一绿轴,b*代表黄一蓝轴)表4实施例1中制备的单片镀膜玻璃光学参数表5实施例2中制备的单片镀膜玻璃光学参数表6实施例3中制备的单片镀膜玻璃光学参数表7对比例1中制备的单片镀膜玻璃光学参数表8对比例2中制备的单片镀膜玻璃光学参数表9对比例3中制备的单片镀膜玻璃光学参数从表4至表9的检测结果可知,只有选用本发明所述特定膜层材料和结构(实施例1-3)制备的钢化后的单层镀膜玻璃,才能同时表现出室外反射色、室内反射色、透过色均呈现出无色的光学特性。改变本发明所述的膜层材料或膜层厚度,则最终制备的单层镀膜玻璃(如对比例1-3)光学性能改变,反射出的室外反射色、室内反射色、透过色色度值增大,纯净度显著降低,表现出偏黄或偏灰的中性色度,无法达到本发明所述高透无色纯净要求。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1