一种以石墨烯为模板熔盐法合成二维SiC超薄纳米结构及其制备方法与流程

文档序号:15648601发布日期:2018-10-12 22:53阅读:859来源:国知局

本发明涉及一种以石墨烯为模板熔盐法合成二维sic超薄纳米结构及其制备方法,属于纳米材料制备技术领域。



背景技术:

自2004年由英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫通过微机械剥离法从高定向热解石墨原料中成功剥离出石墨烯以来,其优异的光学、电学、力学特性吸引了大量的科学家对它在材料学、微纳加工、能源、生物医学和药物传递等方面的应用进行了大量的探索,被认为是一种未来革命性的材料。但是本征石墨烯零带隙特性严重限制了它在电子学和光电子学领域的应用,比如基于石墨烯的逻辑电路和发光二极管。尽管可以通过化学掺杂或者电场调节的方式来调控打开石墨烯电子结构和禁带宽度,但是以这种方式打开的禁带宽度往往都在0.4ev以下,难以满足传统场效应晶体管的需求。因此,科学家们不断尝试寻找其他二维材料,如具有1.9ev大小禁带宽度的二维mos2和具有1.5ev禁带宽度的二维黑磷等,而制备禁带宽度在2ev以上的大面积二维材料仍需要技术突破。

在块体材料中,具有禁带宽度大于2ev的材料以sic、gan和zno为典型代表。特别是sic,具有出色的物理性能,如带隙较宽、高临界击穿电场、高饱和电子漂移速率等,同时,sic材料也具有耐高温、耐磨损、耐腐蚀、高硬度、热稳定性好、抗氧化能力强等优点。正是这些优良特性,使得sic可用于在高温、高辐射、强腐蚀性等恶劣环境的高频和高功率微电子器件。sic块体材料主要具有3c、2h、4h、6h、15r、21r等六种堆积方式,不同的型体具有不同的禁带宽度和物理性质,比如3c-sic的禁带宽度为2.08ev,4h-sic的禁带宽度为3.27ev,6h-sic的禁带宽度为3.03ev,但这一点成为制约块体sic材料广泛应用的重要因素。而二维sic特别是单层sic的原子结构类似石墨烯,都是蜂窝状结构。与石墨烯不同的是,二维sic原胞里面拥有两个不同的原子,可以看成石墨烯原胞中的一个c原子替换成si原子,c原子与邻近的三个si原子进行了sp2杂化。尽管组成sic的原子都属于第iv主族,但是电荷是由si原子向c原子转移,主要是由于c原子具有较高的电负性。从理论计算来看,当sic的厚度逐渐变小成为单层sic二维结构后,其变为直接带隙半导体,并且具有2.5ev的禁带宽度,具有更加优异的光电性能。另外,二维sic纳米结构由于具有非常大的比表面积和裸露于表面的si原子,在si原子和c原子可以嵌入锂离子而能够作为锂离子电池负极。同时,二维sic纳米结构之间的si原子和c原子相互之间也可以嵌入锂离子,这就增强了其嵌入锂离子的能力,提高了容量。由于纳米sic具有高刚度、高硬度和韧性等优点,所以,在作为锂离子电池的负极材料时,不会产生粉化现象,这就会大大提高其作为锂离子电池负极的能力。

目前制备二维sic纳米结构(含薄片、片层结构)存在几种方法,如:化学机械剥离铅锌矿型结构块体碳化硅;一些学者利用硅粉和废塑料(高密度聚乙烯、聚对苯二甲酸乙二醇酯)作为原料、金属钠和镁粉为还原剂、硫粉为辅助剂在高压釜中得到了含有一定比例的碳化硅纳米片,其片层厚度较大,为50~100nm;另有学者利用膨润土悬浊液与十六烷基三甲基溴化铵溶液、丙酮制得了碳化硅纳米片,但制备工艺十分复杂。

熔盐合成法通常采用一种或数种低熔点的盐类作为反应介质,反应物在熔盐中有一定的溶解度,使得反应在原子级进行。反应结束后,采用合适的溶剂将盐类溶解,经过滤洗涤后即可得到合成产物。其作为无机材料的低温合成方法,具有以下优点:(1)液相体系中反应物流动性和反应活性增强,使得反应快速进行,所需要的温度相对较低;(2)能有效地控制产物的形状和尺寸,这种性质同反应物与盐的熔体之间的表面能和界面能有关,由于表面能和界面能有减小的趋势,最终导致熔盐法合成的产物具有特定的形貌;(3)由于熔盐贯穿在生成物之间,阻止生成物之间的相互连结,因此熔盐法制得的生成物无团聚或仅有弱团聚,因此,熔盐法能制备出产物均匀,分散性好理想的晶体材料,有利于材料器件性能的提高。

有研究表明在sic中掺杂n或p可以形成n型半导体,而掺杂al、b、ga或be能够形成p型半导体。在碳化硅中大量掺杂b、al或n可以使掺杂后的sic具备数量级可与金属比拟的导电率。掺杂al的sic纳米结构能够加强嵌入锂离子的能力增加其容量。掺杂al的3c-sic、掺杂b的3c-sic和6h-sic的碳化硅都能在1.5k的温度下拥有超导性。掺杂al的碳化硅和掺杂b的晶体硅一样都是ii型半导体,但掺杂b的sic则是i型半导体。然而以石墨烯为模板通过熔盐法低温制备掺n的n型sic二维超薄纳米结构以及掺b、al、ga或be的p型sic二维超薄纳米结构半导体至今未见报道。



技术实现要素:

针对现有技术存在的不足,本发明的目的在于提供一种工艺简单的熔盐法低温制备n型或p型sic二维超薄纳米结构材料的方法。该方法以si粉为原料,石墨烯为模板,在一定的气氛下,于1050℃~1200℃的低温下通过熔盐法制备得到sic二维纳米结构。制备n型sic二维超薄纳米结构材料时,选择在n2气氛下控制工艺对sic进行掺n;制备p型sic二维超薄纳米结构材料时,选择在ar气氛下掺b、al、ga或be。

为了实现上述技术任务,本发明采用以下技术方案:

一种以石墨烯为模板熔盐法合成二维sic超薄纳米结构及其制备方法,对于使用的原料,其特征在于:石墨烯,单层或者层数≤10层的多层石墨烯;硅粉,si含量≥99.9%,粒径≤74μm;p型掺杂剂b、al、ga或be均为分析纯,其含量占原料总配料的0.01~1wt.%;熔盐为nacl和naf的混合熔盐,其比例为95wt.%:5wt.%,纯度均为分析纯;制备n型sic时用高纯氮气,纯度>99.99%,制备p型sic时用高纯氩气,纯度>99.99%;选用的原料反应舟皿装置为高纯石墨坩埚,c含量≥99.99wt.%。

一种以石墨烯为模板熔盐法合成二维sic超薄纳米结构的制备方法,其特征在于主要包括如下工艺步骤:

(1)称量摩尔比为1:1的上述石墨烯和硅粉原料,制备p型sic时,添加b、al、ga或be作为掺杂剂,其含量占原料总配料的0.01~1wt.%,制备n型sic时不需要添加掺杂剂,将其与熔盐放入石墨坩埚中混合0.1~1h,原料与熔盐的配比为1:4~1:10;

(2)将装有原料的石墨坩埚放在干燥箱中80~150℃保温2~10h进行干燥;

(3)装有原料的石墨坩埚干燥后放置于管式炉中,抽真空后通气氛0.1~0.5h以排除管式炉中的空气,以10℃/min从室温加热至600℃,然后以5℃/min加热至1050~1200℃后保温0.5~6h进行合成反应。在整个合成过程中,制备n型sic时气氛选择氮气保护,制备p型sic时气氛选择氩气保护。反应结束后,自然冷却到室温;

(4)从管式炉中取出石墨坩埚,对反应产物进行纯化,用水对含有熔盐的产物分别进行溶解、离心、过滤等反复操作3-6次,将所用的熔盐去除后,干燥后即可得到本发明所述的二维sic超薄纳米结构半导体材料。

本发明以硅粉为原料,以石墨烯为模板,通过熔盐法制备得到二维sic超薄纳米结构半导体材料,具有反应时间短、合成温度低、结晶性好、颗粒均匀、分散性好等特点,制备过程可控,易于工业化生产。

附图说明

图1(a)为实施例1制备的二维sic超薄纳米结构的透射电镜照片(tem);(b,c)为实施例1制备的二维sic超薄纳米结构的高分辨透射电镜照片(hrtem);(d)为实施例1制备的二维sic超薄纳米结构的能谱图(eds)。

具体实施方式

本发明首先将所述的原料按所述配比进行配料,制备p型sic时,添加b、al、ga或be作为掺杂剂,其含量占原料总配料的0.01~1wt.%,制备n型sic时不需要添加掺杂剂,将其与熔盐放入石墨坩埚中混合0.1~1h,原料与熔盐的配比为1:4~1:10;将装有原料的石墨坩埚放在干燥箱中80~150℃保温2~10h进行干燥;装有原料的石墨坩埚干燥后放置于管式炉中,抽真空后通气氛0.1~0.5h以排除管式炉中的空气,以10℃/min从室温加热至600℃,然后以5℃/min加热至1050~1200℃后保温0.5~6h进行合成反应。制备n型sic时气氛选择氮气,制备p型sic时气氛选择氩气。反应结束后,自然冷却到室温;从管式炉中取出石墨坩埚,对反应产物进行纯化,用水对含有熔盐的产物分别进行溶解、离心、过滤等反复操作3-6次,将所用的熔盐去除后,干燥后即可制备得到本发明所述的二维sic超薄纳米结构半导体材料。

下面通过具体实施例,更详细的说明本发明,但这些实施例只是用于帮助容易理解本发明,本发明并不限于这些实施例。

实施例1

以硅粉为原料,si含量为99.9%,粒径为≤20μm;石墨烯,层数≤5层的多层石墨烯;添加分析纯的al粉作为掺杂剂,其含量占总配料的0.3wt.%;熔盐为nacl和naf的混合熔盐,其比例为95wt.%:5wt.%;原料与熔盐的配比为质量比1:9;将所有原料与熔盐放入石墨坩埚中混合0.5h,将装有原料的石墨坩埚放在干燥箱中80℃保温3h进行干燥;装有原料的石墨坩埚干燥后放置于管式炉中,抽真空后通氩气(ar)气氛0.5h,以10℃/min从室温加热至600℃,然后以5℃/min加热至1150℃后保温3h进行合成反应。反应结束后,自然冷却到室温;从管式炉中取出石墨坩埚,对反应产物进行纯化,用水对含有熔盐的产物分别进行溶解、离心、过滤等反复操作5次,将所用的熔盐去除后,干燥后即可得到本发明所述的p型sic二维超薄纳米结构半导体材料。

实施例2

以硅粉为原料,si含量为99.9%,粒径为≤20μm;石墨烯,层数≤5层的多层石墨烯;熔盐为nacl和naf的混合熔盐,其比例为95wt.%:5wt.%;原料与熔盐的配比为质量比1:9;将所有原料与熔盐放入石墨坩埚中混合0.5h,将装有原料的石墨坩埚放在干燥箱中80℃保温3h进行干燥;装有原料的石墨坩埚干燥后放置于管式炉中,抽真空后通氮气(n2)气氛0.5h,以10℃/min从室温加热至600℃,然后以5℃/min加热至1150℃后保温3h进行合成反应。反应结束后,自然冷却到室温;从管式炉中取出石墨坩埚,对反应产物进行纯化,用水对含有熔盐的产物分别进行溶解、离心、过滤等反复操作5次,将所用的熔盐去除后,干燥后即可得到本发明所述的n型sic二维超薄纳米结构半导体材料。

实施例3

以硅粉为原料,si含量为99.9%,粒径为≤20μm;石墨烯,层数≤5层的多层石墨烯;添加分析纯的b粉作为掺杂剂,其含量占总配料的0.8wt.%;熔盐为nacl和naf的混合熔盐,其比例为95wt.%:5wt.%;原料与熔盐的配比为质量比1:6;将所有原料与熔盐放入石墨坩埚中混合0.5h,将装有原料的石墨坩埚放在干燥箱中80℃保温4h进行干燥;装有原料的石墨坩埚干燥后放置于管式炉中,抽真空后通氩气气氛0.5h,以10℃/min从室温加热至600℃,然后以5℃/min加热至1150℃后保温5h进行合成反应。反应结束后,自然冷却到室温;从管式炉中取出石墨坩埚,对反应产物进行纯化,用水对含有熔盐的产物分别进行溶解、离心、过滤等反复操作6次,将所用的熔盐去除后,干燥后即可得到本发明所述的p型sic二维超薄纳米结构半导体材料。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1