一种提高压敏电阻通流容量的方法与流程

文档序号:15844417发布日期:2018-11-07 08:50阅读:369来源:国知局

本发明涉及半导体材料技术领域,具体涉及一种提高压敏电阻通流容量的方法。

背景技术

压敏电阻是一种具有非线性伏安特性的电阻器件,主要用于在电路承受过压时进行电压嵌位,吸收多余的电流以保护敏感器件。压敏电阻器的电阻材料是半导体,所以它是半导体电阻器的一个品种。大量使用的氧化锌压敏电阻器,它的主体材料有二价元素锌和六价元素氧所构成,所以从材料的角度来看,氧化锌压敏电阻器是一种“ⅱ-ⅵ族氧化物半导体”。根据电阻的功能特性,压敏电阻器又被称为“突波吸收器”或“电浪涌抑制器”。根据在电路中使用目的的不同,压敏电阻可分为保护用压敏电阻和电路功能用压敏电阻。

压敏电阻是一种限压型保护器件。利用压敏电阻的非线性特性,当过电压出现在压敏电阻的两极间,压敏电阻可以把电压钳位到一个相对固定的电压值,从而实现对后级电路的保护。压敏电阻的响应时间为ns级,比空气放电管快,比tvs管稍慢一些,一般情况下用于电子电路的过电压保护其响应速度可以满足要求。压敏电阻的结电容一般在几百到几千pf的数量级范围,很多情况下不宜直接应用在高频信号线路的保护中,应用在交流电路的保护中时,因为其结电容较大会增加漏电流,在设计防护电路时需要充分考虑。压敏电阻的通流容量较大,但比气体放电管小。

压敏电阻的最大特点是当加在它上面的电压低于它的阀值un时,流过它的电流极小,相当于一只关死的阀门,当电压超过un时,它的阻值变小,这样就使得流过它的电流激增而对其他电路的影响变化不大从而减小过电压对后续敏感电路的影响。利用这一功能,可以抑制电路中经常出现的异常过电压,保护电路免受过电压的损害。

压敏电阻的动作原理是因为电极间的颗粒与邻近氧化物交界处会形成二极管效应,由于有大量杂乱颗粒,使得它等同于一大堆背向相连的二极管,低电压时只有很小的逆向漏电电流,当遇到高电压时,二极管因热电子与隧道效应而发生逆向崩溃,流通大电流。

影响压敏电阻性能的一个重要参数是通流容量,通流容量也称通流量,是指在规定的条件(规定的时间间隔和次数,施加标准的冲击电流)下,允许通过压敏电阻器上的最大脉冲电流值。

常规压敏电阻制造过程中,通常通过提高制备陶瓷电阻材料的浆料的流动性和浆料的分散性,来提升压敏电阻产品的通流容量。因此制备压敏陶瓷的物料细度要求越低越好,而其中的组分的混合也要求非常均匀,混合时采用球磨混合的方式替代搅拌机混合。这些方式虽然可以提高压敏电阻的通流容量,但是由于材料粒度和分散效果具有一定的物理限制,材料处理达到较高水准之后,压敏电阻的通流容量提升就出现了瓶颈。



技术实现要素:

针对现有技术中存在的问题,本发明提供了一种提高压敏电阻通流容量的方法,该方法通过材料和工艺方面的改进,使得制备的压敏电阻的通流容量得到较大提升。

为了达到上述目的,本发明通过以下技术方案来实现的:

一种提高压敏电阻通流容量的方法,包括如下步骤:

(1)按照质量份数,准备原料组分:氧化锌97-100份,氧化钴0.31-0.38份,氧化铋0.25-0.32份,碳酸锰0.15-0.25份,氧化锡0.13-0.18份,氧化钇0.15-0.17份,氯化镧0.23-0.27份,氧化钐0.11-0.14份,将原料组分混合均匀后,加入到球磨机中,球磨混合;

(2)将3.4-3.9份的金属量子点复合物用100-150份无水乙醇进行均匀分散,然后将量子点复合物的分散液加入到上步的混合原料中,以270-300r/min的转速进行分散处理,分散处理时间为20-23min,分散处理结束后将无水乙醇蒸干,得到陶瓷基片原料;

(3)将陶瓷基片原料和聚乙烯醇按照13-15:1的质量比混合均匀,混合均匀后再进行造粒;

(4)将上步的颗粒物以110-120mpa的压力压制成坯型,送入到惰性气氛保护的高温烧结炉中进行高温烧结,烧结过程中首先进行排胶,然后以1250-1300℃的最高烧结温度进行烧结,得所需陶瓷基片;

(5)在得到的陶瓷基片上通过银浆印刷的方式形成电极,然后采用密封胶对形成电极后的电阻体进行封装,得到所需压敏电阻。

优选地,步骤(1)的原料组分中,氧化锌的粒径为0.4-0.6μm,其余组分的粒径为1-2μm。

优选地,步骤(2)中的金属量子点复合物的制备方法为:

首先,按照质量份数,将2份醋酸铟,6份庚酸、75份十八碳烯加入到真空反应釜中,以115-118℃的温度保温反应1-1.3h,然后向反应釜内充入氦气气氛进行保护,并加入3份三(三甲基甲硅烷基)膦和6份癸基胺,以187-190℃的温度保温反应26-28min,反应结束后冷却至室温,过滤,用足量甲醇溶剂进行清洗,并离心、干燥得到沉淀物a;

接着,将4份乙酸锌,5份油酸和100份十八烷基胺加入到真空反应釜中,以117-120℃的温度反应15-20min,然后充入氦气气氛进行保护,并加入3份三辛基膦和10份量子点,以186-190℃的温度继续反应15-20min,然后将产物冷却至室温,过滤用足量甲醇溶剂进行清洗,并离心、干燥得到沉淀物b;

最后,将沉淀物a和沉淀物b混合加入到150份氯仿中分散均匀,然后向分散系中加入15份苯乙烯-马来酸酐共聚物和9份六亚甲基二胺,在60-65℃的温度下混合搅拌1-2h,并超声波处理15-17min,产物过滤后将沉淀物用足量甲醇溶剂进行清洗,干燥得到所需金属量子点复合物。

其中,使用的量子点为snte、innp、alnsb和znse按照4:1:2:1的质量比混合的混合物,量子点的粒径为20-35nm。

优选的,混合物中的snte量子点,可由znsete、znste和cdznte量子点进行等量替代使用。

优选地,步骤(2)中无水乙醇分散剂蒸出过程中的蒸馏温度为80-82℃。

优选地,步骤(3)中陶瓷基片原料和聚乙烯醇的质量比为14:1。

优选地,步骤(4)中高温烧结炉的加热方式为电加热。

优选地,步骤(4)高温烧结炉中烧结体的排胶和烧结过程如下:

将坯型送入到高温烧结炉中,先以10-15℃/min的升温速率将炉温升高至280-320℃,保温15-20min,使聚乙烯醇分解挥发,然后以3-5℃/min的速率缓慢升温460-475℃,完成排胶;接着以8-10℃/min的速率,将高温炉的温度升高至1250-1300℃,保温烧结2-2.5h;然后将炉温降低至1000-1050℃,保温2-3h,再将炉温降低至570-600℃,保温20-25min,最后将烧结料出炉,自然冷却至室温。

优选地,步骤(5)中压敏电阻封装使用的密封胶为二甲基硅氧烷密封胶或环氧树脂密封胶。

本发明具有如下的有益效果:

本发明主要通过改善压敏电阻中陶瓷基片的性质,来提升压敏电阻的电学性能。其中,通过特殊的组分配比,包括其中特殊的金属量子点复合物的添加,以及具有助烧结作用的氧化钇、氯化镧、氧化钐等组分的使用,使得陶瓷基片制备的压敏电阻的二极管效应得到增强,并显著提升了压敏电阻体的通流容量。其中,本发明的创造性还在于陶瓷材料烧结过程中特定的排胶处理,以及烧结过程的特定温度过程的控制,这些因素可以发挥出协同作用,使得该型陶瓷基片生产的压敏电阻的性能得到显著提高。

具体实施方式

下面结合实施例对本发明的具体实施方式作进一步描述,以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。

实施例1

一种提高压敏电阻通流容量的方法,包括如下步骤:

(1)按照质量份数,准备原料组分:氧化锌97份,氧化钴0.31份,氧化铋0.25份,碳酸锰0.15份,氧化锡0.13份,氧化钇0.15份,氯化镧0.23份,氧化钐0.11份,将原料组分混合均匀后,加入到球磨机中,球磨混合;

(2)将3.4份的金属量子点复合物用100份无水乙醇进行均匀分散,然后将量子点复合物的分散液加入到上步的混合原料中,以270r/min的转速进行分散处理,分散处理时间为20min,分散处理结束后将无水乙醇蒸干,得到陶瓷基片原料;

(3)将陶瓷基片原料和聚乙烯醇按照13:1的质量比混合均匀,混合均匀后再进行造粒;

(4)将上步的颗粒物以110mpa的压力压制成坯型,送入到惰性气氛保护的高温烧结炉中进行高温烧结,烧结过程中首先进行排胶,然后以1250℃的最高烧结温度进行烧结,得所需陶瓷基片;

(5)在得到的陶瓷基片上通过银浆印刷的方式形成电极,然后采用密封胶对形成电极后的电阻体进行封装,得到所需压敏电阻。

其中,步骤(1)的原料组分中,氧化锌的粒径为0.4-0.6μm,其余组分的粒径为1-2μm。

步骤(2)中的金属量子点复合物的制备方法为:

首先,按照质量份数,将2份醋酸铟,6份庚酸、75份十八碳烯加入到真空反应釜中,以115℃的温度保温反应1h,然后向反应釜内充入氦气气氛进行保护,并加入3份三(三甲基甲硅烷基)膦和6份癸基胺,以187℃的温度保温反应26min,反应结束后冷却至室温,过滤,用足量甲醇溶剂进行清洗,并离心、干燥得到沉淀物a;

接着,将4份乙酸锌,5份油酸和100份十八烷基胺加入到真空反应釜中,以117℃的温度反应15min,然后充入氦气气氛进行保护,并加入3份三辛基膦和10份量子点,以186℃的温度继续反应15min,然后将产物冷却至室温,过滤用足量甲醇溶剂进行清洗,并离心、干燥得到沉淀物b;

最后,将沉淀物a和沉淀物b混合加入到150份氯仿中分散均匀,然后向分散系中加入15份苯乙烯-马来酸酐共聚物和9份六亚甲基二胺,在60℃的温度下混合搅拌1h,并超声波处理15min,产物过滤后将沉淀物用足量甲醇溶剂进行清洗,干燥得到所需金属量子点复合物。

金属量子点复合物制备过程中使用的量子点为snte、innp、alnsb和znse按照4:1:2:1的质量比混合的混合物,量子点的粒径为20-35nm。

步骤(2)中无水乙醇分散剂蒸出过程中的蒸馏温度为80℃。

步骤(3)中陶瓷基片原料和聚乙烯醇的质量比为14:1。

步骤(4)中高温烧结炉的加热方式为电加热。

步骤(4)高温烧结炉中烧结体的排胶和烧结过程如下:

将坯型送入到高温烧结炉中,先以10℃/min的升温速率将炉温升高至280℃,保温15min,使聚乙烯醇分解挥发,然后以3℃/min的速率缓慢升温460℃,完成排胶;接着以8℃/min的速率,将高温炉的温度升高至1250℃,保温烧结2h;然后将炉温降低至1000℃,保温2h,再将炉温降低至570℃,保温20min,最后将烧结料出炉,自然冷却至室温。

步骤(5)中压敏电阻封装使用的密封胶为二甲基硅氧烷密封胶。

实施例2

一种提高压敏电阻通流容量的方法,包括如下步骤:

(1)按照质量份数,准备原料组分:氧化锌100份,氧化钴0.38份,氧化铋0.32份,碳酸锰0.25份,氧化锡0.18份,氧化钇0.17份,氯化镧0.27份,氧化钐0.14份,将原料组分混合均匀后,加入到球磨机中,球磨混合;

(2)将3.9份的金属量子点复合物用150份无水乙醇进行均匀分散,然后将量子点复合物的分散液加入到上步的混合原料中,以300r/min的转速进行分散处理,分散处理时间为23min,分散处理结束后将无水乙醇蒸干,得到陶瓷基片原料;

(3)将陶瓷基片原料和聚乙烯醇按照15:1的质量比混合均匀,混合均匀后再进行造粒;

(4)将上步的颗粒物以120mpa的压力压制成坯型,送入到惰性气氛保护的高温烧结炉中进行高温烧结,烧结过程中首先进行排胶,然后以1300℃的最高烧结温度进行烧结,得所需陶瓷基片;

(5)在得到的陶瓷基片上通过银浆印刷的方式形成电极,然后采用密封胶对形成电极后的电阻体进行封装,得到所需压敏电阻。

其中,步骤(1)的原料组分中,氧化锌的粒径为0.4-0.6μm,其余组分的粒径为1-2μm。

步骤(2)中的金属量子点复合物的制备方法为:

首先,按照质量份数,将2份醋酸铟,6份庚酸、75份十八碳烯加入到真空反应釜中,以118℃的温度保温反应1.3h,然后向反应釜内充入氦气气氛进行保护,并加入3份三(三甲基甲硅烷基)膦和6份癸基胺,以190℃的温度保温反应28min,反应结束后冷却至室温,过滤,用足量甲醇溶剂进行清洗,并离心、干燥得到沉淀物a;

接着,将4份乙酸锌,5份油酸和100份十八烷基胺加入到真空反应釜中,以120℃的温度反应20min,然后充入氦气气氛进行保护,并加入3份三辛基膦和10份量子点,以190℃的温度继续反应20min,然后将产物冷却至室温,过滤用足量甲醇溶剂进行清洗,并离心、干燥得到沉淀物b;

最后,将沉淀物a和沉淀物b混合加入到150份氯仿中分散均匀,然后向分散系中加入15份苯乙烯-马来酸酐共聚物和9份六亚甲基二胺,在65℃的温度下混合搅拌2h,并超声波处理17min,产物过滤后将沉淀物用足量甲醇溶剂进行清洗,干燥得到所需金属量子点复合物。

金属量子点复合物制备过程中使用的量子点为znste、innp、alnsb和znse按照4:1:2:1的质量比混合的混合物,量子点的粒径为20-35nm。

步骤(2)中无水乙醇分散剂蒸出过程中的蒸馏温度为82℃。

步骤(3)中陶瓷基片原料和聚乙烯醇的质量比为14:1。

步骤(4)中高温烧结炉的加热方式为电加热。

步骤(4)高温烧结炉中烧结体的排胶和烧结过程如下:

将坯型送入到高温烧结炉中,先以15℃/min的升温速率将炉温升高至320℃,保温20min,使聚乙烯醇分解挥发,然后以5℃/min的速率缓慢升温475℃,完成排胶;接着以10℃/min的速率,将高温炉的温度升高至1300℃,保温烧结2.5h;然后将炉温降低至1050℃,保温3h,再将炉温降低至600℃,保温25min,最后将烧结料出炉,自然冷却至室温。

步骤(5)中压敏电阻封装使用的密封胶为环氧树脂密封胶。

实施例3

一种提高压敏电阻通流容量的方法,包括如下步骤:

(1)按照质量份数,准备原料组分:氧化锌98份,氧化钴0.34份,氧化铋0.29份,碳酸锰0.19份,氧化锡0.15份,氧化钇0.16份,氯化镧0.25份,氧化钐0.13份,将原料组分混合均匀后,加入到球磨机中,球磨混合;

(2)将3.7份的金属量子点复合物用130份无水乙醇进行均匀分散,然后将量子点复合物的分散液加入到上步的混合原料中,以280r/min的转速进行分散处理,分散处理时间为22min,分散处理结束后将无水乙醇蒸干,得到陶瓷基片原料;

(3)将陶瓷基片原料和聚乙烯醇按照14:1的质量比混合均匀,混合均匀后再进行造粒;

(4)将上步的颗粒物以115mpa的压力压制成坯型,送入到惰性气氛保护的高温烧结炉中进行高温烧结,烧结过程中首先进行排胶,然后以1280℃的最高烧结温度进行烧结,得所需陶瓷基片;

(5)在得到的陶瓷基片上通过银浆印刷的方式形成电极,然后采用密封胶对形成电极后的电阻体进行封装,得到所需压敏电阻。

其中,步骤(1)的原料组分中,氧化锌的粒径为0.4-0.6μm,其余组分的粒径为1-2μm。

步骤(2)中的金属量子点复合物的制备方法为:

首先,按照质量份数,将2份醋酸铟,6份庚酸、75份十八碳烯加入到真空反应釜中,以117℃的温度保温反应1.2h,然后向反应釜内充入氦气气氛进行保护,并加入3份三(三甲基甲硅烷基)膦和6份癸基胺,以188℃的温度保温反应27min,反应结束后冷却至室温,过滤,用足量甲醇溶剂进行清洗,并离心、干燥得到沉淀物a;

接着,将4份乙酸锌,5份油酸和100份十八烷基胺加入到真空反应釜中,以118℃的温度反应17min,然后充入氦气气氛进行保护,并加入3份三辛基膦和10份量子点,以188℃的温度继续反应17min,然后将产物冷却至室温,过滤用足量甲醇溶剂进行清洗,并离心、干燥得到沉淀物b;

最后,将沉淀物a和沉淀物b混合加入到150份氯仿中分散均匀,然后向分散系中加入15份苯乙烯-马来酸酐共聚物和9份六亚甲基二胺,在63℃的温度下混合搅拌1.5h,并超声波处理16min,产物过滤后将沉淀物用足量甲醇溶剂进行清洗,干燥得到所需金属量子点复合物。

金属量子点复合物制备过程中使用的量子点为cdznte、innp、alnsb和znse按照4:1:2:1的质量比混合的混合物,量子点的粒径为20-35nm。

步骤(2)中无水乙醇分散剂蒸出过程中的蒸馏温度为81℃。

步骤(3)中陶瓷基片原料和聚乙烯醇的质量比为14:1。

步骤(4)中高温烧结炉的加热方式为电加热。

步骤(4)高温烧结炉中烧结体的排胶和烧结过程如下:

将坯型送入到高温烧结炉中,先以13℃/min的升温速率将炉温升高至300℃,保温17min,使聚乙烯醇分解挥发,然后以4℃/min的速率缓慢升温470℃,完成排胶;接着以9℃/min的速率,将高温炉的温度升高至1280℃,保温烧结2.3h;然后将炉温降低至1030℃,保温2.5h,再将炉温降低至590℃,保温23min,最后将烧结料出炉,自然冷却至室温。

步骤(5)中压敏电阻封装使用的密封胶为二甲基硅氧烷密封胶。

性能测试

根据实施例1-3中的方法分别生产出压敏电压分别为390v、510v和820v规格的产品,测试各产品的性能参数,并分别与市场上购买的myg-32d391k型、myg-32d511k型和myg-32d821k产品的标称参数进行对比,得到如下表的测试结果:

表1:本实施例压敏电阻性能参数与对照组标称参数的对比

分析以上试验数据发现,本发明的技术方案可以提高压敏电阻的通流容量,并提高压敏电阻对瞬时冲击功的耐受强度,从而提高压敏电阻的适用范围和可靠使用寿命。

以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1