一种可在还原气氛下烧结的铌酸钾钠基压电陶瓷及其制备方法与流程

文档序号:17183877发布日期:2019-03-22 21:10阅读:781来源:国知局
一种可在还原气氛下烧结的铌酸钾钠基压电陶瓷及其制备方法与流程

本发明属于压电陶瓷材料制备方法技术领域,具体涉及一种可在还原气氛下烧结的铌酸钾钠基无铅压电陶瓷的制备方法。



背景技术:

钙钛矿型铁电固溶体在准同型相界或多晶型相界附近具有优异的压电介电性能,广泛用于制备换能器、驱动器、谐振器及传感器等。然而,目前商业化的pb(zrxti1-x)o3(pzt)基压电陶瓷含有60%以上的有毒有害且容易挥发的pbo,使其在生产和废气过程中会对人体和环境造成严重的危害,因而欧盟、美国和中国等国家和地区相继出台法律法规限制含铅电子产品的使用,压电材料无铅化已成为当前亟待解决的课题。

在目前广泛研究的无铅压电体系中,nanbo3-knbo3(knn)基无铅压电陶瓷在k/na比为0.48/0.52的成分附近,存在正交相和四方相铁电相变,压电常数d33可达到160pc/n,机电耦合系数kt达到47%,居里温度tc约为420°c。通过掺杂改性,knn基压电材料的压电常数可进一步提高,但仍然无法替代商业化的pzt基陶瓷(pzt-5h的压电性能参数:d33~640pc/n,kp~72%,tc~250°c)。因此通过多层结构设计增强陶瓷器件的压电响应,是推动无铅压电陶瓷的应用的有效方法之一。

多层陶瓷元件是陶瓷素坯与金属内电极交错堆叠共烧而成,陶瓷电介质层与层之间通过叉指状电极,实现电学并联、机械串联。电学并联的特点可以使多层压电陶瓷元件所需的驱动电压仅为同厚度的单层陶瓷的1/n(n为多层压电陶瓷元件的层数);机械串联可以将每层的压电位移叠加,放大整个多层元件的输出位移。目前,knn基多层压电陶瓷的研究尚处于起步阶段。韩国科学家kim等人分别以(k0.5na0.5)nbo3和0.95(k0.5na0.5)nbo3–0.05litao3等组分为陶瓷基体,以银钯合金为内电极,采用流延共烧工艺制备了多层压电陶瓷元件,压电常数d33分别约为114pc/n和250pc/n。银钯等内电极金属价格昂贵,为降低制造成本,使用ni或cu贱金属内电极势在必行,这要求陶瓷介质和贱金属内电极必须在还原气氛下烧结,因此必须解决陶瓷介质的抗还原问题。

对于抗还原knn基介质陶瓷材料的开发和研究,国内外学者开展了一些研究,国内只有北京科技大学张波萍教授课题组在n2气氛(而非还原气氛)下烧结出了xlinbo3-(1-x)(k0.535na0.482)nbo3陶瓷(授权公告号cn101355135);国外研究主要集中在美国宾州州立大学的randall教授课题组和日本村田公司。村田公司的研究集中在cazro3和snzro3掺杂(k0.5na0.5)nbo3体系,尽管此体系电阻率可高达4.2×109ω·m,但压电常数一般低于150pc/n,而且文献并未对具体烧结气氛等重要参数进行描述,这对我国开发研制高性能贱金属内电极共烧多层陶瓷器件的指导意义不大。randall课题组在还原气氛(n2和h2混合气,h2占体积比为0.08%;气体流量为500cc/min)下烧结(k,na,li)(nb,ta)o3陶瓷,在2kv/mm电压下测试出其逆压电常数d*33约220pm/v,压电性能较差,并且电阻率较低,仅有1.6×108ω·m。由此看出,目前关于knn基陶瓷在还原气氛烧结的报道较少;且压电性能较差,不能满足压电器件需求。



技术实现要素:

本发明的目的在于提供一种sno2、zro2、bi2o3、mno2掺杂(k,na)nbo3压电陶瓷的制备方法,该组分在还原气氛下烧结后,仍保持很高的绝缘电阻率,且压电陶瓷的压电系数可达350pc/n。

为了达到上述目的,本发明的技术方案是这样实现的。

(1)原料选用分析纯的k2co3,na2co3,nb2o5,sno2、zro2、bi2o3、mno2,其中各原料及其摩尔百分数为:50%的na2co3,45–50%的k2co3,90–100%的nb2o5,0–5%的bi2o3,0–1.0%的sno2,0–1.0%的zro2,0–0.5%的mno2。

(2)所有原料在真空干燥箱内干燥12小时,干燥温度为90℃。然后按照化学计量比称取,放入尼龙球磨罐中,球磨罐中放入适量氧化锆球,加入适量球磨介质酒精,其中原料、锆球、乙醇的质量比为1:15:5,将混合物置于行星球磨机上球磨混料6–24小时。

(3)将步骤2中的混合料烘干后,在马弗炉中预烧合成铌酸钾钠(knn)基粉末,预烧温度为800–900℃,保温时间5–6小时。

(4)将预烧后knn基粉末再次放入球磨罐中,加入适量球磨介质酒精,置于行星球磨机上球磨混料12–24小时。

(5)将步骤4中的混合料在烘箱烘干后,加入适量聚乙烯醇粘结剂进行研磨造粒,在2mpa下单向加压成型,得到直径约10mm,厚度约1mm的陶瓷圆形生坯。

(6)将步骤5得到的圆片以3℃/min的升温速度至600℃保温3–6小时进行排胶处理,排胶后的圆片用同组分的粉末封埋后,在1050–1150℃保温1–3小时烧结,其中烧结采用密封管式炉,炉内烧结气氛为体积分数为95–99%的氮气和1–5%的氢气,制备压电陶瓷样品。

本发明通过在(k,na)nbo3基体中,掺杂非等价的mn、bi、sn、zr等元素,在陶瓷中形成缺陷偶极子等稳定缺陷,降低氧空位浓度,从而使陶瓷片在还原气氛烧结下,仍能保持较高的电阻率和优异的压电性能。

附图说明

图1为实施例1中制备的压电陶瓷的x射线衍射(xrd)图谱。

图2为实施例1中制备的压电陶瓷的扫描电子显微镜(sem)照片。

图3为实施例1中制备的压电陶瓷的电滞回线。

图4为实施例1中制备的压电陶瓷的电极应变电场曲线。

图5为实施例2中制备的压电陶瓷的x射线衍射(xrd)图谱。

图6为实施例2中制备的压电陶瓷的扫描电子显微镜(sem)照片。

图7为实施例2中制备的压电陶瓷的电滞回线。

图8为实施例2中制备的压电陶瓷的电极应变电场曲线。

图9为实施例3中制备的压电陶瓷的x射线衍射(xrd)图谱。

图10为实施例3中制备的压电陶瓷的扫描电子显微镜(sem)照片。

图11为实施例3中制备的压电陶瓷的电滞回线。

图12为实施例3中制备的压电陶瓷的电极应变电场曲线。

具体实施方式

下面结合附图对本发明进行进一步说明,但是这些实施例并不是对发明内容的限制,而只是示意型的说明。

下述实施例中所使用的实验方法如无特殊说明,均为常规方法。

下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。

实施例1sn掺杂的knn基压电陶瓷。

实施例1的具体制备流程包括以下步骤。

(1)按(k0.5na0.5)nbo3–0.3mol%sno2化学计量比称取原理,与氧化锆球和无水乙醇共同加入到尼龙球磨罐中,置于行星球磨机上球磨混料8小时。

(2)将球磨后的混合料烘干后,置于马弗炉内在850℃预烧5小时。

(3)将预烧后粉体再次球磨24小时烘干后,加入适量聚乙烯醇粘结剂进行研磨造粒,在2mpa下单向加压成型,得到直径约10mm,厚度约1mm的陶瓷圆形生坯。

(4)将步骤3得到的圆片以3℃/min的升温速度至600℃保温2小时进行排胶处理,排胶后的圆片用同组分的粉末封埋后,在1085℃保温2小时烧结,烧结气氛为体积分数为95%的氮气和5%的氢气,制备压电陶瓷样品。对烧结后的陶瓷进行晶体结构和显微结构的分析。

(5)将烧结后的陶瓷两面印刷高温银浆,在600℃下烘烤0.5小时。然后置于70℃的硅油中,在电场强度为3kv/mm直流电场下极化30分钟,静置24小时后进行电学性能测试。

本实施例制备的压电陶瓷的xrd图谱见图1,从图中可以看出,结晶性良好且无明显杂相,并且正交相和四方相两相共存;从图2陶瓷的sem照片可以看出,陶瓷晶粒呈现四方结构,烧结致密。

对陶瓷进行电学性能测试,从图3的电滞回线看出,陶瓷具有良好的铁电性能;从图4的单极应变电场曲线可以看出,在4kv/mm的电场下,陶瓷的相对应变可达到0.11%。其他的电学性能为:压电常数d33=178pc/n;平面机电耦合系数kp=34.5%;介电常数ε=324,介电损耗tanδ=0.020,1kv/mm下的绝缘电阻率为497gωcm。

实施例2sn、zr共掺杂的knn基压电陶瓷。

实施例2的具体制备流程包括以下步骤。

(1)按(k0.5na0.5)nbo3–0.3mol%sno2–0.3mol%zro2化学计量比称取原理,与氧化锆球和无水乙醇共同加入到尼龙球磨罐中,置于行星球磨机上球磨混料8小时。

(2)将球磨后的混合料烘干后,置于马弗炉内在850℃预烧5小时。

(3)将预烧后粉体再次球磨24小时烘干后,加入适量聚乙烯醇粘结剂进行研磨造粒,在2mpa下单向加压成型,得到直径约10mm,厚度约1mm的陶瓷圆形生坯。

(4)将步骤3得到的圆片以3℃/min的升温速度至600℃保温2小时进行排胶处理,排胶后的圆片用同组分的粉末封埋后,在1085℃保温2小时烧结,烧结气氛为体积分数为95%的氮气和5%的氢气,制备压电陶瓷样品。对烧结后的陶瓷进行晶体结构和显微结构的分析。

(5)将烧结后的陶瓷两面印刷高温银浆,在600℃下烘烤0.5小时。然后置于70℃的硅油中,在电场强度为3kv/mm直流电场下极化30分钟,静置24小时后进行电学性能测试。

本实施例制备的压电陶瓷的xrd图谱见图5,从图中可以看出,结晶性良好且无明显杂相,并且正交相和四方相两相共存;从图6陶瓷的sem照片可以看出,陶瓷晶粒呈现四方结构,烧结致密。

对陶瓷进行电学性能测试,从图7的电滞回线看出,陶瓷具有良好的铁电性能;从图8的单极应变电场曲线可以看出,在4kv/mm的电场下,陶瓷的相对应变可达到0.13%。其他的电学性能为:压电常数d33=198pc/n;平面机电耦合系数kp=31.5%;介电常数ε=304,介电损耗tanδ=0.022,1kv/mm下的绝缘电阻率为131gωcm。

实施例3bi、zr、mn共掺杂的knn基压电陶瓷。

实施例3的具体制备流程包括以下步骤。

(1)按(k0.475na0.5bi0.025)(nb0.95zr0.05)o3–0.3mol%mno2化学计量比称取原理,与氧化锆球和无水乙醇共同加入到尼龙球磨罐中,置于行星球磨机上球磨混料8小时。

(2)将球磨后的混合料烘干后,置于马弗炉内在900℃预烧5小时。

(3)将预烧后粉体再次球磨24小时烘干后,加入适量聚乙烯醇粘结剂进行研磨造粒,在2mpa下单向加压成型,得到直径约10mm,厚度约1mm的陶瓷圆形生坯。

(4)将步骤3得到的圆片以3℃/min的升温速度至600℃保温4小时进行排胶处理,排胶后的圆片用同组分的粉末封埋后,在1100℃保温2小时烧结,烧结气氛为体积分数为99%的氮气和1%的氢气,制备压电陶瓷样品。对烧结后的陶瓷进行晶体结构和显微结构的分析。

(5)将烧结后的陶瓷两面印刷高温银浆,在600℃下烘烤0.5小时。然后置于70℃的硅油中,在电场强度为3kv/mm直流电场下极化30分钟,静置24小时后进行电学性能测试。

本实施例制备的压电陶瓷的xrd图谱见图9,从图中可以看出,结晶性良好且无明显杂相,且呈现四方相结构;从图10陶瓷的sem照片可以看出,陶瓷烧结致密。

对陶瓷进行电学性能测试,从图11的电滞回线看出,陶瓷具有良好的铁电性能;从图12的单极应变电场曲线可以看出,在4kv/mm的电场下,陶瓷的相对应变可达到0.19%。其他的电学性能为:压电常数d33=350pc/n;平面机电耦合系数kp=38.7%;介电常数ε=1834,介电损耗tanδ=0.021,1kv/mm下的绝缘电阻率为398gωcm。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1