一种低介电损耗BNT基无铅热释电陶瓷材料及其制备方法与流程

文档序号:17086612发布日期:2019-03-13 22:55阅读:484来源:国知局
一种低介电损耗BNT基无铅热释电陶瓷材料及其制备方法与流程

本发明涉及一种低介电损耗的(bi0.5na0.5)tio3基无铅热释电陶瓷材料及其制备方法,属于红外探测材料领域。



背景技术:

热释电效应是热释电材料对温度变化而产生的电效应,已被研究了很长时间,由于这个特性,热释电材料在热成像、激光探测、辐射计、红外探测器、火灾警报器、和入侵者探测器等领域,具有广泛的应用,近些年其在能量收集方面的应用也引起了广泛关注。其中热释电材料作为红外探测器的核心元件,其工作模式包括本征热释电模式和介电-热释电模式。本征热释电模式主要是利用自发极化随温度的变化而产生的电荷,其居里温度(tm)或者退极化温度(td)较高,可以经过高温处理不发生性能恶化,室温附近温度稳定性好,无需温度稳定装置,在实用的单元、多元红外探测器中具有广泛的应用。当陶瓷材料应用于本征热释电模式红外探测器时,要求材料的热释电系数大,介电常数、介电损耗小,探测率优值高,tm/td高(从而使材料在经历较高温度的加工处理过程中不会发生热释电性能的恶化)。目前,锆钛酸铅材料(pzt)时市场上主要用于红外探测器的热释电材料,但是铅对人体和环境有害的,因此无铅化是热释电材料研究和应用的必然趋势。

近些年来,许多无铅铁电材料体系的热释电性能及潜在应用得到科学家们的关注,包括sr0.3ba0.7nb2o6、ba0.67sr0.33tio3和na0.5bi0.5tio3体系等,大部分工作集中于通过掺杂或者构筑准同型相界来获得优异的热释电性能,但是,这些新发展的先进材料有一个共同的缺点就是退极化温度低和介电损耗较大,由于材料在生产加工处理过程中处于较高的温度,低的退极化温度会导致材料失效,而高的介电损耗会影响热释电探测率优值。比如说bi0.5na0.5tio3-ba(zr0.055ti0.945)o3在80℃时发生相变,代表材料会在这个温度发生退极化,失去热释电性能。bi0.5na0.5tio3-bialo3-k0.5na0.5nbo3在118℃发生相似的退极化。而高的介电损耗会使材料在实际应用过程中产生很大的噪音,影响红外探测器的灵敏度,因此制约了其在红外成像领域的进一步发展和应用。为了实际应用,材料需要同时具有高的退极化温度,低的介电损耗和高的热释电性能,尽管无铅材料已经在热释电方面获得很大的进展,但是性能依然无法与pzt媲美,因此需要进一步优化性能,获得兼具优异热释电性能、高退极化温度和低介电损耗的材料。



技术实现要素:

针对上述问题,本发明的目的在于提供一种获得兼具优异热释电性能、低介电损耗和高退极化温度的bnt基无铅热释电陶瓷材料及其制备方法。

一方面,本发明提供了一种bnt基无铅热释电陶瓷材料,所述bnt基无铅热释电陶瓷材料的化学组成为:(1-x)(bi0.5na0.5)tio3-xba(ni0.5nb0.5)o3,其中0<x≤0.04。

本发明通过设计(1-x)(bi0.5na0.5)tio3-xba(ni0.5nb0.5)o3的组分,获得具有高热释电性能、低介电损耗和高退极化温度的bnt基无铅热释电材料,可望应用于非制冷红外热释电探测领域。当加入的bnn含量较少时,受主掺杂离子ni3+的作用占主导地位,使得材料同时获得小的介电常数和介电损耗,从而有利于获得较大的热释电优值因子。

所述bnt基无铅热释电陶瓷材料在25℃和1khz的测试条件下的相对介电常数可以为465~775、介电损耗为0.008~0.011。

所述bnt基无铅热释电陶瓷材料的热释电系数可以为(4.42-5.94)×10-8ccm-2k-1、电压响应优值因子fv可以为(3.08-4.10)×10-2m2/c、探测率优值因子fd可以为(2.43-3.01)×10-5pa-1/2

优选地,0.02≤x≤0.03。该情况下,所述bnt基无铅热释电陶瓷材料在25℃和1khz的测试条件下的相对介电常数为465~549、介电损耗为0.008~0.009。更优选地,x=0.02,该情况下,所述bnt基无铅热释电陶瓷材料在25℃和1khz的测试条件下的相对介电常数以为465、介电损耗为0.008。

另一方面,本发明的目的在于提供一种如上所述的bnt基无铅热释电陶瓷材料的制备方法,包括:

按照所述bnt基无铅热释电陶瓷材料的化学组成计量比将bi源、na源、ti源、ba源、ni源、nb源混合,经煅烧,得到固溶体粉体;

将所述固溶体粉体与粘结剂混合并造粒,经陈化、成型和排塑,得到坯体;

将所述坯体经过烧结得到所述bnt基无铅热释电陶瓷材料。

较佳地,所述bi源为bi2o3,所述na源为nahco3,所述ti源为tio2,所述ba源为baco3,所述ni源为nio,所述nb源为nb2o5。

较佳地,所述煅烧的温度为750-850℃,时间为2~4小时。

较佳地,所述粘结剂为聚乙烯醇、聚乙二醇、聚苯乙烯和甲基纤维素中的至少一种,加入量为所述固溶体粉体的5~7wt.%。所述陈化时间可以为23~25小时。所述排塑的温度可以为700-800℃,时间可以为1.5-2小时。优选地,所述排塑的升温速率不高于2℃/分钟。

较佳地,所述烧结的温度为1060~1140℃,时间为2~3小时。

再一方面,本发明还提供了一种热释电陶瓷元件,由上述的bnt基无铅热释电陶瓷材料制成。

本发明制备的bnt基无铅热释电陶瓷材料的性能优异且具有良好的温度稳定性,可望应用于非制冷红外探测器领域。经过极化后的bnt基无铅热释电陶瓷材料在25℃和1khz的测试频率下相对介电常数为465~775、介电损耗为0.008~0.011。经过极化后的热释电陶瓷的热释电系数为(4.42-5.94)×10-8ccm-2k-1、电压响应优值因子fv为(3.08-4.10)×10-2m2/c、探测率优值因子fd为(2.43-3.01)×10-5pa-1/2。bnt基的无铅热释电陶瓷的退极化温度一般高于101℃,最高可达175℃。例如当x=0.02时,bnt基无铅热释电陶瓷材料具有高的退极化温度、低介电常数、高热释电系数、高探测率优值。

附图说明

图1为对比例1和实施例1-3中热释电陶瓷经极化处理后采用byer-roundy准静态法测试的bnt基无铅热释电系数在室温段随着温度的变化曲线;

图2(a)-图2(d)分别为对比例1和实施例1-3中热释电陶瓷的sem图;

图3(a)-图3(b)分别为对比例1和实施例1-3中热释电陶瓷(图中示为“0bnn”、“2bnn”、“3bnn”、“4bnn”)的电滞回线和电流曲线图;

图4示出对比例1和实施例1-3中热释电陶瓷(图中示为“bnt-0bnn”、“bnt-2bnn”、“bnt-3bnn”、“bnt-4bnn”)的介电频谱;

图5的(a)-(d)分别为对比例1和实施例1-3中热释电陶瓷介电常数的导数(1/εr)与温度(t)的关系图。

具体实施方式

以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。

本发明涉及一种兼具优异热释电性能、低介电损耗和高退极化温度的钛酸铋钠(bnt)基无铅热释电陶瓷材料及其制备方法,所述钛酸铋钠基无铅热释电陶瓷材料的化学组成通式为(1-x)(bi0.5na0.5)tio3-xba(ni0.5nb0.5)o3(可简称“(1-x)bnt-xbnn”),其中0<x≤0.04,x为摩尔百分比。关于bnn含量的考虑(x的范围),主要是由于b位复合离子掺杂,ni3+和nb5+离子的价态相对于基低bnt的ti4+的价态分别比较低和比较高,通过调控bnn的含量,有望使bnt-bnn固溶体同时显现受主掺杂(ni)和施主掺杂的两方面的优点(其中受主掺杂:降低介电常数和介电损耗(ε,tanδ),施主掺杂:增大极化强度(pr,ps),降低矫顽场,有利于材料完全极化,获得更好的热释电性能。)。另外,随着bnn含量的增大,材料的极化强度会逐渐减小,同时退极化温度也会不断降低,超过一定值时不利于我们取得兼具高的热释电性能的高的退极化温度,因此不加入过多的bnn。在本公开中,bnt基无铅热释电陶瓷材料在室温附近(~25℃)具有较高的热释电系数(4.42-5.94×10-8ccm-2k-1)、较低的相对介电常数(465~775)、较低的介电损耗(0.008~0.011),有望应用于非制冷红外热释电探测领域。优选地,0.02≤x≤0.03,该情况下,所述bnt基无铅热释电陶瓷材料在25℃和1khz的测试条件下的相对介电常数为465~549、介电损耗为0.008~0.009。更优选地,x=0.02,该情况下,所述bnt基无铅热释电陶瓷材料在25℃和1khz的测试条件下的相对介电常数以为465、介电损耗为0.008。

在本公开中,通过配料、混料、合成、细磨、成型、排塑、烧结等步骤制备bnt基无铅热释电陶瓷材料。以下示例性地说明本发明提供的bnt基无铅热释电陶瓷材料的制备方法。

首先,按照bnt基无铅热释电陶瓷材料的化学组成计量比将bi源、na源、ti源、ba源、ni源、nb源混合,经煅烧,固相法制备(bi0.5na0.5)tio3-ba(ni0.5nb0.5)o3(bnt-bnn)固溶体粉体。在可选的实施方式中,bi源可为bi2o3等。na源可为nahco3等。ti源可为tio2等。ba源可为baco3等。nb源可为nb2o5等。ni源可为nio等。这些原料可以选用粉体原料,对应的纯度分别可以为bi2o3(99.99%以上),nahco3(99.5%以上),tio2(99.38%以上),baco3(99.0%以上),nio(99.0%以上)和nb2o5(99.93%以上)。可采用湿式球磨法混合,球磨后进行烘干。作为一个示例,按照bnt基无铅热释电陶瓷材的化学计量比配制bi2o3、nahco3、tio2、al2o3、nb2o5和mnco3,得到混合粉体(原料)。可以将混合粉体经一次球磨之后再煅烧,得到bnt-bnn固溶体粉体。在可选的实施方式中,煅烧的温度为750-850℃,时间为2-4小时,从而使得bnt-bnn固溶体粉体在经烧结后得到致密度高、气孔少的陶瓷样品。优选地,煅烧的温度为800~850℃。煅烧的升温速率为不高于2℃/min。经过煅烧处理后随炉冷却至室温。可以在合成后将块体粉碎,过40目筛网。也可以在一次球磨后将烘干后的混合原料进行压制成型、保温合成(即煅烧)得到块状陶瓷(bnt-bnn块体)。将块状陶瓷粉碎之后通过二次球磨和干燥。压制成型的压力可以为4~6mpa。在可选的实施方式中,一次球磨或/和二次球磨的混合方式为湿式球磨法。作为一个湿式球磨法的示例,按照原料:溶剂:球=1:(0.8-1.2):(5-6)的质量比,混料时间为23~25小时(例如24小时)。湿式球磨法所用的球磨介质可选钢球、锆球或者玛瑙球中的一种,优选锆球,溶剂可为无水乙醇。通过二次湿式球磨法对煅烧后的粉体进行球磨,可以得到粒径分布均匀的bnt-bnn固溶体粉体。优选二次球磨时按照原料:溶剂:球=1:(0.8-1.0):(5-6)的质量比,混料时间为23~25小时(例如24小时)。湿式球磨法所用的球磨介质可选钢球、锆球或者玛瑙球中的一种,优选锆球,溶剂可为无水乙醇。在本公开中,固溶体粉体粒径小且分布窄。

接着,将固溶体粉体与粘结剂混合并造粒,经陈化、成型和排塑,制备陶瓷素坯(bnt-bnn坯体)。在可选的实施方式中,粘结剂可为聚乙烯醇(pva)、聚乙二醇、聚苯乙烯、甲基纤维素等。粘结剂的加入量可为固溶体粉体重量的5~7wt.%。在可选的实施方式中,排塑的条件可为:以不高于2℃/min的升温速率升温至700-800℃,然后保温1.5-2小时。在可选的实施方式中,陈化的时间可以为23~25小时。可以在陈化后过筛,例如过30目筛作为一个示例,在经过二次球磨和干燥后的固溶体粉体中加入粘结剂,然后进行造粒、陈化和压制成型,然后进行排塑,得到陶瓷素坯。在可选的实施方式中,在陈化之前,可将造粒粉体先进行压制成型,压力为4~6mpa。陈化之后再进行压制成型(例如冷等静压成型),压力为1.4~1.6mpa。

接着,将陶瓷素坯经过烧结,得到bnt-bnn无铅热释电陶瓷材料。在可选的实施方式中,烧结的温度可为1060-1140℃,时间可为2-3小时。优选地,烧结的温度为1080~1100℃。烧结的升温速率为不高于2℃/min。在烧结之后,随炉冷却至室温。此外,可在将陶瓷素坯放入高温炉(烧结炉)时,用相同组分的已烧结后的粉料覆盖,减少bi、na挥发。

本发明制备的bnt基无铅热释电陶瓷材料的性能优异,具有高的退极化温度,可望应用于非制冷红外探测领域。

本发明还涉及一种热释电陶瓷元件,由上述的bnt基无铅热释电陶瓷材料制成。例如,可以将上述bnt-bnn陶瓷材料加工成所需尺寸,超声清洁,丝网印银,烘干,烧银得到所述的热释电陶瓷元件。所述的烧银条件可为700~800℃,保温5~40分钟(例如30分钟)。

下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。

对比例1:

采用传统的固相烧结法制备(bi0.5na0.5)tio3粉体。首先按照(bi0.5na0.5)tio3化学组成计量比称取原料bi2o3粉体(分析纯)、nahco3粉体(分析纯)和tio2粉体(分析纯),采用湿式球磨法混合24小时使各组分混合均匀,球墨介质为锆球,溶剂为无水乙醇。所用的原料:酒精:锆球为1:1:5。烘干,压制成型,保温合成得到纯bnt粉体。在合成过程中,升温速度为2℃/min,合成温度为850℃,保温时间2小时。合成后将块体粉碎,过40目筛网,进行第二次湿式球磨,烘干粉料,加7wt.%聚乙烯醇作为粘结剂。造粒,压块,陈化,过筛,冷等静压成型,排塑等步骤制得bnt坯体。将坯体放置在坩埚中,在1100℃下进行烧结,时间为2小时,升温速度为2℃/min。在烧结之后,随炉冷却至室温,得到bnt热释电陶瓷。

将烧结制得的bnt陶瓷双面磨至0.5mm,超声清洗,烘干,丝网印刷银浆,再烘干,再700℃下烧银保温30分钟,得到热释电陶瓷元件以测试其电学性能。将所得陶瓷样品置于硅油中,加热至80℃,对其加电场6.4kv/mm的直流电场,进行极化30分钟,在保持电场强度不变的条件下降温至40℃,撤去电场取出陶瓷样品,对极化后的样品测量其不加外电场的介电温普和热释电性能。测量结果见表1。

实施例1:

材料的组成为0.98(bi0.5na0.5)tio3-0.02ba(ni0.5nb0.5)o3,按照该配方称取原料bi2o3粉体(分析纯)、nahco3粉体(分析纯)、tio2粉体(分析纯)、baco3粉体(分析纯)、nio粉体(分析纯)、nb2o5粉体(分析纯),采用湿式球磨法混合24小时使各组分混合均匀,球墨介质为锆球,溶剂为无水乙醇。优选锆球,所用的原料:酒精:锆球为1:1:5。烘干,压制成型,保温合成得到bnt-bnn固溶体粉末。在合成过程中,合成温度为850℃,保温时间2小时。合成后将块体粉碎,过40目筛网,进行第二次湿式球磨,烘干粉料,加粘结剂,造粒,压块,陈化,过筛,冷等静压成型,排塑等步骤制得bnt-bnn坯体。将坯体放置在坩埚中,并用相同组分的已烧结后的粉料覆盖,减少bi、na挥发,在1100℃下进行烧结,时间为2小时。在烧结之后,随炉冷却至室温,得到bnt-bnn基热释电陶瓷。按照与对比例1相同的方法得到极化后的热释电陶瓷元件,对极化后的样品测量其不加外电场的介电温普和热释电性能。测量结果见表1。

在x=0.02时,材料兼具优异热释电性能及高的退极化温度(从而能够经受住器件加工过程中会产生高温环境而不发生退极化),主要是由于,当加入的bnn含量较少时,受主掺杂离子ni3+的作用占主导地位,导致材料同时获得小的介电常数和介电损耗,从而有利于获得较大的热释电优值因子。随着bnn含量的增大,施主掺杂离子nb5+的作用开始凸显,与ni3+共同作用,开始导致材料的介电损耗和介电常数相对x=0.02略有上升。另外当x=0.02时材料的退极化温度高,为195℃。

实施例2:

材料的组成为0.97(bi0.5na0.5)tio3-0.03ba(ni0.5nb0.5)o3,按照该配方采用与实施例1相同的制备方法得到bnt-bnn基热释电陶瓷、极化后的热释电陶瓷元件,对极化后的样品测量其不加外电场的介电温普和热释电性能。测量结果见表1。

实施例3:

材料的组成为0.96(bi0.5na0.5)tio3-0.04ba(ni0.5nb0.5)o3,按照该配方采用与实施例1相同的制备方法得到bnt-bnn基热释电陶瓷、极化后的热释电陶瓷元件,对极化后的样品测量其不加外电场的介电温普和热释电性能。测量结果见表1。

表1分别列出了实施例和对比例的极化后的热释电陶瓷材料的介电性能和热释电性能。可以看出实施例1具有最佳的综合热释电性能,兼具高的退极化温度和高的热释电系数和探测率优值。

表1示出实施例和对比例的热释电陶瓷材料的介电性能和热释电性能:

热释电对热释电优质因子的公式(如下fi,fv和fd的计算公式):

其中p表示热释电系数,cv为材料的体积比热,fi为电流优值因子,εr为相对介电常数,ε0为真空介电常数,tanδ为介电损耗,td为退极化温度。

实施例的介电损耗远小于对比例1,有利于提高材料的热释电优质因子,如表1所示,对比例1的介电损耗是实施例2、3的4.22倍和3.45倍。

图1为对比例1和实施例1-3中热释电陶瓷经极化处理后采用byer-roundy准静态法测试的bnt基无铅热释电系数在室温段随着温度的变化曲线。从图1中可以看出随着bnn的加入,材料的热释电系数逐渐增大。此外,随着温度的升高,实施例1、2、3样品材料的热释电性能变化较大,说明加入bnn之后材料对环境温度敏感性提高。

图2(a)-图2(d)分别为对比例1和实施例1-3中热释电陶瓷的sem图,可以看出,所有材料样品的晶粒尺寸均匀、空隙较少、具有较高的致密度,与阿基米德法测出的高的相对致密度一致(>96%)。

图3(a)-图3(b)分别为对比例1和实施例1-3中热释电陶瓷的电滞回线和电流曲线图,所有材料样品的剩余极化强度均在36μc/cm2以上,都呈现出强的铁电性,对取得大的热释电系数具有重要意义。

图4示出对比例1和实施例1-3中热释电陶瓷的介电频谱,随着bnn的加入材料的居里温度tm(即对应着介电常数为最大的峰值处),逐渐降低。其退极化温度td呈现先增大后减小的趋势(td可以根据介电常数的异常点进行判断),分别为~167℃、~195℃、~143℃和~101℃。为了更清楚判断td,对介电常数求导数,得到介电常数的导数(1/εr)与温度(t)的关系图,如图5所示,箭头标注了材料的td和tm,tr-t表示纯bnt从铁电三方相(r)向四方相(t)的相变温度点。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1