一种3D交联的珊瑚状钒酸镍纳米材料及其电化学应用的制作方法

文档序号:17204326发布日期:2019-03-27 10:17阅读:329来源:国知局
一种3D交联的珊瑚状钒酸镍纳米材料及其电化学应用的制作方法

本发明属于钒酸镍纳米材料技术领域,具体涉及一种3d交联的珊瑚状钒酸镍纳米材料及其电化学应用。



背景技术:

钒酸镍(nivo)是一类较有优势的锂离子电池负极材料,它具有较高电极比容量、低成本以及环境友好等优点。目前钒酸镍主的要制备方法为先采用沉淀法、水热合成法、溶剂热法或者溶胶法等制备出前体,然后在400℃~500℃焙烧后得到最终活性相用于电化学性能测试。sambandam等采用沉淀法在水溶液中合成了钒酸镍mof材料,然后进行焙烧,焙烧后晶相为ni3v2o8,形貌为20nm~50nm的球形颗粒,在5a/g电流密度下循环1000次依然保持305mah/g的电极比容量(j.electroanal.chem.2018,810,34);ni等采用水热合成法制备了niv3o8/石墨和niv3o8/ni材料,niv3o8/石墨在0.31a/g电流密度下循环680次依然保持819mah/g的恒定容量(chem.commun.,2015,51,5880;j.mater.chem.a2014,2,8995),材料的形貌为无规则颗粒;soundharrajan等采用dmf为溶剂,采用直接点燃混合物溶液的方法制备ni3v2o8材料,形貌为棒状、球状及苦瓜状等,但形貌很不均匀(ceram.int.,2017,43,13224);lv等将钒源和镍源溶于dmf和乙醇混合溶液中,然后加入pvp得到溶胶,采用静电纺丝技术得到线装材料,最后通过调节焙烧速率得到ni3v2o8纳米管或纳米线,比表面积最高为20m2/g。由以上可以看出,目前技术制备的钒酸镍材料大多是不规则颗粒、球状或其他不均匀的大块材料,纳米线的形貌是通过静电纺丝技术得到的,而非材料自身的自组装合成,同时已报道的纯钒酸镍材料的比表面积都较低(≤20m2/g),抑制了其各方面的应用。另外,水热合成法需要高压环境,存在操作危险;溶胶法存在步骤繁多,操作繁琐的缺点。



技术实现要素:

本发明所要解决的技术问题在于针对上述现有技术的不足,提供一种3d交联的珊瑚状钒酸镍纳米材料,该发明以离子液体为溶剂,通过离子液体热合成法制备钒酸镍纳米材料,该钒酸镍纳米材料形貌均匀,为3d交联的珊瑚状,有效的提高了钒酸镍纳米材料的活性和比表面积,比表面积达到50~150m2/g,反应在常压进行,具备操作简便安全的特点,应用于锂离子电池的电极材料,表现出了较高的电极比容量,电极的摩尔比容量在950mah/g~1400ah/g左右。

为解决上述技术问题,本发明采用的技术方案是:一种3d交联的珊瑚状钒酸镍纳米材料的制备方法,该方法为:将钒源与镍源在离子液体中进行合成反应,得到3d交联的珊瑚状钒酸镍纳米材料。

优选地,所述钒源为偏钒酸铵或五氧化二钒;所述镍源为硝酸镍、氯化镍、醋酸镍或硫酸镍;所述离子液体为[bmim]br、[bmim]pf6、[bmim]bf4、[bmim]tf2n、[bmim]cf3so3、[emim]br、[emim]pf6、[emim]bf4、[emim]tf2n、[emim]cf3so3、氯化胆碱/尿素低共熔混合物、氯化胆碱/丁二酸低共熔混合物或氯化胆碱/草酸低共熔混合物。

优选地,所述氯化胆碱/尿素低共熔混合物中尿素与氯化胆碱的摩尔比为(0.3~0.6):1,氯化胆碱/丁二酸低共熔混合物中丁二酸与氯化胆碱的摩尔比为(0.3~1):1,氯化胆碱/草酸低共熔混合物中草酸与氯化胆碱的摩尔比为(0.3~1):1。

优选地,所述3d交联的珊瑚状钒酸镍纳米材料的比表面积为50m2/g~150m2/g。

优选地,所述合成反应的条件为:反应温度为100℃~210℃,反应时间为5h~144h,反应压强为常压,钒源中的钒原子与离子液体的摩尔比为1:(5~80),钒源中的钒原子与镍源摩尔比为1:(0.5~5)。

优选地,所述合成反应的条件为:反应温度为150℃~200℃,反应时间为72h~96h,反应压强为常压,钒源中的钒原子与离子液体的摩尔比为1:(40~80),钒源中的钒原子与镍源摩尔比为1:(1~2)。

优选地,所述合成反应的条件为:反应温度为180℃,反应时间为72h,反应压强为常压,钒源中的钒原子与离子液体的摩尔比为1:80,钒源中的钒原子与镍源的摩尔比为1:1.5。

本发明还提供了上述的3d交联的珊瑚状钒酸镍纳米材料的电化学应用,将制备得到的3d交联的珊瑚状钒酸镍纳米材料在温度为300℃~550℃的空气气氛中焙烧2h~8h,得到活性相,用作电极材料,应用于锂离子电池。

本发明与现有技术相比具有以下优点:

1、本发明的离子液体是一类在室温或接近室温下呈现液态(即熔点大约在100℃以下)的熔融盐类化合物,它的特点在于其是全部由离子组成的液体,与有机溶剂或水等分子液体具有本质的不同。在有机溶剂或水中合成材料有以下缺点:有机溶剂沸点低、蒸气压高、对许多无机物的溶液能力较差,水的液态范围较窄、对多数有机化合物不具有溶解性,因此在有机溶剂或者水等分子液态的体系中合成无机材料具有一定的局限性,并且给环境带来危害。而离子液体克服了以上缺点,离子液体热合成法合成的材料应用于电极材料等,显示了较好的性能。本发明用离子液体代替水或有机溶剂来进行高比表面积的3d交联的珊瑚状钒酸镍纳米材料的制备时,使制备过程具有以下优点:离子液体没有饱和蒸汽压,反应过程可以在常压进行,使操作变得非常简便和安全;离子液体可以既作溶剂,也同时作模板剂,可以有效提高制备得到的3d交联的珊瑚状钒酸镍纳米材料的比表面积,离子液体的种类繁多,选用不同的离子液体作溶剂,能使制备的高比表面积的3d交联的珊瑚状钒酸镍纳米材料具有不同的特点及应用,为新材料的制备开辟了广阔的天地。

2、本发明制备的3d交联的珊瑚状钒酸镍纳米材料形貌均匀,为3d交联的珊瑚状,有效的提高了钒酸镍纳米材料的活性和比表面积,比表面积达到50~150m2/g。

3、本发明制备3d交联的珊瑚状钒酸镍纳米材料在常压进行,具备操作简便安全的特点。得到的高比表面积的3d交联的珊瑚状钒酸镍纳米材料应用于锂离子电池的电极材料,表现出了较高的电极比容量,电极的摩尔比容量在950mah/g~1400mah/g左右。

下面结合附图和实施例对本发明作进一步详细说明。

附图说明

图1是本发明实施例1的3d交联的珊瑚状钒酸镍纳米材料的扫描电镜图。

具体实施方式

实施例1

本实施例的3d交联的珊瑚状钒酸镍纳米材料的制备方法为:将偏钒酸铵(钒源)与硝酸镍(镍源)在[bmim]br(离子液体)中进行合成反应,得到3d交联的珊瑚状钒酸镍纳米材料,比表面积为150m2/g。

所述合成反应的条件为:反应温度为180℃,反应时间为72h,反应压强为常压,偏钒酸铵与[bmim]br的摩尔比为1:80,偏钒酸铵与硝酸镍的摩尔比为1:1.5。

本实施例中,离子液体还可以为[bmim]br、[bmim]pf6、[bmim]bf4、[bmim]tf2n、[bmim]cf3so3、[emim]br、[emim]pf6、[emim]bf4、[emim]tf2n、[emim]cf3so3、氯化胆碱/尿素低共熔混合物、氯化胆碱/丁二酸低共熔混合物或氯化胆碱/草酸低共熔混合物。

图1是本实施例制备的3d交联的珊瑚状钒酸镍纳米材料的扫描电镜图,形貌均匀,为3d交联的珊瑚状,该结构有效的提高了钒酸镍纳米材料的比表面积,有利于钒酸镍纳米材料活性的发挥。

将本实施例制备得到的3d交联的珊瑚状钒酸镍纳米材料应用于锂离子电池的电极材料,操作步骤为:将本实施例得到的3d交联的珊瑚状钒酸镍纳米材料在温度为300℃的空气气氛中焙烧2h,得到钒酸镍纳米材料活性相,将钒酸镍纳米材料活性相、炭黑和粘结剂聚偏氟乙烯(pvdf)按照摩尔比为70:20:10混合研磨均匀30min后,冷却至室温,取1.5mg制成正极极片,将正极极片和负极金属锂片、电解液和隔膜组在手套箱中装配成锂离子电池,所述手套箱中通入氩气。然后在land充放电测试仪上进行锂离子电池的充放电性能测试,充放电的电压范围为0.01v~3.0v,结果显示,在充放电电流为300ma/g时,经过300个循环后,放电时摩尔比容量保持在950mah/g左右。

本实施例的离子液体是一类在室温或接近室温下呈现液态(即熔点大约在100℃以下)的熔融盐类化合物,它的特点在于其是全部由离子组成的液体,与有机溶剂或水等分子液体具有本质的不同。在有机溶剂或水中合成材料有以下缺点:有机溶剂沸点低、蒸气压高、对许多无机物的溶液能力较差,水的液态范围较窄、对多数有机化合物不具有溶解性,因此在有机溶剂或者水等分子液态的体系中合成无机材料具有一定的局限性,并且给环境带来危害。而离子液体克服了以上缺点,离子液体热合成法合成的材料应用于电极材料等,显示了较好的性能。本发明用离子液体代替水或有机溶剂来进行高比表面积的3d交联的珊瑚状钒酸镍纳米材料的制备时,使制备过程具有以下优点:离子液体没有饱和蒸汽压,反应过程可以在常压进行,使操作变得非常简便和安全;离子液体可以既作溶剂,也同时作模板剂,可以有效提高制备得到的3d交联的珊瑚状钒酸镍纳米材料的比表面积,离子液体的种类繁多,选用不同的离子液体作溶剂,能使制备的高比表面积的3d交联的珊瑚状钒酸镍纳米材料具有不同的特点及应用,为新材料的制备开辟了广阔的天地。

本实施例制备的3d交联的珊瑚状钒酸镍纳米材料形貌均匀,为3d交联的珊瑚状,有效的提高了钒酸镍纳米材料的比表面积,达到150m2/g。

本实施例制备3d交联的珊瑚状钒酸镍纳米材料在常压进行,具备操作简便安全的特点。得到的高比表面积的3d交联的珊瑚状钒酸镍纳米材料应用于锂离子电池的电极材料,表现出了较高的电极比容量,电极的摩尔比容量在950mah/g左右。

实施例2

本实施例的3d交联的珊瑚状钒酸镍纳米材料的制备方法为:将钒酸铵(钒源)与氯化镍(镍源)在氯化胆碱/尿素低共熔混合物(离子液体)中进行合成反应,得到3d交联的珊瑚状钒酸镍纳米材料,比表面积为130m2/g。

所述氯化胆碱/尿素低共熔混合物中尿素和氯化胆碱的摩尔比为0.6:1;

所述合成反应的条件为:反应温度为210℃,反应时间为5h,反应压强为常压,钼酸钠与氯化胆碱/尿素低共熔混合物的摩尔比为1:80,钒酸铵与氯化镍的摩尔比为1:5。

本实施例中,离子液体还可以为氯化胆碱/丁二酸低共熔混合物或氯化胆碱/草酸低共熔混合物,所述氯化胆碱/丁二酸低共熔混合物中丁二酸和氯化胆碱的摩尔比为0.6:1,所述氯化胆碱/草酸低共熔混合物中草酸和氯化胆碱的摩尔比为0.6:1。

将本实施例制备得到的3d交联的珊瑚状钒酸镍纳米材料应用于锂离子电池的电极材料,操作步骤为:将本实施例得到的3d交联的珊瑚状钒酸镍纳米材料在温度为550℃的空气气氛中焙烧5h,得到钒酸镍纳米材料活性相,将钒酸镍纳米材料活性相、炭黑和粘结剂聚偏氟乙烯(pvdf)按照摩尔比为70:20:10混合研磨均匀30min后,冷却至室温,取1.5mg制成正极极片,将正极极片和负极金属锂片、电解液和隔膜组在手套箱中装配成锂离子电池,所述手套箱中通入氩气。然后在land充放电测试仪上进行锂离子电池的充放电性能测试,充放电的电压范围为0.01v~3.0v,结果显示,在充放电电流为250ma/g时,经过300个循环后,放电时摩尔比容量保持在1000mah/g左右。

实施例3

本实施例的3d交联的珊瑚状钒酸镍纳米材料的制备方法为:将五氧化二钒(钒源)与醋酸镍(镍源)在氯化胆碱/丁二酸低共熔混合物(离子液体)中进行合成反应,得到3d交联的珊瑚状钒酸镍纳米材料,比表面积为50m2/g。

所述氯化胆碱/丁二酸低共熔混合物中丁二酸和氯化胆碱的摩尔比为1:1;所述合成反应的条件为:反应温度为100℃,反应时间为144h,反应压强为常压,五氧化二钒中的钒原子与氯化胆碱/丁二酸低共熔混合物的摩尔比为1:5,五氧化二钒中钒原子与醋酸镍的摩尔比为1:0.5。

本实施例中,离子液体还可以为氯化胆碱/草酸低共熔混合物,所述氯化胆碱/草酸低共熔混合物中草酸和氯化胆碱的摩尔比为1:1。

将本实施例制备得到的3d交联的珊瑚状钒酸镍纳米材料应用于锂离子电池的电极材料,操作步骤为:将本实施例得到的3d交联的珊瑚状钒酸镍纳米材料在温度为420℃的空气气氛中焙烧3h,得到钒酸镍纳米材料活性相,将钒酸镍纳米材料活性相、炭黑和粘结剂聚偏氟乙烯(pvdf)按照摩尔比为70:20:10混合研磨均匀30min后,冷却至室温,取1.5mg制成正极极片,将正极极片和负极金属锂片、电解液和隔膜组在手套箱中装配成锂离子电池,所述手套箱中通入氩气。然后在land充放电测试仪上进行锂离子电池的充放电性能测试,充放电的电压范围为0.01v~3.0v,结果显示,在充放电电流为280ma/g时,经过300个循环后,放电时摩尔比容量保持在1200mah/g左右。

实施例4

本实施例的3d交联的珊瑚状钒酸镍纳米材料的制备方法为:将偏钒酸铵(钒源)与硫酸镍(镍源)在氯化胆碱/草酸低共熔混合物(离子液体)中进行合成反应,得到3d交联的珊瑚状钒酸镍纳米材料,比表面积150m2/g。

所述氯化胆碱/草酸低共熔混合物中草酸和氯化胆碱的摩尔比为0.3:1;所述合成反应的条件为:反应温度为155℃,反应时间为75h,反应压强为常压,偏钒酸铵与氯化胆碱/草酸低共熔混合物的摩尔比为1:42,五氧化二钒与硫酸镍的摩尔比为1:3。

本实施例中,离子液体还可以为氯化胆碱/丁二酸低共熔混合物或氯化胆碱/尿素低共熔混合物,所述氯化胆碱/丁二酸低共熔混合物中丁二酸和氯化胆碱的摩尔比为0.3:1,所述氯化胆碱/尿素低共熔混合物中尿素和氯化胆碱的摩尔比为0.3:1。

将本实施例制备得到的3d交联的珊瑚状钒酸镍纳米材料应用于锂离子电池的电极材料,操作步骤为:将本实施例得到的3d交联的珊瑚状钒酸镍纳米材料在温度为500℃的空气气氛中焙烧8h,得到钒酸镍纳米材料活性相,将钒酸镍纳米材料活性相、炭黑和粘结剂聚偏氟乙烯(pvdf)按照摩尔比为70:20:10混合研磨均匀30min后,冷却至室温,取1.5mg制成正极极片,将正极极片和负极金属锂片、电解液和隔膜组在手套箱中装配成锂离子电池,所述手套箱中通入氩气。然后在land充放电测试仪上进行锂离子电池的充放电性能测试,充放电的电压范围为0.01v~3.0v,结果显示,在充放电电流为250ma/g时,经过300个循环后,放电时摩尔比容量保持在1300mah/g左右。

实施例5

本实施例的3d交联的珊瑚状钒酸镍纳米材料的制备方法为:将偏钒酸铵(钒源)与氯化镍(镍源)在[emim]cf3so3(离子液体)中进行合成反应,得到3d交联的珊瑚状钒酸镍纳米材料,比表面积140m2/g。

所述合成反应的条件为:反应温度为150℃,反应时间为96h,反应压强为常压,偏钒酸铵与[emim]cf3so3的摩尔比为1:40,偏钒酸铵与氯化镍的摩尔比为1:1。

将本实施例制备得到的3d交联的珊瑚状钒酸镍纳米材料应用于锂离子电池的电极材料,操作步骤为:将本实施例得到的3d交联的珊瑚状钒酸镍纳米材料在温度为400℃的空气气氛中焙烧5h,得到钒酸镍纳米材料活性相,将钒酸镍纳米材料活性相、炭黑和粘结剂聚偏氟乙烯(pvdf)按照摩尔比为70:20:10混合研磨均匀30min后,冷却至室温,取1.5mg制成正极极片,将正极极片和负极金属锂片、电解液和隔膜组在手套箱中装配成锂离子电池,所述手套箱中通入氩气。然后在land充放电测试仪上进行锂离子电池的充放电性能测试,充放电的电压范围为0.01v~3.0v,结果显示,在充放电电流为240ma/g时,经过300个循环后,放电时摩尔比容量保持在1100mah/g左右。

实施例6

本实施例的3d交联的珊瑚状钒酸镍纳米材料的制备方法为:将五氧化二钒(钼源)与醋酸镍(镍源)在[emim]tf2n(离子液体)中进行合成反应,得到3d交联的珊瑚状钒酸镍纳米材料,比表面积为120m2/g。

所述合成反应的条件为:反应温度为200℃,反应时间为72h,反应压强为常压,五氧化二钒中的钒原子与[emim]tf2n的摩尔比为1:60,五氧化二钒中钒原子与醋酸镍的摩尔比为1:2。

将本实施例制备得到的3d交联的珊瑚状钒酸镍纳米材料应用于锂离子电池的电极材料,操作步骤为:将本实施例得到的3d交联的珊瑚状钒酸镍纳米材料在温度为350℃的空气气氛中焙烧6h,得到钒酸镍纳米材料活性相,将钒酸镍纳米材料活性相、炭黑和粘结剂聚偏氟乙烯(pvdf)按照摩尔比为70:20:10混合研磨均匀30min后,冷却至室温,取1.5mg制成正极极片,将正极极片和负极金属锂片、电解液和隔膜组在手套箱中装配成锂离子电池,所述手套箱中通入氩气。然后在land充放电测试仪上进行锂离子电池的充放电性能测试,充放电的电压范围为0.01v~3.0v,结果显示,在充放电电流为250ma/g时,经过300个循环后,放电时摩尔比容量保持在1400mah/g左右。

以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制。凡是根据发明技术实质对以上实施例所作的任何简单修改、变更以及等效变化,均仍属于本发明技术方案的保护范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1