一种高性能熔铸耐磨砖及其熔铸方法与流程

文档序号:18840901发布日期:2019-10-09 07:01阅读:376来源:国知局
一种高性能熔铸耐磨砖及其熔铸方法与流程

本发明涉及一种耐磨砖,具体涉及一种高性能熔铸耐磨砖及其熔铸方法。



背景技术:

熔铸产品,主要用于需采用耐磨耐高温材料的关键部位,如冶金推钢式加热炉的滑轨砖或采用出钢平台出钢的步进式加热炉的出钢平台以及垃圾焚烧炉内衬等。目前这些部位采用的产品主要有铬钢玉砖、莫来石砖、锆莫来石砖等,由于铬钢玉砖含有铬元素,极易造成环境污染,莫来石砖、锆莫来石砖等用在加热炉和垃圾焚烧炉内衬一般部位基本尚能满足要求,但使用周期短,而且用在关键部位,如进、出口以及有坡度的底部、拐角部位等,由于要承受更大的压力和冲击,其在热态下抗压强度、耐磨性更是明显不足,导致因局部产品损耗严重需要全面维修,造成极大浪费。

因此,冶金推钢式加热炉的滑轨砖或采用出钢平台出钢的步进式加热炉的出钢平台,既要承受钢坯加热时的高温,还要承受钢坯滑动时的磨损,耐火产品的使用条件十分苛刻,在关键部位还要经受一定的冲击,更需要制品具有更好的抗压强度、耐磨性是我们急需解决的技术问题。



技术实现要素:

为了解决上述技术问题,本发明的目的是提供一种在高温下具有优良的抗压、耐磨性能的新型熔铸耐火产品,具体的本发明公开了一种高性能熔铸耐磨砖,它包括以下重量份数的原料:

al2o3:68~73份;

sio2:6~10份;

zro2+hfo2:20~23份;

na2o:0.4~0.6份;

fe2o3+tio2+cao+mgo的份数之和以x表示,其中0<x≤1。

进一步的,它包括以下重量份数的原料:

al2o3:68~71份;

sio2:7~8份;

zro2+hfo2:21~23份;

na2o:0.5~0.6份;

fe2o3+tio2+cao+mgo的份数之和以x表示,其中0<x≤0.5。

进一步的,本发明提供了一种制造高性能熔铸耐磨砖的熔铸方法,它包括如下步骤:

步骤一:混料,将原料依次加入到混合机中进行混合,充分混合均匀后形成混合物料;

步骤二:熔炼,将所述混合物料加入到电弧炉中进行熔炼,熔炼的温度为1800-2300℃,熔炼的时间为60-150min,混合物料充分熔化形成混合熔液;

步骤三:浇铸,将所述混合熔液浇铸到耐高温模具中,浇铸完毕;

步骤四:脱模,在上述步骤三中浇铸完毕后,将耐高温模具中的熔液在室温下停留至表面凝固,进行脱模;

步骤五:降温,在上述步骤四中脱模后,进行在室温下进行降温;

步骤六:保温退火,在上述步骤五中降温后,进行保温退火,制成高性能熔铸耐磨砖。

进一步的,所述步骤四中混合熔液从浇铸完毕至表面凝固停留的时间≥3min。

进一步的,所述步骤五中降温时间为1~5min。

进一步的,所述步骤六中退火的速率为10~15℃/h。

本发明的有益效果是:本发明制备的高性能耐磨砖中晶相组成发生显著变化:消除了莫来石相,锆刚玉相增加一倍多,导致热态抗压强度、抗热震性和耐磨性能成倍提升,更好的用于需采用耐磨耐高温材料的关键部位。

附图说明

图1为本发明熔铸高性能耐磨砖的工艺方法。

具体实施方式

下面结合实施例对本发明做进一步说明,但不局限于说明书上的内容。

实施例1

一种高性能熔铸耐磨砖,它包括以下重量份数的原料,以基于氧化物的重量份数表示:al2o3:71份;sio2:7份;zro2+hfo2:21份;na2o:0.6份;fe2o3:0.1份;tio2:0.1份;cao:0.15份;mgo:0.05份;al2o3来源于铝矾土熟料颗粒度为<3mm,sio2和zro2+hfo2来源于锆英砂,na2o来源于na2co3≥99%的一级工业碳酸钠。

高性能熔铸耐磨砖的熔铸方法,它包括如下步骤:

步骤一:混料,将原料按上述重量份数依次投入到混料机中进行混合,充分混合均匀后形成混合物料,混合时间为10-30min,混合速率为20-30r/min;

步骤二:熔炼,将步骤一中1000kg的混合物料加入到电弧炉中进行熔炼,在2300℃的条件下熔化60min,混合物料充分熔化形成混合熔液;

步骤三:浇铸,将混合熔液以200-400kg/min的浇铸速率浇铸到耐高温模具中,浇铸完毕,其中,耐高温膜具为刚玉模具、石墨模具、硅砂模具中的任意一种,耐高温模具可耐1700-3000℃以内的高温;

步骤四:脱模,将步骤三中浇铸完毕的熔液在室温下停留4min,至熔液表面凝固具有一定强度,且表面温度低于800-1000℃后,进行脱模,得到制品,本实施例1中耐高温模具能够容纳300kg的熔液,经脱模后,得到300kg的制品;

步骤五:降温,在上述步骤四中脱模后,进行在室温下进行冷却,降温速率依据环境温度而定,本发明中降温速率为50-80℃/min,降温时间为5min;

步骤六:保温退火,在上述步骤五中降温后,将脱模后的磨具快速放入退火炉或保温材料中,以10~15℃/h的速率进行保温退火,制成高性能熔铸耐磨砖。

实施例2

一种高性能熔铸耐磨砖,它包括以下重量份数的原料,以基于氧化物的重量份数表示:al2o3:69份;sio2:8份;zro2+hfo2:22份;na2o:0.6份;fe2o3:0.1份;tio2:0.1份;cao:0.15份;mgo:0.05份;al2o3来源于铝矾土熟料颗粒度为<3mm,sio2和zro2+hfo2来源于锆英砂,na2o来源于na2co3≥99%的一级工业碳酸钠。

高性能熔铸耐磨砖的熔铸方法,它包括如下步骤:

步骤一:混料,将原料按上述重量份数依次投入到混料机中进行混合,充分混合均匀后形成混合物料,混合时间为10-30min,混合速率为20-30r/min;

步骤二:熔炼,将步骤一中1000kg的混合物料加入到电弧炉中进行熔炼,在2100℃的条件下熔化100min,混合物料充分熔化形成混合熔液;

步骤三:浇铸,将混合熔液以200-400kg/min的浇铸速率浇铸到耐高温模具中,浇铸完毕,其中,耐高温膜具为刚玉模具、石墨模具、硅砂模具中的任意一种,耐高温模具可耐1700-3000℃以内的高温;

步骤四:脱模,将步骤三中浇铸完毕的熔液在室温下停留3min,至熔液表面凝固具有一定强度,且表面温度低于800-1000℃后,进行脱模,得到制品,本实施例2中耐高温模具能够容纳300kg的熔液,经脱模后,得到300kg的制品;

步骤五:降温,在上述步骤四中脱模后,进行在室温下进行冷却,降温速率依据环境温度而定,本发明中降温速率为50-80℃/min,降温时间为2min;

步骤六:保温退火,在上述步骤五中降温后,将脱模后的磨具快速放入退火炉或保温材料中,以10~15℃/h的速率进行保温退火,制成高性能熔铸耐磨砖。

本发明中的al2o3来源于铝矾土熟料、高岭岩熟料、合成莫来石料、al2o3≥99%的工业氧化铝粉和al2o3≥99.3%的煅烧刚玉粉中的一种或几种。

本发明中的zro2+hfo2来源于zro2+hfo2≥65.5%的锆英砂和zro2+hfo2≥85%的脱硅锆中的一种或两种。

本发明中的sio2来源于铝矾土熟料、高岭岩熟料、合成莫来石料、锆英砂和sio2≥99%的硅砂中的一种或几种。

本发明中cao来源于caco3≥55.5%的方解石。

本发明中的配方中的所有原料的颗粒度小于等于3mm,使得原来更好的混料均匀。

其中,铝矾土熟料中,al2o3含量≥42%,sio2含量≤58%;高岭岩熟料中,al2o3含量≥35%,sio2含量≤65%;合成莫来石料中,al2o3含量≥60%,sio2含量≤40%;锆英砂中,zro2+hfo2含量≥65.5%,sio2含量≤35%。

实施例1~5为熔铸高性能熔铸耐磨砖的原料及熔铸方法参数。

见表1:

表1

实施例1~5为熔铸高性能熔铸耐磨砖的性能参数。

见表2:

表2

cmz5.5:zro2的重量份数为5.5份时,锆莫来石砖的指标;cmz20:zro2的重量份数为20份时,锆刚玉砖的指标。

本发明中大量氧化铝的存在对于生成刚玉相是必需的,二氧化硅的存在是形成晶间玻璃相所必需的,晶间玻璃相可有效缓解产品在冷却结晶过程中的应力释放,减缓产品产生裂纹,二氧化硅也可参与生成少量的莫来石相,但由于氧化钠的存在一定程度上会抑制莫来石的形成,从而能够消除莫来石相,氧化钠的存在还有助于玻璃相的形成,但氧化钠的加入不得超过重量份数为0.6份,因为过量的氧化钠,使得玻璃相脆,会导致产品产生裂纹、降低产品的荷重软化温度,影响使用寿命,而氧化钠太低,缓冲不了应力,掺杂剂除了氧化钙,其他(如氧化铁、氧化钛、氧化镁)并不是单独加入的,而是原料(矾土熟料、高岭岩熟料、合成莫来石料、锆英砂)中固有的杂质,是被原料带进去的,氧化钠和掺杂剂都能形成晶间玻璃相,掺杂剂含量较高时,氧化钠的添加量可降低,因为氧化钠含量增加,会降低产品的耐火度,掺杂剂对氧化钠有辅助作用,掺杂剂配合氧化钠来形成晶间玻璃相,从而降低氧化钠的含量,有助于提高产品的耐火度,掺杂剂的存在既有利于更好地形成晶间玻璃相,又尽可能少的破坏产品的高温耐磨性能,而掺杂剂中氧化铁和氧化钛的含量不能太高,如果太高会形成铁铝尖晶石和钛酸铝,致使热膨胀系数与产物的热膨胀系数不匹配,导致产品开裂,氧化锆的存在对于提高使用温度和增加耐磨性是必需的,氧化铪的存在是因为氧化锆源中天然存在的,因而在本发明中含量很低,通常为0.3%以下,其中大量的刚玉晶体和斜锆石晶体互相交织在一起形成锆刚玉共晶,而且在生产过程中让制品在高温状态下有一个短暂的急冷过程,使制品表面形成极为致密的微晶结构,更可有效的提高产品的抗压、抗冲击和耐磨性能。

本发明制备的高性能熔铸耐磨砖,荷重软化温度高于1750℃,热态下(1350℃)抗压强度大于100mpa。

从表2可知,实施例2为最优实施例,其体积密度、耐磨性、高温抗压强度高于其他实施例,特别是氧化锆影响体积密度,一般情况下,氧化锆含量越高,越致密,耐磨性越好,而本申请中,实施例2的氧化锆含量低于实施例3的含量,相反实施例2的体积密度高于实施例3的体积密度,耐磨性也高于实施例3的耐磨性;通过实施例1和4比较,实施例4增加掺杂剂的含量,降低氧化钠的含量,使得耐磨性明显好于实施例1的耐磨性。

本申请中掺杂剂含量在0到4之间时,仍具有很好的效果,其中,本申请中的掺杂剂参量不能为0,因为是原料中固有的杂质。

掺杂剂单独影响高温抗压强度,掺杂剂和氧化钠同时影响荷重软化温度,氧化锆影响体积密度,体积密度越高越致密,耐磨性越好,容重越大。

同一材质,即同一产品下,体积密度越高,耐磨性越好。

对比例1-4为为熔铸高性能熔铸耐磨砖的原料。

见表3:

表3

对比例5

与实施例2区别在于熔化温度为2350℃。

对比例6

与实施例2区别在于放入保温材料的时间间隔7分钟。

对比例7

与实施例2区别在于退火速率为8℃/小时。

对比例8

与实施例2区别在于退火速率为16℃/小时。

对比例9

与实施例2区别在于,对比例9为莫来石砖的配方,即sio2:20份;al2o3:75份;na2o:1.5份;fe2o3+tio2+cao+mgo:3.5份。同等条件下,测量的效果数值见表4。

对比例10

与实施例2区别在于,对比例10为锆莫来石砖的配方,即:al2o3:72份;sio2:18份;zro2+hf2o:6份;na2o:1.0份;fe2o3+tio2+cao+mgo:3份。同等条件下,测量的效果数值见表4。

对比例1~10为熔铸高性能熔铸耐磨砖的性能参数。

见表4:

表4

从表4可知,对比例1-4与实施例2相比:

对比例1的配比中,sio2含量增加,产生了莫来石相,耐磨性降低。

对比例2的配比中,zro2的含量增加,体积密度降低,耐磨性降低,通常情况下,体积密度随着zro2的含量增加而升高,本申请中实施例2中,zro2的含量为22份时,其体积密度最高,耐磨性最好,当zro2的含量继续升高时,如实施例3和对比例2可知,体积密度随着zro2的含量增加反而降低,na2o含量减少,抑制莫来石相的作用减弱,产生了莫来石相。

对比例3的配比中,zro2的含量减少,体积密度降低,耐磨性降低。

对比例4的配比中,掺杂剂的含量增加,高温抗压强度降低,掺杂剂含量增加的同时,氧化钠含量增加,耐磨性降低。

对比例5中,温度为2350℃,al2o3的熔点为2050℃,zro2的熔点为2670℃,在2350℃条件下,al2o3被蒸发掉了,留下了zro2,使得耐磨性降低,如果温度低于本申请熔炼的温度1800-2300℃范围,不能进行熔炼。

对比例6中,急冷时间大于本申请急冷时间5min时,使得耐磨砖因急冷,未来得及缓慢结晶收缩而变厚,从而体积密度降低,耐磨性降低。

对比例7和8分别为退火速率对体积密度的影响,退火速率与体积密度呈负相关。

虽然,常规的莫来石砖的抗热震性好,耐磨性差,常规的锆刚玉砖的抗热震性差,耐磨性好,但是,由于影响抗热震性的因素较多,如热传导率、致密度等,实施例2的体积密度和热传导率明显高于对比例9和对比例10的体积密度和热传导率,进而得知,实施例2的抗热震性好于对比例9和对比例10的抗热震性,同时,对比例9和10分别为莫来石砖和锆莫来石砖的配方,同等条件下,测量后的效果数值,经比对,本申请实施例2的耐磨性和高温抗压强度是对比例9和10的2-3倍,本申请实施例1-5中制备的锆刚玉耐磨砖在1100℃水冷大于7次,而对比例9制备的莫来石砖和对比10制备的锆莫来石砖在1100℃水冷3次左右,其实施例1-5的抗热震性是对比例9和10的抗热震性2-3倍,本申请制备的锆钢玉砖不仅在消除莫来石相后具有良好的耐磨性,还具有优于莫来石砖的抗热震性。

因此,本申请中所制得的锆刚玉砖不仅具有很高的耐磨性和高温抗压强度,同时,相比莫来石砖和锆莫来石砖具有抗热震性的优势,本申请具有更高的抗热震性能优势,更好地用于需采用耐磨耐高温材料的关键部位。

显然,本发明的上述实施方式仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无法对所有的实施方式予以穷举。凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1