一种碳化钨铝-碳化钛硬质材料的制备方法与流程

文档序号:22387207发布日期:2020-09-29 17:49阅读:453来源:国知局
一种碳化钨铝-碳化钛硬质材料的制备方法与流程

本发明涉及硬质材料技术领域,尤其涉及一种碳化钨铝-碳化钛硬质材料的制备方法。



背景技术:

钨是稀缺的、不可再生的重要战略性资源,价格昂贵,资源有限。高效利用钨资源对相关行业发展有着重要意义。铝部分替代钨,不仅节约了钨资源的消费,同时材料的性能也得到提高。

常规硬质合金由硬质相(碳化钨、碳化钛等)和粘结相(钴、镍、铁等)两部分组成。常规硬质合金通过添加粘结相,利用粉末冶金烧结的方法制备。但对于无粘结相的碳化物,由于熔点很高,一般的粉末冶金方法难以烧结,且没有粘结金属的条件下碳化钨材料很难实现致密烧结,致使材料强度、韧性较低;但是随着粘结金属加入,材料的强度提高,但其硬度会大幅度降低。如何解决这一矛盾成为硬质材料制备的一个难题。

碳化钨铝材料是近几年研发的新型硬质材料,其是铝原子部分替代钨原子形成的替位式固溶体。该材料相比于碳化钨具有更优异的力学性能,有望在机械加工工具、模具以及钻具等领域得到应用。

现有技术中公开了诸多碳化钨铝材料的制备,但主要涉及碳化钨铝粉体的制备和无粘结相碳化钨铝的烧结,关于碳化钨铝-碳化钛的制备研究未见报道。



技术实现要素:

本发明解决的技术问题在于提供一种碳化钨铝-碳化钛硬质材料的制备方法,该方法可在较低温度下快速反应烧结制备得到碳化钨铝-碳化钛硬质材料,且使该硬质材料具有较高的硬度和强度。

本申请提供了一种碳化钨铝-碳化钛硬质材料的制备方法,包括以下步骤:

a)将钨铝合金粉、钛粉和碳粉混合,球磨3~5h,得到混合粉体;

b)将所述混合粉体在成型剂和防锻剂中再次混料后冷压成型,得到坯体;

c)将所述坯体进行真空热压烧结,得到碳化钨铝-碳化钛硬质材料。

优选的,所述钨铝合金粉、所述碳粉和所述钛粉的质量比为(20~120):(1~8):1。

优选的,所述钨铝合金粉的粒径小于0.8μm,纯度大于99.7%;钛粉的目数为200目,纯度大于99.5%;碳粉的目数为200目,纯度大于99%。

优选的,所述球磨的球料比为(3~6):1,所述混合粉体的粒度为0~100nm。

优选的,步骤a)中,所述球磨中加入防锻剂,所述防锻剂为乙醇,所述防锻剂的用量为0.01~0.05ml/g。

优选的,步骤b)中,所述成型剂为石蜡,所述防锻剂为乙醇,所述混料的时间为15~30min。

优选的,步骤b)中,所述冷压成型的压力为150~250mpa。

优选的,步骤c)中,所述真空热压烧结的温度为1100~1500℃,时间为1~10min。

优选的,步骤c)中,所述真空热压烧结的初始压力为10~30mpa,加压的压力为80~120mpa。

优选的,步骤c)中,所述真空热压烧结的过程具体为:

将所述坯体置于模具中,初始加压至10~30mpa,快速升温至1100~1300℃后加压至80~120mpa,保温1~10min。

本申请提供了一种碳化钨铝-碳化钛硬质材料的制备方法,该方法以钨铝合金粉、钛粉、碳粉为原料,通过高能球磨制备了纳米级混合粉,并利用钨铝合金和碳、钛和碳反应放热,尤其是钛与碳的反应,有利于诱发促进烧结过程,降低烧结温度,缩短烧结时间,抑制晶粒长大过程;同时结合纳米粉体的烧结速率快、烧结温度降低等特点,可实现在较低温度下快速反应烧结;而在纳米粉体烧结过程中采用热压烧结并辅以一定的应力,使得晶粒聚集、合并、粗化速度较快,同时孔隙合并长大速度也较快,有助于加快反应和烧结过程,提高致密度,抑制晶粒长大,材料的低温快速致密化烧结有利于提高材料的性能;一方面,显微组织的细化能够同时提高材料的硬度、强度等力学性能,另一方面,碳化钛原位增强碳化钨铝,将进一步提高材料的各项力学性能,尤其是强度。

附图说明

图1为本发明实施例1制备的碳化钨铝-碳化钛硬质材料的xrd图谱。

具体实施方式

为了进一步理解本发明,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。

鉴于现有技术中,碳化钨铝没有粘结剂的情况下致密化烧结难度大的问题,本申请提供了一种碳化钨铝-碳化钛硬质材料的制备方法,该方法在没有粘结剂的情况下,实现了低温快速烧结致密化烧结,且使得碳化钨铝-碳化钛硬质材料的力学性能较好。具体的,本发明实施例公开了一种碳化钨铝-碳化钛硬质材料的制备方法,包括以下步骤:

a)将钨铝合金粉、钛粉和碳粉混合,球磨3~5h,得到混合粉体;

b)将所述混合粉体在成型剂和防锻剂中再次混料后冷压成型,得到坯体;

c)将所述坯体进行真空热压烧结,得到碳化钨铝-碳化钛硬质材料。

在制备碳化钨铝-碳化钛硬质材料的制备过程中,首先将钨铝合金粉、钛粉和碳粉混合,球磨3~5h,即得到混合粉体;在此过程中,原料钨铝合金粉,小于0.8μm,纯度大于99.7%;商业钛粉,200目,纯度大于99.5%;商业碳粉(石墨粉),200目,纯度大于99%。所述钨铝合金粉、所述碳粉和所述钛粉的质量比为(20~120):(1~8):1;更具体的,所述钨铝合金粉、所述碳粉和所述钛粉的质量比为(35~40):(1.5~4.5):1。上述原料准备之后,则进行球磨,在本申请中,所述球磨具体为高能球磨,具体在氩气保护下放入球磨罐中,所用设备采用行星式球磨机,没有特别限制,以本领域技术人员熟知的高能球磨的设备即可。粉体粒度无特殊要求,初始粉体粒度越大,球磨参数略作调整,但并不影响球磨粉体晶粒的最终尺寸。在球磨的过程中,所述球磨的球料比(3~6):1,在具体实施例中,所述球磨的球料比为4:1、5:1;所述球磨的时间为3~5小时,更优选为4小时,球磨时间长,钛粉和碳粉在球磨过程就生成碳化钛,不利于后期反应烧结,球磨时间过短,钨铝合金粉粒度较大,不利于烧结和性能提高。在球磨的过程中,选择乙醇作为防锻剂,用量为0.01ml/g~0.05ml/g优选为0.02ml/g,过多影响效率,过少粉体结块。球磨后的混合粉料的粒度控制在0~100nm,更优选为10~20nm。在上述球磨过程中,随着球磨的进行,粉体粒度变小,粉体活性增大,超过一定的球磨时间,钨铝合金会和碳反应生成碳化钨铝,钛会和碳生成碳化钛,尤其是钛与碳反应更加容易,需要球磨时间相对较少,为了控制其反应过程在烧结过程中进行,而不是在球磨过程中进行,因此要控制球磨时间。

本申请然后将上述得到混合粉体在成型剂和防锻剂中再次混料后冷压成型,即得到坯体;在此过程中,所述成型剂为石蜡,所述防锻剂为乙醇,所述再次混料具体为三维混料,以实现混合粉体的均匀混合。混料后取出后真空烘干后再进行冷压成型;所述冷压成型为本领域技术人员熟知的技术手段,对此本申请没有特别的限制;所述冷压成型的压力为150~250mpa,更具体的,所述冷压成型的压力为180~220mpa。在此过程中,所述冷压成型的致密度越高越有利于后期进行的烧结。

本申请最后将上述得到的坯体进行真空热压烧结,即得到碳化钨铝-碳化钛硬质材料。在此过程中,由于球磨过程中碳和钛的反应而有利于降低烧结温度、缩短烧结时间;同时制备得到的纳米级混合粉体也有利于提高烧结速率,降低烧结温度,最终实现了较低温度下快速反应烧结。而本申请的快速反应烧结抑制晶粒长大,使得晶粒细化,同时由于碳化钛原位增强碳化钨铝,上述方式进一步增强了材料的强度、硬度和韧性。

所述真空热压烧结的温度优选为1100~1500℃,更优选为1400~1500℃;烧结时间优选为1~10分钟,更优选为3~5分钟。所述真空热压烧结的过程具体为:将所述坯体置于模具中,初始加压至10~30mpa,快速升温至1100~1300℃后加压至80~120mpa,保温1~10min。钛含量、烧结温度、烧结时间存在相互耦合关系,烧结温度随钛含量增多而降低,烧结时间随烧结温度升高而减少;烧结温度过高,晶粒迅速长大,并且晶粒异常长大增加,材料硬度微降,强度明显降低;烧结温度降低,烧结时间加长。烧结时间过短,反应进行不完全,孔隙率增大,硬度、强度均下降。因此,既要完成材料的反应,又要完成材料的烧结过程,钛含量、烧结温度、烧结时间要优化耦合,才能获得硬度和强度等性能优异的碳化钛弥散强化无粘结相碳化钨铝。

为了进一步理解本发明,下面结合实施例对本发明提供的碳化钨铝-碳化钛硬质材料的制备方法进行详细说明,本发明的保护范围不受以下实施例的限制。

本发明制备的无粘结相碳化钨铝-碳化钛硬质材料,参照国家标准《gb/t7997-2014硬质合金维氏硬度试验方法》测试其硬度;参照国家标准《gb/t3851-2015硬质合金横向断裂强度测定方法》,使用采用instron-5869型材料试验机测试其强度。

实施例1

将钨铝合金粉(平均粒度<0.8μm)、钛粉(200目)和碳粉(200目)按照表1中编号watc-551样品配比,在氩气保护条件下装入球磨罐中,球磨4小时,得到粒度小于100nm的混合粉;

在氩气保护下,将球磨获得的混合粉添加0.12g石蜡和12ml乙醇三维混料20分钟,取出真空烘干24小时,将烘干的混合粉再利用冷压成型,成型压力200mpa,得到坯体;

将坯体在真空热压烧结炉中进行烧结,选用高强石墨模具,初始压力20mpa,快速升温至烧结温度1250℃,到达温度后开始加压,加压压力100mpa,保温3分钟,取出,自然冷却,得到无粘结相碳化钨铝-碳化钛烧结块体。

经检测,所有x射线衍射峰属于碳化钨铝和碳化钛结构(如图1所示);样品相对密度为98.1%;显微硬度为20.7gpa;弯曲强度为1367mpa。

实施例2

将钨铝合金粉(平均粒度<0.8μm)、钛粉(200目)和碳粉(200目)按照表1中编号watc-553样品配比,在氩气保护条件下装入球磨罐中,球磨4小时,得到粒度小于100nm的混合粉;

在氩气保护下,将球磨获得的混合粉添加0.12g石蜡和12ml乙醇三维混料20分钟,取出真空烘干24小时,将烘干的混合粉再利用冷压成型,成型压力200mpa,得到坯体;

将坯体在真空热压烧结炉中进行烧结,选用高强石墨模具,初始压力20mpa,快速升温至烧结温度1200℃,到达温度后开始加压,加压压力100mpa,保温3分钟,取出,自然冷却,得到无粘结相碳化钨铝-碳化钛烧结块体。

经检测,所有x射线衍射峰属于碳化钨铝和碳化钛结构;样品相对密度为98.2%;显微硬度为23.2gpa;弯曲强度为1482mpa。

实施例3

将钨铝合金粉(平均粒度<0.8μm)、钛粉(200目)和碳粉(200目)按照表1中编号watc-555样品配比,在氩气保护条件下装入球磨罐中,球磨4小时,得到粒度小于100nm的混合粉;

在氩气保护下,将球磨获得的混合粉添加0.12g石蜡和12ml乙醇,三维混料20分钟,取出真空烘干24小时,将烘干的混合粉再利用冷压成型,成型压力200mpa,得到坯体;

将坯体在真空热压烧结炉中进行烧结,选用高强石墨模具,初始压力20mpa,快速升温至烧结温度1150℃,到达温度后开始加压,加压压力100mpa,保温3分钟,取出,自然冷却,得到无粘结相碳化钨铝-碳化钛烧结块体。

经检测,所有x射线衍射峰属于碳化钨铝和碳化钛结构;样品相对密度为98.1%;显微硬度为21.7gpa;弯曲强度为1368mpa。

实施例4

将钨铝合金粉(平均粒度<0.8μm)、钛粉(200目)和碳粉(200目)按照表1中编号watc-503样品配比,在氩气保护条件下装入球磨罐中,球磨4小时,得到粒度小于100nm的混合粉;

在氩气保护下,将球磨获得的混合粉添加0.12g石蜡和12ml乙醇三维混料20分钟,取出真空烘干24小时,将烘干的混合粉再利用冷压成型,成型压力200mpa,得到坯体;

将坯体在真空热压烧结炉中进行烧结,选用高强石墨模具,初始压力20mpa,快速升温至烧结温度1200℃,到达温度后开始加压,加压压力100mpa,保温3分钟,取出,自然冷却,得到无粘结相碳化钨铝-碳化钛烧结块体。

经检测,所有x射线衍射峰属于碳化钨铝和碳化钛结构;样品相对密度为98.1%;显微硬度为20.1gpa;弯曲强度为1351mpa。

实施例5

将钨铝合金粉(平均粒度<0.8μm)、钛粉(200目)和碳粉(200目)按照表1中编号watc-203样品配比,在氩气保护条件下装入球磨罐中,球磨4小时,得到粒度小于100nm的混合粉;

在氩气保护下,将球磨获得的混合粉添加0.12g石蜡和12ml乙醇三维混料20分钟,取出真空烘干24小时,将烘干的混合粉再利用冷压成型,成型压力200mpa,得到坯体;

将坯体在真空热压烧结炉中进行烧结,选用高强石墨模具,初始压力20mpa,快速升温至烧结温度1250℃,到达温度后开始加压,加压压力100mpa,保温3分钟,取出,自然冷却,得到无粘结相碳化钨铝-碳化钛烧结块体。

经检测,所有x射线衍射峰属于碳化钨铝和碳化钛结构;样品相对密度为98.2%;显微硬度为19.6gpa;弯曲强度为1349mpa。

实施例6

将钨铝合金粉(平均粒度<0.8μm)、钛粉(200目)和碳粉(200目)按照表1中编号watc-603样品配比,在氩气保护条件下装入球磨罐中,球磨4小时,得到粒度小于100nm的混合粉;

在氩气保护下,将球磨获得的混合粉添加0.12g石蜡和12ml乙醇,三维混料20分钟,取出真空烘干24小时,将烘干的混合粉再利用冷压成型,成型压力200mpa,得到坯体;

将坯体在真空热压烧结炉中进行烧结,选用高强石墨模具,初始压力20mpa,快速升温至烧结温度1200℃,到达温度后开始加压,加压压力100mpa,保温3分钟,取出,自然冷却,得到无粘结相碳化钨铝-碳化钛烧结块体。

经检测,所有x射线衍射峰属于碳化钨铝和碳化钛结构;样品相对密度为98.3%;显微硬度为18.7gpa;弯曲强度为1289mpa。

表1样品组成及原料配比数据表

以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1