含碳耐火材料及其制造方法

文档序号:71257阅读:449来源:国知局
专利名称:含碳耐火材料及其制造方法
技术领域
本发明涉及一种适于用作非氧化气氛下的耐火材料,尤其适于用作高炉炉缸(汤溜まリ)的侧壁区和炉底区的炉衬材料的含碳耐火材料及其制造方法。
背景技术
近年的非氧化气氛窑炉例如高炉,伴随着大型化的进展,由于操作变得苛刻,高压操作、细粉炭吹入操作等,炉衬耐火材料的损伤因素增加,但另一方面为抑制高炉大量的初期投资却期待着高炉使用寿命的延长。象这样的决定高炉使用寿命长短的因素就是高炉炉缸侧壁区和炉底区的炉衬材料的耐久性。用作此高炉炉缸侧壁部位和炉底部位的炉衬材料是含碳耐火材料。也就是说,用作炉衬材料的含碳耐火材料的耐久性的提高,对高炉使用寿命的延长产生直接影响。
含碳耐火材料的制造方法通常是,向焙烧无烟煤、人造和天然石墨等的碳骨料中添加煤焦油沥青、酚醛树脂等有机粘合剂、混炼、挤出成型模塑成型后,埋在焦炭粉中焙烧。含碳耐火材料,与粘土砖相比,虽有一种碳骨料“加碳溶解”于熔融生铁而发生侵蚀的缺点,但因其导热性高且耐炉渣性也极好,所以一直用作高炉炉缸区的炉衬材料。
作为高炉内炉衬含碳耐火材料受损的原因可以举出加碳溶解于熔融生铁、因熔融生铁侵入气孔而损坏、因碱和锌蒸气侵入反应而龟裂、因热应力而损坏、因熔融生铁流动的摩耗等。
为此,历来有许多有关含碳耐火材料的配混、制造、使用等的建议,目的在于设法改善其耐久性。本申请人也在特公昭56-18559中公开了一种为减慢在熔融生铁中的加碳溶解速度,除主原料碳骨料以外,含有α-氧化铝、氧化锆、氧化镁等金属氧化物的高炉用含碳耐火材料。
特公昭58-43350公开的一种高炉用含碳耐火材料的制造方法是,以碳骨料为主原料,配混金属硅细粉,使含碳耐火材料气孔内在焙烧过程中生成硅化合物来减少直径在1μm以上的大气孔以防熔融生铁侵入,并减少熔融生铁和反应性气体向含碳耐火材料的侵入。
特开平7-172907公开了一种耐氧化性及耐腐蚀性得到改善的含碳耐火材料,向含碳原料、氧化铝原料中添加碳化钛粉末,高温氧化后,生成Al2O3/TiO2系化合物,结构致密。
特许第2747734号中公开了一种耐腐蚀性、抗氧化性极好的含碳耐火材料,在碳材料、耐高温氧化物材料中含有作为抗氧化剂的碳化物材料例如碳化钛。
还有,特开平8-81706中公开了一种导热性高的高炉用含碳耐火材料的制造方法,此法能制得加炭溶解速度减慢且气孔径小的大型含碳耐火材料,此法特征在于用作主原料的是那些导热率高的人造和天然石墨等碳骨料。
借助上述种种对策,虽能设法改善含碳耐火材料的耐久性,但限于以碳骨料为主原料,尽管维持了导热性和耐炉渣性,但在降低作为含碳耐火材料缺点的加炭溶解速度方面是有限度的。
也就是说,象上述特公昭56-18559中公开的那样,单就降低加炭溶解速度而论,α-氧化铝等金属氧化物的添加效果是明显的,能够通过多加金属氧化物使加炭溶解速度降至极低,但同时发生的问题是耐炉渣性劣化、导热率降低。
而且,特开平7-172907中的耐火材料,高温下氧化后,由于不含金属钛、碳化钛或氮化钛,不象后述那样与熔融生铁的润湿充分,不能获得极好的耐腐蚀性。而且,特许2747734中的耐火材料,碳材料的含量在30%以下,也没有改善碳化钛与熔融生铁润湿性的记载,与本发明的技术思想不同。
作为高炉炉底区特有的问题,是归因于熔融生铁流动的炉衬含碳耐火材料的摩耗。也就是说,高炉炉底区熔融生铁的环状流是由于出铁所形成的,已知沿此环状流部位的含碳耐火材料的摩耗比其它部位明显。尤其是以碳骨料为主原料的含碳耐火材料,由于不润湿熔融生铁,不能在耐火材料表面形成保护层,经常以新鲜表面与熔融生铁接触,伴随熔融生铁进行摩耗。
为防止炉衬含碳耐火材料受到此种环状流的摩耗,提出了如下建议。也就是说,特开平10-298623中建议的高炉炉底构造及高炉操作方法一面监控炉底区炉衬材料的温度分布,一面借助高度不同的上下两段出铁口来控制出铁,使高炉炉底区形成的焦炭填充区域上浮,借助熔融生铁在炉底整个表面上移动来消灭环状流。
特开平9-41009中公开了一种防止含碳耐火材料与熔融生铁直接接触的方法把TiO2源装入高炉,使含Ti化合物的高熔点保护层高效地堆积在炉底。但目前状况是,为了使高熔点保护层与含碳耐火材料不起反应或不润湿结合,不能把高熔点保护层固定在炉底区,不能防止保护层的流失。
如上所述,借助降低含碳耐火材料的加炭溶解速度,使之润湿熔融生铁,含碳耐火材料的耐久性得以改善,但在传统的方法中,虽能维持导热率和耐炉渣性,加炭溶解速度却不能降低,并且,迄今尚未公开过润湿熔融生铁的含碳耐火材料。
本发明是为解决现有技术的问题而提出的,其目的在于提供一种既维持含碳耐火材料的导热性和耐炉渣性,又降低加炭溶解速度,且润湿熔融生铁(尤其是熔融生铁)的含碳耐火材料及其制造方法。

发明内容
为达到上述目的,本发明人等就所用各种含碳耐火材料用添加剂的添加、含碳耐火材料的加碳溶解速度的降低、及能否对熔融生铁润湿等问题反复进行了研究,终于完成了本发明。
也就是说,作为本发明的要点有(1)以质量%计,含有碳50-85%、氧化铝5-15%、金属硅5-15%、以及金属钛、碳化钛、氮化钛及碳氮化钛(TiCxNy,0<x,y<1,且x+y=1)的一种或两种以上合计5-20%的含碳耐火材料;
(2)以质量%计,含有作为主原料的焙烧无烟煤、煅烧焦炭、天然或人造石墨或其混合物组成的含碳原料50-85%、氧化铝细粉5-15%、金属硅细粉5-15%、以及一种或两种以上的碳化钛粉末、金属钛粉末、氮化钛粉末及碳氮化钛粉末(TiCxNy,0<x,y<1,且x+y=1)合计5-20%的混合物中添加有机粘合剂、混炼、成型,在非氧化气氛中焙烧,制得上述(1)的含碳耐火材料的含碳耐火材料的制造方法;(3)以Ti3O5(200)面相对于碳化钛(111)面的X射线衍射峰值强度之比在1%以下为特征的上述(1)或(2)的含碳耐火材料;(4)氧化铝的一部分或全部由氧化锆、氧化镁、多铝红柱石、尖晶石及氧化硅的一种或两种以上构成为特征的上述(1)的含碳耐火材料;(5)氧化铝细粉的一部分或全部由氧化锆、氧化镁、多铝红柱石、尖晶石及氧化硅的一种或两种以上微粉构成为特征的上述(2)的含碳耐火材料的制造方法。
由于氧化铝或其细粉的含量不足5wt%时,耐熔融生铁性不足,超过15wt%时,耐炉渣性及导热率降低,所以5-15wt%是优选的。不含氧化铝,含有氧化锆、氧化镁、多铝红柱石、尖晶石、氧化硅之类的高耐火性金属氧化物细粉也能获得同样的效果,这就是在先申请特公昭56-18559中的内容。成为原料的氧化铝粉末为粗粒子时,会促进局部熔融生铁侵蚀,其粒径在74μm以下是优选的。而且,为避免阻塞内部的焙烧出气道,粒径在1μm以上是优选的。
由于金属硅或其细粉的含量不足5wt%时,气孔细分化效果不足,超过15wt%时,未反应的金属硅易于残留,所以5-15wt%是优选的。为防上未反应金属硅的残留,成为原料的金属硅细粉粒径在74μm以下是优选的。为避免阻塞内部焙烧出气道,粒径在1μm以上是优选的。
作为有机粘合剂,可以使用煤焦油沥青、酚树脂。
象这样,虽然含氧化铝及金属硅或它们的细粉的效果是周知的,但本发明以还含有5-20wt%的碳化钛等或其粉末等为特征。还有,碳化钛等或金属钛、碳化钛粉末等的含量,小于5wt%时对耐溶铁性的效果不足,超过20wt%时,对耐溶铁性的效果不变,另一方面变得难以机械加工且成本提高,所以含量为5-20%是优选的。而且,本发明人等调查研究了碳化钛粉末粒度的种种改变,以粒度小为佳,即使粒度在35μm以下也能获得本发明的效果,而以在10μm以下为宜。尤其当粒度在2μm左右时,碳化钛粉末含量即使在5wt%左右也能获得十分良好的结果。
而且,不含碳化钛粉末,含有金属钛粉末、氮化钛粉末或碳氮化钛(TiCxNy,0<x,y<1,且x+y=1)粉末也能获得同样的效果,而且业已判明,此等金属钛及三种钛化合物的两种或三种以上以任意比例配混的混合物合计含量为5-20wt%,也能获得同样的效果。
传统上,以向周知的耐火制品原料中添加选自钛族的金属的碳化物、氮化物或碳氮化物,在炉底区整个内表面上形成含钛层(titanベア)的保护膜为目标的特开昭52-141403,和向含碳耐火原料中添加Ti、Zr的金属单质、合金、氧化物、氮化物、碳化物的一种或两种以上,在耐火制品表面附近形成含钛层,使耐火材料的侵蚀速度降低的特开昭53-7709中所用的钛化合物,如下述那样业已判明,尤其是Ti浓度对低浓度的熔融生铁的耐腐蚀性明显劣化,熔融生铁流动造成的摩耗突出。其理由可推断为,如图1所示,用X射线衍射装置RAD-rR(理学电器公司,Cu-kα50kV/100mA)分析例如试剂TiC的结果所示,传统所谓的试剂TiC中存在着一种杂质Ti3O5。Ti3O5(200)面的X射线衍射峰值强度与TiC(111)面强度之比为2.7%,由于Ti3O5的氧与耐火材料的碳起反应形成微气孔,特开昭52-141403中所述的保护层-含钛层在炉底区整个内表面上没有连续地形成,特开昭53-7709中所述的耐火材料表面附近形成含钛层的耐火材料上形成微气孔,以致没有形成一层粘附并覆盖下述本发明耐火材料的整个表面的高熔点保护层。从而判明,如果不是图2所示的Ti3O5的上述X射线衍射峰值强度比在1%以下的碳化钛,就不能获得本发明的效果。
含碳耐火材料,与熔铁尤其是熔融生铁接触时,碳骨料就加碳溶解而造成消耗,而当含碳耐火材料中含有氧化铝等时,碳骨料溶出后,它们残存在含碳耐火材料表面,介于含碳耐火材料和熔铁之间,妨碍两者的接触,就能降低含碳耐火材料的消耗速度。
但是,当含碳耐火材料中含有大量氧化铝时,碳骨料溶出后的残存氧化铝层覆盖了含碳耐火材料的整个表面,结果由于在熔铁-炉渣界面的溶失加速,考虑到熔铁溶解和耐炉渣性两者的平衡,有必要把氧化铝的含量调节到合适的范围内。
另一方面,本发明焙烧后的耐火材料中特有的添加剂-金属钛、碳化钛、氮化钛及其中间体-碳氮化钛,借助在非氧化气氛下使用,在熔铁、尤其在熔融生铁、炉渣及其界面不会溶失,因此有它们在含碳耐火材料中,就使含碳耐火材料的耐熔铁性、耐炉渣性得到改善。遗憾的是这类金属钛或钛化合物是高价原料,所以用碳骨料溶出后的残存钛化合物层覆盖含碳耐火材料的整个表面所需的添加量,经济上是不合算的。
为此,使价廉的原料-氧化铝的含量处在含碳耐火材料的耐炉渣性不劣化的范围内,为了使碳骨料溶出后的残存氧化铝层覆盖含碳耐火材料的整个表面,不足部分使用金属钛或钛化合物,就能用残存氧化铝层或残存钛化合物层覆盖含碳耐火材料的整个表面。借此,含碳耐火材料的熔融生铁溶解造成的消耗得以停止,而耐炉渣性的劣化也不致发生。
此时通常使用的试剂碳化钛,如上所述,因为所含微量氧化物与耐火材料中的碳反应而在耐火材料表层产生微气孔,不能形成粘附并覆盖耐火材料整个表面的高熔点保护层,所以Ti3O5(200)面与碳化钛(111)面的X射线衍射峰值的强度比必须在1%以下,更优选在0.5%以下。还有,Ti3O5的峰值强度比的下限没有特别规定,越低越优选,峰值强度完全观测不到的状态(Ti3O5峰值强度比=0)是最优选的。业已判明,按照本发明,溶有微量Ti的高熔点保护层是在整个表面上粘附并覆盖着的。用CMA分析装置(日本电子公司,JXA-8900)对本发明的界面保护层的断面状况的观察结果示于图3,熔融生铁和耐火材料表面界面上粘附并覆盖着的高熔点保护层得到确认。
还有,上述钛化合物具有润湿铁生成Fe-Ti固溶体的性质,特别是由于它对含钛熔融生铁显示突出的润湿性,借助使含碳耐火材料含有钛的碳化物、氮化物或碳氮化物,高炉炉底区堆积的高熔点保护层变得易于与含碳耐火材料结合。结果,由于借助把含有钛化合物的含碳耐火材料用作特别是高炉炉底区的炉衬材料,高熔点保护层在炉底固定,能够稳定地避免流动熔融生铁与含碳耐火材料的直接接触,能够防止熔融生铁流动造成的含碳耐火材料的摩耗。
碳或含碳原料的含量,为确保导热性,必须在50%以上;超过85%时,因气孔径变大,耐熔融生铁性劣化,所以规定在85%以下。
上述(1)或(4)的本发明耐火材料可以通过在非氧化气氛下焙烧上述(2)或(5)的耐火材料原料来制造。作为非氧化气氛,以在焦炭中、真空容器中、N2、Ar等惰性气氛中实施为宜。
本发明的含碳耐火材料主要以用于高炉炉底区进行说明,此外,合金铁用电炉、化铁炉等,只要在非氧化气氛下使用的,没有特别限定用途,能够获得易于润湿熔铁、耐腐蚀性、耐摩耗性极好等效果。



图1用X射线衍射装置对传统的TiC试剂分析结果曲线图图2用X射线衍射装置对本发明的TiC试剂分析结果曲线图图3通过CMA分析装置观察本发明的界面保护层断面观测状况结果的照片具体实施方式
对于本发明的实施例及比较例,就以下各项进行研究。
1.含有碳化钛的效果按照表1所示的配混比和下述各操作制得含有碳化钛的实施例1,和不含碳化钛的比较例1-4的两类含碳耐火材料。所用的碳化钛具有图2所示X射线衍射峰值强度比。焙烧是在焦炭中进行的。然后,把实施例1及比较例1-4的含碳耐火材料放在1550℃的上面有高炉炉渣熔融层的高炉生铁中浸渍及转动1小时后,回收试样,检验其熔融生铁浸渍部分及熔融生铁-炉渣界面的侵蚀率和导热率。
另外,成型尺寸为600×600×2500mm、熔融生铁试样形状为30×120mm。侵蚀率用一种减压槽内带高频溶解炉的耐腐蚀性评价装置进行侵蚀试验。测定侵蚀试验前后试样的直径,通过下式求值。还有,导热率借助稳态热流法(绝对测定)求出。结果示于表1。
实施例1焙烧无烟煤37份、人造石墨34份的碳原料中添加粒径为2-3μm的氧化铝细粉11份、粒径为2-3μm的金属硅细粉6份,及粒度7μm的碳化钛细粉12份。向上述合计为100份的原料中添加酚树脂和煤焦油沥青(用作有机粘合剂)合计16份,混炼,在成型压力20MPa下模塑成型。而且,所得模塑制品埋在焦炭粉中,于非氧化气氛、1250℃下焙烧,制得含碳耐火材料。
比较例1如表1所示,在比较例1中,焙烧无烟煤47份、人造石墨39份的碳原料中添加粒径2-3μm的氧化铝细粉8份、粒径在74μm以下的金属硅细粉6份。向上述合计为100份的原料中,与实施例1相同,添加酚树脂和煤焦油沥青(用作有机粘合剂)合计16份,混炼,在成型压力20MPa下模塑成型。而且,将所得模塑制品埋在焦炭粉中,于非氧化气氛、1250℃下焙烧,制得含碳耐火材料。
比较例2如表1所示,在比较例2中,除焙烧无烟煤为45份、人造石墨为37份、粒径2-3μm的氧化铝细粉为12份之外,其它配混量及制备操作与比较例1相同,制得含碳耐火材料。
比较例3如表1所示,在比较例3中,除焙烧无烟煤为40份、人造石墨为35份、粒径2-3μm的氧化铝细粉为19份之外,其它配混量及制备操作与比较例1相同,制得含碳耐火材料。
比较例4如表1所示,在比较例4中,除焙烧无烟煤为35份、人造石墨为31份、粒径2-3μm的氧化铝细粉为28份之外,其它配混量及制备操作与比较例1相同,制得含碳耐火材料。
表1


其它焙烧无烟煤的灰分含量从表1可知,与配混8份氧化铝的比较例1相比,单单增加4份氧化铝的比较例2,其熔融生铁浸渍部分的侵蚀率成为比较例1的一半,且其熔融生铁-炉渣界面的侵蚀率只略有恶化。
比较例3与比较例2相比,增加了7份的氧化铝,虽其熔融生铁浸渍部分的侵蚀率减为比较例2的一半,但其熔融生铁-炉渣界面的侵蚀率却成为比较例2的约两倍。
还有,比较例4氧化铝的含量是比较例中最多的,而其熔融生铁浸渍部分的侵蚀率为最小(3.7%),熔融生铁-炉渣界面的侵蚀率成为最大(55.5%)。
与上述各例相比,实施例1中的氧化铝含量停留在11份,代替氧化铝增量的是添加TiC的配混,这样做使实施例1熔融生铁浸渍部分的侵蚀率为7.2%,与含大致同量碳粒料的比较例3有大致相同的侵蚀率。另一方面,熔融生铁-炉渣界面的侵蚀率为11.6%,与比较例1-4相比得到大幅度改善。
就导热率进行研究可知,在比较例2-4中,导热率因氧化铝的增量而降低,但是,在氧化铝含量保持在11份而配混TiC代替增加氧化铝的实施例1中,导热率几乎没有降低。
2.关于碳化钛的含量按照表2所示的配混比和与上述实施例1相同的操作,制得TiC配混比在0-11%的范围内变化的试样1-7的含碳耐火材料。采用了一种具有如图2所示的X射线衍射峰值强度比的碳化钛。氧化铝的粒径为2-3μm,金属硅的粒径在74μm以下。TiC的粒度为7μm,成型尺寸为100×130mm,试样形状为20×70mm。
而且,用氧化铝套管来保护此等试样1-7的上部,只使其下部受到侵蚀,把试验前后这部分的体积减少率作为熔融生铁的侵蚀率。还有,借助水浸法来测定体积,作为熔融生铁源,每次使用1.2kg的生铁(JIS FC-15,含C 3.5%,含Si 2.9%)。向熔融生铁吹入Ar的量为40ml/min,使试样1-7在熔融生铁中,于1550℃下转动浸渍一小时。结果示于表2。
表2


从表2明显地看出,TiC含量在9%以上时(试样5-7),熔融生铁中的Ti浓度即使对低浓度的生铁也能获得极好的耐腐蚀性。熔融生铁的Ti浓度达到0.46%时,明显看到生铁润湿。还有,表2中未示出的是,在使用粒度为2μm的TiC时,即使TiC的配混比为5%,也能获得良好的结果。
这样,就显示了本发明的高炉用含碳耐火材料对含Ti熔融生铁显著的润湿性。
3.关于钛化合物的种类按照与表2所示试样7相同的配混比,改变所添加的Ti化合物种类-金属Ti、TiC、TiC0.7N0.3、TiC0.3N0.7、TiN,按照与实施例1相同的操作,制得含碳耐火材料。Ti3O5(200)面相对于上述碳化钛(111)面的X射线衍射峰值强度比示于表3。金属钛、Ti化合物的粒径都是7μm。氧化铝的粒径是2-3μm,金属硅的粒径在74μm以下。而成型尺寸为100×130mm,试样形状为20×70mm。
用与上述“2.关于碳化钛含量”同样的方法测定了熔融生铁侵蚀率,结果示于表3。
表3


2种①TiC/TiC0.7N0.3=1/1混合物 2种②TiC/TiC0.7N0.3=1/1混合物 2种③TiN/TiC0.7N0.3=1/1混合物3种TiC/TiC0.7N0.3/TiN=1/1/1混合物4种Ti/TiC/TiC0.7N0.3/TiN=1/1/1/1混合物从表3明显地看出,任意选用2种或3种以上的金属钛及钛化合物诸如金属钛、TiC、TiC0.7N0.3、TiC0.3N0.7、TiN时,同样能获得极好的耐腐蚀性。熔融生铁的Ti浓度达到0.46%时,都能明显看到生铁润湿。
这样,任意选用金属钛、TiC、TiC0.7N0.3、TiC0.3N0.7、TiN作为金属钛及钛化合物,本发明的含碳耐火材料对含Ti熔融生铁都显示显著的润湿性。
工业生产上的利用可能性如上所述,若把本发明的含碳耐火材料用作高炉炉缸侧壁区及炉底区的炉衬材料,熔融生铁溶解引起的炉衬材料的消耗得以减少,同时借助高熔点保护层固定在炉底,熔融生铁流动引起的摩耗也得以减少,因而高炉的使用寿命得以延长。
权利要求
1.一种含碳耐火材料,其特征在于,该材料含有碳50-85质量%、氧化铝5-15质量%、金属硅5-15质量%、以及碳化钛、金属钛、氮化钛及碳氮化钛的一种或两种以上合计5-20质量%,其中,碳氮化钛表示为TiCxNy时,0<x,y<1,且x+y=1,相对于上述碳化钛(111)面的强度,Ti3O5(200)面的X射线衍射峰值强度比在1%以下。
2.按照权利要求
1的含碳耐火材料,其特征在于,上述氧化铝的一部分或全部由氧化锆、氧化镁、多铝红柱石、尖晶石及氧化硅的一种或两种以上构成。
3.含碳耐火材料的制造方法,其特征在于,向含有作为主原料的焙烧无烟煤、煅烧焦炭、天然或人造石墨或其混合物组成的含碳原料50-85质量%、粒径1μm~74μm的氧化铝细粉5-15质量%、粒径1μm~74μm的金属硅细粉5-15质量%、以及碳化钛粉末、金属钛粉末、氮化钛粉末及碳氮化钛粉末的一种或两种以上合计5-20质量%的混合物中添加有机粘合剂,混炼,成型,在非氧化气氛中焙烧,所述碳氮化钛表示为TiCxNy时,0<x,y<1,且x+y=1,相对于上述碳化钛(111)面的强度,Ti3O5(200)面的X射线衍射峰值强度比在1%以下。
4.按照权利要求
3的含碳耐火材料的制造方法,其特征在于,上述氧化铝细粉的一部分或全部由氧化锆、氧化镁、多铝红柱石、尖晶石及氧化硅的一种或两种以上的细粉构成。
专利摘要
向一种混合物中添加有机粘合剂,混炼,成型,在非氧化气氛中焙烧制得含碳耐火材料。该混合物含有作为主原料的焙烧无烟煤、煅烧焦炭、天然或人造石墨或其混合物组成的含碳原料50-85wt%、氧化铝细粉5-15wt%、金属硅细粉5-15wt%、以及碳化钛、金属钛、氮化钛及碳氮化钛粉末的一种或二种以上合计5-20wt%。借助此含碳耐火材料用作高炉炉缸侧壁区及炉底区的炉衬材料,熔融生铁溶解引起的炉衬材料的消耗得以减少,同时流动熔融生铁造成的摩耗也减少,延长了高炉的使用寿命。
文档编号C04B35/52GKCN1275904SQ01800783
公开日2006年9月20日 申请日期2001年3月30日
发明者石井章生, 中村伦, 新田法生, 若狭勉, 三上裕史, 山上芳幸 申请人:新日本制铁株式会社, 日本电极株式会社导出引文BiBTeX, EndNote, RefMan
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1