包含透射和吸收性黑着色剂的激光焊接用制造的树脂产品及其使用的着色树脂组合物的制作方法

文档序号:3691912阅读:144来源:国知局
专利名称:包含透射和吸收性黑着色剂的激光焊接用制造的树脂产品及其使用的着色树脂组合物的制作方法
技术领域
本发明涉及用于激光焊接领域的制造的树脂产品,其中激光使多种树脂部分的接触表面的一部分或全部熔融粘合。更具体地说,本发明涉及这样的激光熔融粘合用的制造的树脂产品,其中分别具有激光-透射黑着色剂和激光-吸收黑着色剂的树脂部分之间的接触表面被焊接在一起。
背景技术
近年来,设计出许多制造方法来成形树脂组合物的复杂形状,如用于各种各样工业领域的中空零件和管材。然而,这些现有方法存在着某些限制。
许多制造方法依靠粘合剂达到其密封性,但这些方法费时又费钱且由于要使用挥发性溶剂而构成对环境的破坏。超声波焊接或旋转焊接受被粘合在一起的物体形状和尺寸的限制,且偶有粘合强度不足的情况。振动焊接由于不能有效控制产品的外观和亮度因而局限于一定应用领域,故而常常缺乏吸引力。
因此,激光焊接作为一种能较好克服这些缺点的新方法正日益受到重视。在激光焊接中,激光透过透射树脂材料辐照到附着在该树脂材料上的吸收性树脂材料上。积聚在该吸收性树脂材料的接触部分上的激光能量加热并熔化该接触部分,同时透射树脂材料通过传热也被加热和熔化。该操作的结果是,树脂材料容易并牢固地接合在一起。
激光焊接的另一个好处是它给被连接制品的形状设计提供越来越大的选择自由度,因为为熔融/粘结最终产品所需要的能量是以非接触方式提供的。
几种重要的激光焊接方法依靠Nd:YAG激光器(或简称为YAG激光器)或二极管激光器作为激光束源,这些激光器发射近红外区的光。二极管激光器技术近年来已变得特别先进,且高输出功率的二极管激光器可以较低成本获得。
许多材料可得益于采用此种激光器的焊接技术。例如,聚乙烯树脂、聚丙烯树脂、聚苯乙烯树脂、聚碳酸酯树脂、丙烯酸类树脂和尼龙树脂已证明是激光焊接的有效候选材料。可用于激光焊接的热塑性树脂组合物例如描述在日本公开(Koukoku)专利号62-49850和日本公开专利号5(93)-42336中。与激光焊接有关的其他树脂组合物描述在美国专利5,893,959中,其中,碳黑或尼格洛辛用作热塑性树脂的着色剂。
围绕尼龙树脂的激光焊接曾做过许多工作。在传统激光焊接中,激光束穿透靠近激光束源放置的激光-透射制品,并大部分在与该激光-透射制品相接触地放置的激光-吸收制品中被吸收。这导致相邻部分熔融并接合在一起。然而,一直使用非着色的树脂作为透射树脂材料。此种材料的使用限制了材料在汽车工业和电气/电子工业中要求各种颜色的制品方面的应用。尤其重要的是,这些领域中使用的黑色材料目前尚未满意地普遍采用传统激光焊接操作。另外,有人建议,黑色颜料可经过稀释并用于透射树脂的部分中或甚至采用较薄形状的材料来提高透射率。然而,此种做法不能保证制成零件的满意外观且零件设计的灵活性大受限制。还有一些其他例子,建议将碳黑加入到吸收性树脂中作为解决办法。然而,此种方法的细节尚未完全搞清或不奏效。
本发明提供一种热塑性树脂组合物,该组合物能提供对红外区波长激光束透明、呈黑色的模塑制品。作为另一特征,本发明提供基本均匀黑色视觉印象与主要依靠加入黑染料而呈黑色并吸收激光束的不透明制品借助激光束焊接在一起的组合。这些材料的优点在于,具有符合汽车零件、电气/电子元件、机械零部件以及其他许多领域所要求的优异和均衡耐热与机械性能。本发明这些以及其他目的、特征和优点,在研读了本发明下面的描述以后将会更好地理解。

发明内容
本发明为达到上述目的提供一种激光焊接用的制造的树脂产品,包括含激光-透射黑着色剂的树脂部分和含激光-吸收黑着色剂的树脂部分,且其中激光被用来熔融粘合这两种树脂部分的接触表面的一部分或全部。
提供一种激光焊接用的制造的树脂产品,它包含透射激光束的第一树脂部分,含有吸收小于700nm波长可见光并透射800nm~1200nm波长激光束的激光束-透射黑着色剂;以及吸收激光束的第二树脂部分,含有激光束-吸收黑着色剂,其中所述第一树脂部分借助透过所述第一树脂部分并被吸收在所述第二树脂部分中的激光束接合到所述第二树脂部分上。
还提供一种激光-透射用树脂组合物,其透射速率比(T激光-透射黑树脂/T自然树脂)是0.5~1.2,指的是在1064nm和940nm,该激光-透射用、含黑着色剂树脂组合物的透射速率,与激光-透射用、不含所述黑着色剂的树脂组合物(自然树脂)的透射速率进行比较时。
并且,本发明为达到上述目的提供一种激光-吸收用树脂组合物,其透射速率比(T激光-吸收黑树脂/T自然树脂)是0~0.2,指的是该激光-吸收用、含黑着色剂树脂组合物的透射速率,与激光-吸收用、不含所述黑着色剂的树脂组合物(自然树脂)的透射速率进行比较时。
附图简述本发明在参考这里的附图之后将变得更容易理解。大致地说,这些附图描绘一种激光焊接试验方法,其中测定借助激光焊接焊接在一起的激光-透射(透明)制品与激光-吸收(不透明)制品之间的焊接强度。


图1(A)画出实施例37~49和比较例50的激光焊接试验试样的形状和尺寸。
图1(B)是实施例37~49和比较例50的激光焊接试验用、彼此靠近放置的试片的透视图,以及试样与激光束之间的关系。
图2(A)画出实施例24~28,30~31以及比较例29、32~36的激光焊接试验试样的形状和尺寸。
图2(B)是实施例24~28,30~31以及比较例29、32~36的激光焊接试验用、彼此靠近放置的试样的透视图,以及试样与激光束之间的关系。
具体实施例方式
可用于焊接本发明模塑树脂产品的激光器可以是任何在近红外区发射光的激光器。具体地说,优选发射光波长介于800~1200nm的激光器,尤其优选二极管激光器和YAG激光器。激光器可单个使用或者彼此组合起来使用,正如激光器操作领域技术人员所熟悉的。激光器的发射可以是连续的或者是脉冲的,优选连续发射的。
关于进行激光焊接的树脂材料,可提供一种激光-透射的,和另一种激光-吸收的树脂材料。一股激光透过透射性树脂材料照射到附着在它上的吸收性树脂材料上,该激光的能量便积聚在吸收树脂材料的接触表面,从而加热和熔化该接触区域。透射树脂材料通过传热也被加热/熔化,致使树脂材料轻易和牢固地接合在一起。激光可直接照射焊接区域,或者可利用光学设备如镜子或光纤引导到接触区域。这些以及其他技术可斟酌地用于各个焊接操作中并由该领域技术人员选择。
激光强度、密度和辐照面积应选择为能恰当地实现粘合表面的加热和熔融。这些参数都应调节到可获得一种具有符合目标用途所要求强度的粘合。倘若它过弱,将无法实现充分加热熔化。反之,若它过强,则可能诱导树脂的降解。
本发明涉及规定剂量激光束聚焦并透过两个彼此接触放置的模塑制品(分别为激光-透射和吸收)的接合部使之熔化并粘结。如果有多个点、线和面需要焊接,则激光可顺序地移动以照射粘结表面,或者可使用多个激光源同时地照射。
适合用于激光焊接的模塑树脂产品可通过任何方法获得,包括挤塑和注塑。唯一的要求是,由所用激光-透射树脂制造的模塑产品与由所用激光-吸收树脂制造的模塑产品紧密接触。必要的话,可在粘结表面进一步加压。
适合激光焊接的粘结树脂产品也可以是2个部分以上的组合。
例如,本发明适用于要求在一次激光焊接操作中焊接2个以上部分的操作,或者通过依次部分地实施激光焊接而焊接成复杂构型的制品。
透射树脂和吸收树脂可以是相同或不同的树脂。
该方法也适合配合或用来替代其他粘合方法地使用。
例如,打算接合在一起的诸材料部分以及在除激光焊接以外的粘结技术不能使用(由于其构型或尺寸等原因)的情况都可采用激光焊接。
作为激光焊接用模塑树脂的树脂可以是任何树脂,只要它们是热塑性树脂。聚酰胺树脂和聚酯树脂,从耐热和透射性能考虑是优选的,尽管其他热塑性树脂,包括聚碳酸酯树脂,也可单独或彼此组合使用或者与上面优选的那些树脂组合使用。
适用于本发明的聚酰胺树脂的几个例子包括,二羧酸与二胺的缩合产物、氨基羧酸的缩合产物以及环状内酰胺的开环聚合产物。可用于这方面用途的二羧酸的例子包括己二酸、壬二酸、癸二酸、十二烷二酸、间苯二甲酸和对苯二甲酸。合适的二胺的例子包括四亚甲基二胺、六亚甲基二胺、八亚甲基二胺、九亚己基二胺、十二亚甲基二胺、2-甲基五亚甲基二胺、2-甲基八亚甲基二胺、三甲基六亚甲基二胺、双(对氨基环己基)甲烷、间苯二甲胺和对苯二甲胺。作为氨基羧酸的例子,可使用11-氨基十二烷酸。有用的环状内酰胺的例子包括己内酰胺和月桂内酰胺。缩合产物和开环聚合产物的具体例子包括脂族聚酰胺如尼龙6、尼龙66、尼龙46、尼龙610、尼龙612、尼龙11、尼龙12;半-芳族聚酰胺如聚己二酰间苯二甲胺(尼龙MXD-6)、聚对苯二甲酰六亚甲基二胺(尼龙6T)、聚间苯二甲酰六亚甲基二胺(尼龙6I)和聚对苯二甲酰九亚甲基二胺(尼龙9T),以及这些聚合物的共聚物和混合物。有用的共聚物的例子包括尼龙6/66、尼龙66/6I、尼龙6I/6T和尼龙66/6T。
技术上已知有许许多多常用聚酯模塑组合物可用于本发明实施中与着色剂掺混。这些包括通常为二羧酸与二醇的缩合产物的聚合物。二羧酸可选自己二酸、壬二酸、癸二酸、十二烷二酸、对苯二甲酸、间苯二甲酸、萘二甲酸和联苯二甲酸;二醇可选自乙二醇、丙二醇、丁二醇、己二醇、新戊二醇、环己二醇和双酚A。优选的聚酯包括聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丙二醇酯(3GT)、聚对苯二甲酸丁二醇酯(PBT)、聚2,6-萘二甲酸乙二醇酯(PEN)、聚对苯二甲酸环己烷二甲醇酯(PCT)和它们的共聚物和混合物。作为共聚物的例子,某些二羧酸或某些二醇可加入到缩合产物中。聚酯聚合物中可共聚少量诸如1,3,5-苯三酸、偏苯三酸、1,2,4,5-苯四酸、甘油和季戊四醇之类具有3个以上官能团的组分。另外的其他聚合物包括聚碳酸酯,也可存在,只要本发明组合物的根本特征基本不变。
在激光焊接用的制造的树脂产品中所用激光-透射用树脂组合物至少包含激光-透射黑着色剂和热塑性树脂。
激光-透射黑着色剂在透射用树脂组合物中的加入量介于0.01~15wt%,优选0.05~5wt%,以热塑性树脂为100wt%计。
本发明用激光-透射黑着色剂显示在可见光区(400~700nm)的吸收并具有从二极管激光器到近YAG激光器区间(800~1200nm)的透射性能。
所有在可见光区(400~700nm)显示部分吸收并具有从二极管激光器到近YAG激光器区间(800~1200nm)透射性能的染料均可用作上面提到的黑着色剂。作为例子,可通过二或更多种此类具有可见光区吸收(能力)的单一结构染料的掺混,获得在可见光区具有吸收的混合黑色染料。
有许多可用于本发明的混合染料组合的例子。例如,蓝染料、红染料和黄染料的组合;绿染料、红染料和黄染料的组合;蓝染料、绿染料和红染料以及黄染料的组合;以及绿染料、紫染料和黄染料的组合,均可使用。然而,每种染料的加入比例应根据染料色调、所用树脂和采用的浓度(或树脂厚度)适当调节。一般而言,显示蓝、紫和绿着色效果的染料可作为主要组分以产生黑色染料。它们可一种或两种地使用,并且可在黑色染料中占到50%以上。
尤其重要的是,激光-透射用黑着色剂显示近YAG激光区间的高透射性能并且此时透射率比(T激光-透射黑树脂/T自然树脂)是0.5~1.2,优选0.8~1.2。这发生在当该激光-透射用含黑着色剂树脂组合物在1064mm的透射速率与激光-透射用不含所述黑着色剂的树脂组合物(自然树脂)的相应透射速率进行比较时。
上述激光-透射用树脂组合物的透射率优选介于940~1064nm。
特别重要的是,当选择蒽醌蓝-紫染料并与至少一种在上述蒽醌染料的可见光区以外的可见光区吸收的染料进行掺混时,所获得的混合黑着色剂显示在二极管激光器区间的高透射。在此种情况下,透射率比(T激光-透射黑树脂/T自然树脂)将大于0.5,优选0.8~1.1,这是指在940nm,该激光-透射用含黑着色剂树脂组合物的透射速率与激光-透射用不含所述黑着色剂的树脂组合物(自然树脂)的透射速率进行比较时。因此,它适合用二极管激光器进行激光焊接。
作为获得激光-透射用黑着色剂的染料的例子,可使用单偶氮络合染料、蒽醌染料、紫环酮(perinone)染料和喹啉酮染料。在本发明中,这些染料可使用单一一种或者组合起来使用。
通过改变上述蒽醌染料的结构,可显示各种不同的颜色,例如黄、红、蓝、紫和绿色,并且它们可单一一种或以二或更多种染料的组合使用。通过采用上述蒽醌染料的蓝色、紫色或绿色(染料)作为较长波长一侧可见光的染料,并混入至少一种短波长区可见光的染料,可获得从二极管激光器到近YAG激光器整个区间(800~1200nm)具有优异透射性能的黑着色剂。但是,每种染料的加入比例应根据染料的色调、所用树脂和所用浓度(或树脂厚度)进行适当调节。
作为优选配方的例子,可使用一种包含至少一种蒽醌蓝或绿染料和紫环酮(perinone)红染料的黑着色剂以及一种含至少一种蒽醌蓝或绿染料和单偶氮络合红染料的黑着色剂。上述配方可包含黄染料,优选蒽醌黄染料。
蒽醌染料的具体例子如下。下面这些不过是可使用的更宽染料选择范围的代表而已绿染料C.I.溶剂绿3、20、22、23、26、28、29蓝染料C.I.溶剂蓝11、13、14、35、36、59、63、69、94、132,C.I.还原蓝4、6、14紫染料C.I.溶剂紫12、13、14、31、34红染料C.I.溶剂红52、111、114、152、155黄染料C.I.溶剂黄163,C.I.还原黄1、2、3通过改变上述单偶氮络合染料的结构,可显示各种不同的颜色,例如黄、红、蓝、紫和黑,并且它们可单一一种或以二或更多种染料的组合使用。上述单偶氮络合染料具有高耐热和耐光牢度,并且配合热塑性树脂的模塑性能和色调极佳。例如,由下式(a)代表的单偶氮络合染料可通过A-N=N-B单偶氮染料的金属化来制取。A-N=N-B单偶氮染料是通过在A组分上实施量氮化和在B组分上实施偶合制取的化合物。当吡唑啉酮衍生物或N-乙酰乙酰苯胺衍生物用作B组分时,可获得黄-红单偶氮络合染料,而当用萘酚衍生物作为B组分时,则获得蓝-黑单偶氮络合染料。单偶氮络合染料当采用萘酚作为B组分时,在近YAG激光器(1000~1200nm)区间显示高透射性能。换句话说,在整个近YAG激光器区间(1000~1200nm)具有极佳透射性能的黑着色剂可单独采用上述单偶氮络合染料获得,或者将它与至少一种在较短波长具有吸收峰同时又在800~1200nm范围具有良好透射性能的染料混合来获得。然而,每种染料的加入比例应根据染料的色调、所用树脂和所用浓度(或树脂的厚度)进行适当调节。
式(a)在该式中,A代表芳族残基,任选地具有取代基,B代表吡唑啉酮衍生物残基或N-乙酰乙酰苯胺衍生物残基基团或萘酚衍生物残基基团,任选地具有取代基。M是金属,P+是阳离子,q是0~2的整数,K是0~2的整数。
作为上述单偶氮络合染料的相反离子P+,可采用基于H+、NH4+、碱金属(Na、K等)的阳离子,基于有机胺(脂族伯胺、脂族仲胺、脂族叔胺)的阳离子,以及有机季铵离子。
作为上述单偶氮络合染料的中心金属M,可采用各种各样的金属。作为较优选的,可采用具有二价~四价原子价的金属。作为具体例子,可使用Zn、Sr、Cr、Cu、Al、Ti、Fe、Zr、Ni、Co、Mn、B、Si和Sn。
单偶氮络合染料的具体例子如下。下面这些不过是可使用的更宽染料选择范围的代表而已黑染料C.I.溶剂黑21、22、23、27、28、29、31,C.I.酸性黑52、69、99蓝染料C.I.酸性蓝167紫染料C.I.溶剂紫21红染料C.I.溶剂红8、83、84、121、132,C.I.酸性红215、296橙染料C.I.溶剂橙37、40、44、45,C.I.酸性橙76黄染料C.I.溶剂黄21、61、81,C.I.酸性黄59、151紫环酮(Perinone)染料是具有优异热稳定性的耐久染料并具有配合热塑性树脂的出色加工性能和色调。显示红色的此种染料尤其有用,因为具有良好牢度的红色染料非常少。
可使用各种各样的紫环酮(Perinone)染料,它们当中有紫染料C.I.溶剂紫29红染料C.I.溶剂红135、162、178、179,C.I.还原红7橙染料C.I.溶剂橙60、78,C.I.还原橙15上述紫环酮(Perinone)染料和颜料当中,优选的染料根据它们在热塑性树脂中的溶解度和分散性能来确定。例如,当染料以粉末形式与树脂(粒料)在混合机中混合,然后此种混合物再注塑制成试样时,正如各个实施例中所讨论的,可观察到,染料能很好地溶解和分散在该树脂中。
喹啉并酞酮(quinophthalone)染料具有出色的光亮外观,能产生鲜艳的黄色。
作为有用的喹啉酮类型染料的具体例子,可采用黄染料C.I.溶剂黄33和157。
优选的是,本发明所使用的着色剂含无机盐尽可能少。在本发明所用染料的合成方法中,反应期间常常生成无机盐。树脂组合物中着色剂所含无机盐杂质将抑制晶体的生长。当无机盐含量很高时,模塑产品特别容易具有裂纹并且机械性能恶化。因此,优选的是,尽可能通过反应后的处理除掉无机盐。作为上面提到的无机盐的例子,可举出碱金属盐(锂、钠、钾等)或碱土金属(钡、钙、锶等)的氯化物、硫酸铅、氢氧化物。
优选的是,上面提到的无机盐的含量可低于2%,更优选低于1%或0.5%。
必须除掉在本发明中作为着色剂使用的染料材料中的金属,并尽可能彻底除掉反应期间生成的盐和使用的催化剂,优选使用去离子水,因为已从中去除了工业上或自来水中的金属,以便防止钙或铁造成的污染。具体地说,钙应低于5000ppm,更优选低于3000ppm。
在本发明中用于吸收部分的黑着色剂包含一种或多种染料或颜料,它们在可见光波长区间不透明并且其中至少一种吸收介于约800nm~约1200nm波长区间的激光。
技术上已知的许多激光-吸收化合物都可用于本发明中。代表性的例子包括碳黑、吖嗪化合物、酞菁化合物、聚甲炔化合物(花青化合物、吡喃鎓化合物、硫代吡喃鎓化合物、squalilium化合物、克酮鎓(croconium)化合物、薁鎓(azulenium)化合物)、diinmonium化合物、二硫醇金属络合盐化合物(M=Ni、Fe等)、靛苯胺金属络合化合物和巯基萘酚金属络合盐化合物。优选的化合物是碳黑、吖嗪化合物(尼格染料、苯胺黑)和酞菁型化合物及其混合物。
作为在可见光区间(400~700nm)以及从二极管激光器到近YAG激光器区间(800~1200nm)具有吸收能力的染料或颜料的例子,可采用碳黑、尼格洛辛化合物和苯胺黑。上述染料或颜料可将树脂着色呈黑色、能高度吸收激光并具有优异的激光加热焊接性能。然而,每种染料的加入比例应根据染料的色调、所用树脂和所用浓度(或树脂获得)进行适当调节。染料及其用量的选择可根据目标用途和与激光焊接有关的性能来确定。
吸收用树脂组合物中激光-吸收着色剂的用量介于0.01~15wt%,优选0.05~5wt%,以热塑性树脂为100wt%。当激光-吸收着色剂的用量小于树脂组合物的0.01%时,将不能产生足够热量和熔融并因此无法实现焊接。在树脂组合物中采用过多激光-吸收黑着色剂不符合成本效益原则,且产生的过多热量将导致树脂组合物的降解。
在本发明激光-吸收用树脂组合物中,优选的是,透射速率比(T激光-吸收黑树脂/T自然树脂)是0~0.2,指该激光-吸收用含黑着色剂树脂组合物的透射速率与激光-吸收用不含所述黑着色剂的树脂组合物(自然树脂)的透射速率进行比较时。
本发明激光-吸收用树脂组合物和激光-透射用树脂组合物可任选地包含适量各种各样纤维增强材料。玻璃纤维优选用于增强具有透明要求的树脂。玻璃纤维、含碱玻璃、低碱玻璃和无碱玻璃均可使用。优选的玻璃纤维是名目繁多的E玻璃和T玻璃。适合使用的玻璃纤维长度和直径分别为2~15mm和1~20μm。对玻璃纤维的形状没有特定限制,例如粗纱纤维和切碎纤维都可使用。这些玻璃纤维可单独也可组合起来使用。纤维增强材料的用量优选介于5~120wt%,相对于每100wt%热塑性树脂而言。如果该用量低于5wt%,则玻璃纤维将难以产生足够增强作用,而如果超过120wt%,则加工性能很容易下降。优选采用5~100wt%的水平,最优选15~85wt%。
本发明激光-吸收用树脂组合物和激光-透射用树脂组合物可任选地与各种各样添加剂掺混,若需要的话。作为此种添加剂的例子,可在其中加入辅助着色剂、分散剂、填料、稳定剂、增塑剂、改性剂、紫外吸收剂或光稳定剂、抗氧化剂、抗静电剂、润滑剂、脱模剂、结晶促进剂、成核剂、阻燃剂和改进耐冲击的弹性体。这些材料按照本领域技术人员很容易理解的常规技术和用量加入。
本发明激光-吸收用树脂组合物和激光-透射用树脂组合物可采用同样也是本领域技术人员懂得的常规掺混方法通过诸原料的掺混获得。这些掺混组分一般地优选尽可能制成均匀形式。作为具体例子,所用的材料利用诸如掺混机、捏合机、密炼机、辊筒挤出机之类的混合机混合至均一,从而制成树脂组合物。或者,部分材料在混合机中混合,再加入其余的材料,并进一步混合至均一,结果获得树脂组合物。诸材料还可预先干掺混,然后用加热的挤塑机熔融并捏合直至均一,并挤出成为针状,随后将它们切断到要求的长度而变成着色的粒料(称之为着色掺混料)。
本发明激光-吸收用树脂组合物和激光-透射用树脂组合物的母料,可通过任何本领域技术人员懂得的常规方法序列获得。例如,它们可通过作为母料用基础材料的热塑性树脂粉末或掺混物在诸如转鼓或超级混合机(super mixer)之类的混合机中进行混合,随后采用挤塑机、间歇捏合机或辊筒捏合机加热并熔融粗颗粒的粒料来制取。还有,例如,它们可通过在母料用合成或液态热塑性树脂中加入着色剂,随后除掉溶剂从而生产出母料来获得。
本发明激光-吸收用树脂组合物和激光-透射用树脂组合物的模塑可采用各种各样常用方法来实施。例如模塑可采用诸如挤塑机、注塑机和辊炼机之类的制造机器,使用着色粒料来实施。模塑也可通过具有透明性的热塑性树脂粒料或粉末、粉末状着色剂和各种各样根据需要加入的添加剂在适当混合机中的混合来实施。还有,例如,着色剂可加入到含聚合催化剂的单体中从而通过此种混合物的聚合制成要求的热塑性树脂,随后采用适当方法实施其模塑。作为模塑方法的例子,可采用常用的模塑方法,例如,注塑、挤塑、压塑、发泡模塑、吹塑、真空模塑、注坯吹塑、滚塑、压延模塑和溶液铸塑。
在这里的图1A和2A中,画出了这些实施例的激光焊接试验中使用的下试片10。在试片10中制成如图示尺寸的缺口。上试片9具有相同构造和尺寸。在图1B和2B中,画出上试片9与下试片10的接合,以及激光器11形成焊缝的移动(沿箭头方向)。
实施例本发明在参考了下面的实施例之后将获得更好的理解。这些实施例不过是在本发明范围内所想到的组合物宽广范围的举例说明而已。
实施例1~8描述激光-透射用黑色树脂组合物。
实施例1在本实施例及其下面的实施例2~5以及9~12中,未增强的尼龙6(由杜邦公司按商品名ZYTEL7301供应)利用真空干燥烘箱在120℃干燥8h以上。然后,诸材料按比例分配并根据每个实施例中规定的具体配方称重。上面提到的实施例中每一个的配制物各自在不锈钢转鼓中搅拌并混合1h。
实施例1的配方如下尼龙6 ....400g下式(1)单偶氮络合黑染料(激光-透射用黑着色剂)....0.80g式(1) 在本实施例以及所有其他实施例2~5中,混合物随后利用Kawaguchi Steel K.K.生产的K50-C注塑成注塑试样(其尺寸是48mm×86mm×3mm),其中机筒温度设定在250℃,模具温度在60℃。观察到良好和均一黑色外观和表面光泽,没有样品的颜色阴影。
实施例2
采用以下配方尼龙6....400g单偶氮络合黑染料 ....0.80g在本实施例中,所选择的络合染料是激光-透射用混合黑着色剂,具有1∶1重量比的下式(2)黑染料和下式(3)黑染料式(2) 式(3) 实施例3采用以下配方尼龙6 ....400g单偶氮络合黑染料 ....0.80g在本实施例中,所选择的络合染料是激光-透射用混合黑着色剂,具有1∶1重量比的下式(4)黑染料和下式(5)橙染料式(4)
式(5) 实施例4采用以下配方尼龙6 ....400g下式(6)的蒽醌蓝染料...0.40g下式(7)的紫环酮红染料 ...0.24g下式(8)的蒽醌黄染料...0.16g式(6)
式(7) 式(8) 实施例5采用以下配方尼龙6 ....400g下式(9)的蒽醌蓝染料 ...0.53g式(7)的紫环酮红染料 ...0.18g下式(10)的蒽醌黄染料 ...0.09g式(9) 式(10)
实施例6在本实施例和实施例7以及13中,未增强的聚对苯二甲酸乙二醇酯(PET)(由对苯二甲酸与乙二醇制备,其特性粘度是0.85,在25℃、以1%在1/1重量比苯酚/二氯苯混合物中的溶液测定)利用真空干燥烘箱在140℃下干燥3h以上。然后材料按照各自在本实施例中规定的具体配方分配和称重。每种配方产物在不锈钢转鼓中搅拌并混合1h。
实施例6的配方如下PET....400g式(1)的单偶氮络合黑染料....0.53g下式(11)的单偶氮络合红染料 ....0.18g下式(12)的单偶氮络合橙染料 ....0.09g式(11)
式(12) 混合物随后利用Kawaguchi Steel K.K.生产的K50-C注塑成注塑试样(其尺寸是48mm×86mm×3mm),其中机筒温度设定在280℃,模具温度在60℃。观察到良好和均一黑色外观和表面光泽,没有样品的颜色阴影。
实施例7采用以下配方PET....400g式(6)的蒽醌蓝染料 ...0.40g式(7)的紫环酮红染料...0.24g式(8)的蒽醌黄染料 ...0.16g实施例8在本实施例和实施例14中,未增强的聚对苯二甲酸丁二醇酯(PBT)(由对苯二甲酸与1,4-丁二醇制备,其特性粘度是1.0,在25℃、以1%在1/1重量比苯酚/二氯苯混合物中的溶液测定)利用真空干燥烘箱在140℃下干燥3h以上。然后材料按照各自在本实施例中规定的具体配方分配和称重。每种配方产物在不锈钢转鼓中搅拌并混合1h。
实施例8的配方如下PBT....400g式(6)的蒽醌蓝染料 ...0.40g式(7)的紫环酮红染料...0.24g式(8)的蒽醌黄染料 ...0.16g混合物随后利用Kawaguchi Steel K.K.生产的K50-C注塑成注塑试样(其尺寸是48mm×86mm×3mm),其中机筒温度设定在260℃,模具温度在60℃。观察到良好和均一黑色外观和表面光泽,没有样品的颜色阴影。
试验程序(1)透射率的测定用于紫外-可见-近红外区间的60φ积分球装置放入到分光光度计(Hitachi公司产品,U-3410型)中,并将试样装入,继而测定波长λ=400~1200nm的透射率T。
在本实施例中,用激光器聚焦在透射率T上,所采用的激光器调节在λ=940nm(二极管激光器)和λ=1064nm(YAG激光器),用于评估的尺度基于以下透射率比。
TA=T940nm/T1064nmTB=T940nm/T自然树脂TC=T1064nm/T自然树脂(2)外观试验和评估针对外观,采用双功能透射-反射强度仪(McBase公司产品,商品名TR-927)测定试样的反射率(OD值)。具有较高OD值的试样板被判定为具有较好表面光滑性和较高光泽。
对实施例1~8的试样进行了透射率和外观测定和评估。试验结果总括在下表I中。
表I

实施例9~14描述激光-吸收用黑色树脂组合物实施例9采用以下配方尼龙6 ....400g碳黑(三菱Kagaku公司产品,产品名#960) ....0.80g在本实施例和以后的实施例10~12中,滚混操作后,混合物在250℃熔融并混合,并采用Bent型挤出机(由Enpler工业公司按商品名E30SV市售供应)切断成规定长度(2~3mm)从而制成黑粒料,然后该粒料在干燥器中、80℃干燥3h。继而,粒料利用Kawaguchi Steel K.K.生产的K50-C注塑成注塑试样(其尺寸是48mm×86mm×3mm),其中机筒温度设定在250℃,模具温度在60℃。观察到良好和均一黑色外观和表面光泽,没有样品的颜色阴影。
实施例10采用以下配方尼龙6....400g尼格洛辛型染料(东方化学工业公司产品,商品名Nigrosine baseSAP) ....0.80g实施例11采用以下配方尼龙6....400g碳黑(三菱Kagaku公司产品,产品名#960) ....0.60g尼格洛辛型染料(东方化学工业公司产品,商品名Nigrosine baseEX) ....0.20g实施例12采用以下配方尼龙6....400g碳黑(三菱Kagaku公司产品,产品名#960) ....0.08g尼格洛辛型染料(东方化学工业公司产品,商品名Nigrosine baseEX) ....0.48g苯胺黑(Noma Kagaku公司产品,产品名Diamond Black S)....0.24g实施例13采用以下配方
PET....400g碳黑(三菱Kagaku公司产品,产品名#960) ....0.08g在本实施例中,滚混操作以后,混合物采用Bent型挤出机(由Enpler工业公司按商品名E30SV市售供应)在280℃熔融并混合,并切断成规定长度(2~3mm)从而制成黑粒料,然后该粒料在干燥机中、140℃下干燥3h。继而,粒料利用Kawaguchi Steel K.K.生产的K50-C注塑成注塑试样(其尺寸是48mm×86mm×3mm),其中机筒温度设定在280℃,模具温度在60℃。观察到良好和均一黑色外观和表面光泽,没有样品的颜色阴影。
实施例14采用以下配方PBT ....400g碳黑(三菱Kagaku公司产品,产品名#960)....0.80g在本实施例中,滚混操作以后,混合物采用Bent型挤出机(由Enpler工业公司按商品名E30SV市售供应)在270℃熔融并混合,并切断成规定长度(2~3mm)从而制成黑粒料,然后该粒料在干燥机中、140℃下干燥3h。继而,粒料利用Kawaguchi Steel K.K.生产的K50-C注塑成注塑试样(其尺寸是48mm×86mm×3mm),其中机筒温度设定在260℃,模具温度在60℃。观察到良好和均一黑色外观和表面光泽,没有样品的颜色阴影。
对实施例8~14的试样进行了透射率和外观测定和评估。试验结果总括在下表II中。
表II

*E指数实施例15~23描述激光焊接用树脂制造的模塑产品。
对上面获得的实验树脂,采用YAG激光器和二极管激光器进行了激光焊接。
YAG激光器条件Nd:YAG激光器(Olion 510,1064nm,连续式)以4W输出辐照3mm直径试样3s。
二极管激光器条件二极管激光器(SDL-FD25,820nm,连续式)以4W输出辐照3mm直径试样10s。
关于激光可焊接性,在实施例15~23的每一个实施例中,两种对此种激光束分别为透明和不透明并由下表III给出的组合物制成的树脂部件被焊接在一起后,以目测检查和评定。焊接试样经目测检查并将评定为OK,如果形成了粘合;或者NG(不合格),如果未粘合并脱开或者透明部件表面燃烧并损坏的话。
结果载于表III中。
表III

实施例24~28、30~31,比较例29、32~36未增强的尼龙66(由杜邦公司按商品名ZYTEL101供应)与染料和颜料按照表IV-1和IV-2所载数量进行干掺混。掺混的材料随后利用注塑机(Kawaguchi Steel K.K.生产的K50-C)注塑成激光焊接用注塑试样,其尺寸如图2A所载,其中机筒温度设定在270℃,模具温度在65℃。用分光光度计(Hitachi公司产品,U-3410型)针对该模塑试样板的2-毫米厚区域测定940nm处的透光率。激光焊接是采用如图2B所示组合的2件试样进行的。实施例24~28、比较例29、实施例30~31以及比较例32~35每一个实施例用作下试片,并以比较例36作为上试片。二极管激光器(波长940nm,Rofin-Sinar激光器公司)以80W的激光功率和1m/min的速度辐照。焊接试样以目测检查,当沿整个试样形成均一粘合时则判定为OK,当两个试样板不粘合并脱开,当未沿试样板均一地形成粘合或者当透明部分的表面燃烧和损坏时则判定为NG。
表IV-1

*透射率比(T激光-吸收用黑树脂/T自然树脂)*E指数表IV-2

*透射率比(T激光-吸收用黑树脂/T自然树脂)*E指数实施例24~28,30和31,其透射率,按上面规定的透射率比表示,小于0.20,显示出激光可焊接性。然而,比较例29和32~35,由于透射率大于0.20,未表现出激光可焊接性。
实施例37~49、比较例50
未增强的尼龙66(由杜邦公司按商品名ZYTEL103FHS供应)与染料和颜料按照表IV所载数量进行干掺混。掺混的材料利用注塑机(Sumitomo Juki 75T)注塑成激光焊接用注塑试样,其尺寸如图1A所载,其中机筒温度设定在270℃,模具温度在65℃。激光焊接是采用如图1B所示组合的2件试样进行的。实施例37~49每一个实施例用作下试片,并以比较例50作为上试片。二极管激光器(波长940nm,Rofin-Sinar激光器公司制造)以120W的激光功率和各种不同速度辐照。焊接试样的抗张强度在Autograph(Shimazu Seisakusho制造)上通过以5mm/min的速度拉脱并记录其最高载荷而测出。当激光焊接强度大于70时,我们就认为它可用于工业焊接。
表V

尼格洛辛型染料1*Nigrosine base SAP,东方化学工业公司生产尼格洛辛型染料2*Cramity 81,东方化学工业公司生产。
权利要求
1.一种适用于吸收激光束的树脂组合物,它包含树脂和激光束-吸收黑着色剂,该黑着色剂包含至少一种选自碳黑、酞菁化合物、尼格洛辛染料和苯胺黑的黑着色剂,其透射率比T激光-透射用黑树脂/T自然树脂是0~0.2,其中将含所述激光束-吸收黑着色剂的所述树脂组合物的透射率与树脂本身的透射率进行比较。
2.权利要求1的组合物,其中所述激光束-吸收黑着色剂包含碳黑与尼格洛辛染料的混合物。
全文摘要
描述了一种新型和适合激光焊接用途的制造的树脂产品。这些产品包含,含有透射用黑着色剂的树脂部件和含有吸收用黑着色剂的树脂部件。
文档编号C08L101/00GK1827674SQ20051012724
公开日2006年9月6日 申请日期2001年11月13日 优先权日2000年11月13日
发明者R·科施达, Y·哈塔斯, R·哈亚施 申请人:纳幕尔杜邦公司, 东方化学工业公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1