一种聚乳酸/淀粉全生物基可降解复合材料及其制备方法

文档序号:3622358阅读:445来源:国知局
专利名称:一种聚乳酸/淀粉全生物基可降解复合材料及其制备方法
技术领域
本发明涉及复合材料及其制备领域,具体涉及一种聚乳酸/淀粉全生物基可降解复合材料及其制备方法。
背景技术
近些年,传统的石化基塑料正逐渐被称为“绿色材料”的可降解和可重复利用的生物基材料所代替。目前使用最为重要和广阔的可降解聚合物是脂肪族聚酯和蛋白质,比如聚乳酸(PLA)、聚(3-羟基丁酸酯)、聚(ε -己内酯)、淀粉等等。众多可生物降解材料中, PLA最为具有发展前景,这是因为PLA提供了好的机械性能(尤其是强度和模量),易加工和优异的可降解性。生物可降解PLA是乳酸的一种聚合物,其一般是通过环状丙交酯二聚体开环聚合来制备。目前,美国的NatureWorks、日本的三井化学、岛津、荷兰的Tate&Lyle 和中国的海正都已实现了聚乳酸的规模化生产。在消费市场方面,欧美政府已出台了相关法律法规限制非生物基塑料在包装袋和一次餐具等方面的使用,据调查2010年美国生物降解塑料的市场总值达到8. 45亿美元,而且预计在今后还会快速上升,可见市场前景广大。尽管如此,PLA的脆性和高价格抑制了它的应用和发展。因此,需要在PLA中添加增塑剂和便宜的填料来改善其韧性并降低其价格。淀粉对于环境友好型塑料如PLA是一种低成本、可降解和可重复利用的填料。然而,PLA和淀粉热动力学不相容,天然淀粉作为孤立的颗粒能够部分结晶,一般结晶度为 20% 45%。淀粉颗粒大分子之间存在许多的氢键,这削弱了淀粉大分子的移动,导致天然淀粉加工性差及很难分散到PLA基体中。在这种情况下,干燥淀粉加入到PLA中会增加 PLA基体的硬度,但是却会进一步增加PLA本身的脆性。传统的方法是通过加入增塑剂(一般为多元醇)如甘油、山梨醇及聚乙二醇等等来改善淀粉在PLA基体中的分散性,也有首先通过让PLA马来酸酐化,然后把马来酸酐化 PLA、淀粉及甘油熔融共混加工,虽然这样得到的PLA/淀粉复合材料的机械性能得到大大改善,但是多元醇在PLA基体中存在,很容易让PLA基体降解或者迁移到复合材料的表面, 从而导致这种复合材料在存储一段时间后其机械性能大大下降。公开号为CN101948613A的中国发明专利申请公开了一种全生物降解高韧性聚乳酸树脂的制备方法,先用聚乙二醇、马来酸酐改性玉米淀粉;然后,把改性玉米淀粉与PLA 进行熔融共混,形成PEG增塑改性PLA/淀粉复合体系。但是,通过马来酸酐接枝聚乙二醇(PEG)后再改性淀粉,接枝率是非常低的,虽然游离的PEG能够暂时富集在淀粉颗粒的表面,但是最终还是会迁移,导致这种复合体系的力学性能下降,同时PEG不是天然可再生的,降解性能下降达不到全生物基塑料的标准。Michel A等人通过使用马来酸酐对PLA进行自由基接枝改性得到MA_g_PLA,然后把这种改性PLA(即MA-g-PLA)与使用甘油塑化的淀粉进行熔融共混得到MA_g_PLA/ GTPS复合材料,这种复合材料较之未通过接枝改性的PLA/GTPS复合材料展示了优异的拉伸性能。但是MA-g-PLA/GTPS复合材料中甘油存在会对PLA降解产生促进作用,从而导致MA-g-PLA/GTPS这种复合材料的性能在一定时间会下降(Michel A et al. Polymer. 2007, 48,270-280)。另外一种改变PLA/淀粉复合材料相容性的传统方法是加入偶联剂如甲苯二异氰酸酯、丙烯酸、缩水甘油酯,虽然小分子偶联剂的加入能够大大改善PLA/淀粉的相容性,但是其拉伸性能几乎得不到提高,且这些小分子偶联剂基本有毒,不利于这种改变PLA/淀粉复合材料在薄膜及其餐具中的应用。上述的改善淀粉在聚乳酸分散性和相容性的方法,存在醇解、增塑剂非生物基和偶联剂有毒等问题,不利于制备一种全生物基可降解、安全和无毒的PLA/淀粉复合材料。植物油在PLA的应用研究在近几年已有报道,研究主要来自美国苏明尼达大学的Hillmyer教授小组,如其小组的Willianm M通过在聚乳酸/大豆油复合体系中加入聚 (异戊二烯_b-丙交酯)共聚物来改善大豆油在PLA中的相容性得到了一种植物油增塑的全生物基材料(ffillianm M et al. Appliedmaterial & interfaces. 2009,1, 2390-2399)。 同时Willianm M还通过使用N-2-轻乙基马来酰乙胺(HEMI)对丙交酯进行开环聚合合成 HEMI-PLA,并对大豆油进行共轭化,然后把HEMI-PLA与共轭大豆油进行DA反应合成一种大豆油增塑的全生物基PLA树脂(Willianm M et al. Macromolecules. 2010,43, 2313-2321)。 由此可见,植物油能够作为一种增塑剂应用于PLA,但是必须通过反应增容或者增加相容剂改善其在PLA中的分散性。Hillmyer教授小组所做的工作主要集中在基础研究方面,而对于应用研究领域所见报道甚少,尤其是植物油增容改性PLA/淀粉体系。

发明内容
为了克服现有技术中存在的问题,本发明提供了一种安全无毒、可生物降解且机械性能优异的聚乳酸/淀粉全生物基可降解复合材料。一种聚乳酸/淀粉全生物基可降解复合材料,由以下重量百分比的原料制成聚乳酸55% 85%;环氧植物油2% 15%;酸酐接枝改性淀粉5% 36%。在聚乳酸基料中添加环氧植物油和酸酐接枝改性淀粉,一方面,三者特殊的分子结构组合在一起提高了该复合材料的机械性能,另一方面,在聚乳酸基料中添加酸酐接枝改性淀粉填料,可以一定程度上降低材料的成本。为了得到更好的发明效果,以下作为本发明的优选技术方案所述的聚乳酸为L型聚乳酸、D型聚乳酸或者LD混合型聚乳酸。相对L型聚乳酸、 D型聚乳酸而言,LD混合型聚乳酸作为基料时,该复合材料性能更优异。所述的环氧植物油为环氧花生油、环氧大豆油、环氧蓖麻油、环氧椰子油、环氧棕榈油、环氧亚麻油、环氧棉籽油、环氧玉米油、环氧葵花籽油、环氧松子油、环氧桐油中的一种或两种以上,用于增强该复合材料的柔韧性,以使制备的聚乳酸/淀粉全生物基可降解复合材料具有更好的力学性能。所述的酸酐接枝改性淀粉由酸酐接枝到淀粉上得到;所述的酸酐为马来酸酐、乙酸酐、戊二酸酐、正己酸酐、丙酸酐、异丁酸酐、正丁酸酐、硬脂酸酐、2-甲基琥珀酸酐、苯基琥珀酸酐、苯甲酸酐、五氟丙酸酐等中的一种;
所述的淀粉为绿豆淀粉、木薯淀粉、甘薯淀粉、红薯淀粉、马铃薯淀粉、麦类淀粉、 菱角淀粉、藕淀粉、玉米淀粉等中的一种。所述的聚乳酸/淀粉全生物基可降解复合材料,由以下重量百分比的原料制成所述的环氧植物油为环氧花生油;所述的酸酐接枝改性淀粉为马来酸酐接枝改性淀粉。更进一步优选,所述的聚乳酸/淀粉全生物基可降解复合材料,由以下重量百分比的原料制成所述的环氧植物油为环氧花生油;所述的酸酐接枝改性淀粉为马来酸酐接枝改性淀粉。从实施例的表征数据可以看出,该重量百分比条件下的三者组合在一起,该复合材料体现出非常优异的性能。所述的马来酸酐接枝改性淀粉的制备方法如下将淀粉和马来酸酐加入到N,N-二甲基乙酰胺中,采用甲苯或者丁酮作为带水剂, 在100°C 130°C反应O. 5h 2. 5h,反应停止后去除上层液体,再经洗涤和干燥后得到马来酸酐接枝改性淀粉。所述的淀粉与马来酸酐的重量比为5 25 I。该条件下制备的马来酸酐接枝改性淀粉能够大大改善淀粉与聚乳酸的相容性,使得本发明聚乳酸/淀粉全生物基可降解复合材料表现出更优异的力学性能。所述的洗涤采用的洗涤溶剂为丙酮、乙酸乙酯或者丁酮,保证了洗涤的效果。本发明还提供了一种聚乳酸/淀粉全生物基可降解复合材料的制备方法,制备简单、易于控制、可操作性强、易于实施。所述的聚乳酸/淀粉全生物基可降解复合材料的制备方法,包括以下步骤将聚乳酸、环氧植物油和酸酐接枝改性淀粉充分混合均匀,得到混合后的物料;再将混合后的物料加入至双螺杆挤出机中熔融共混后拉条、切粒,得到颗粒状混合树脂;将颗粒状混合树脂进行除水干燥处理,得到聚乳酸/淀粉全生物基可降解复合材料。所述的双螺杆挤出机的螺杆长径比为35 : I 45 : I ;所述的熔融共混的温度为 160 °C 185 °C。与现有技术相比,本发明具有如下优点本发明聚乳酸/淀粉全生物基可降解复合材料中,聚乳酸、环氧植物油和酸酐接枝改性淀粉,由于三者特殊的分子结构,在特定的条件下都可被微生物分解,属于完全可降解生物材料。由于在聚乳酸基料中添加了酸酐接枝改性淀粉和环氧植物油后,使得该聚乳酸/淀粉全生物基可降解复合材料的韧性有了大幅度的提高、延长了这种复合材料的储存时间并且大大降低了成本。聚乳酸环氧植物油酸酐接枝改性淀粉
55% 85% ; 2% 15% ; 5% 36% ;聚乳酸环氧植物油酸酐接枝改性淀粉
66% 80% ; 5% 10% ; 10% 26% ;
本发明聚乳酸/淀粉全生物基可降解复合材料通过实验制备出的拉伸样条和弯曲样条在存储相当长时间后依然能够具有优异的拉伸性能和弯曲性能,而且在添加高含量淀粉后该复合材料依旧具有很好的韧性,非常适合作为购物袋材料和一次性复合材料使用,可应用于制备生物降解薄膜、一次性餐具等领域,并且在多次使用后可被土壤中的微生物完全分解快速吸收,对环境污染小,具有很好的环境效益和广阔的应用前景。本发明聚乳酸/淀粉全生物基可降解复合材料的制备方法,该制备方法简单,易于控制,可操作性强,易于实施,生产成本低廉,生产效率高,易于工业化大规模生产,并且制备的复合材料能够应用于薄膜和一次性餐具等领域,具有很好的经济效益和广阔的应用前景。
具体实施例方式以下实施例和对比例进一步描述本发明,但本发明并不限于这些实施例。实施例I称取以下重量的原料干燥后的玉米淀粉(水分的重量百分含量为4. 1%,诸城兴贸玉米开发有限公司)60g,马来酸酐(国药试剂)2. 6g, N, N-二甲基乙酰胺(DMAc,国药试剂)IOOmL,甲苯(国药试剂)20mL,聚乳酸(Natureworks 4032D, LD混合型聚乳酸)80g,环氧花生油(阿拉丁试剂)10g。(I)马来酸酐接枝改性淀粉的制备将干燥后的玉米淀粉60g、马来酸酐2. 6g、IOOmL溶剂DMAc和20mL甲苯加入到 250mL三口烧瓶中,于130°C下机械搅拌lh,静止除去上层液体,然后加入丙酮搅拌洗去未反应的马来酸酐,静止除去上层有机溶剂,这样反复进行3次过滤,再用丙酮反复冲洗3次, 过滤后将滤饼放入真空干燥箱于80°C下干燥过夜(干燥12h),最后得到马来酸酐接枝改性淀粉(白色固体粉末);(2)聚乳酸/淀粉全生物基可降解复合材料的制备首先,将80g的PLA,IOg的环氧花生油和步骤⑴中的IOg马来酸酐接枝改性淀粉混合均匀,得到混合后的物料;然后将混合后的物料加入至双螺杆挤出机中熔融共混(混合后的物料依次经过温度分别为 160 °C, 170 °C, 175 °C, 180 V,185 °C, 175 °C, 170 °C, 160 V 的熔融共混区间)后拉条,切粒,得到颗粒状混合树脂;将颗粒状混合树脂进行除水干燥处理,得到聚乳酸/淀粉全生物基可降解复合材料。选用的双螺杆挤出机的螺杆长径比为 40 : I。实施例2称取以下重量的原料干燥后的玉米淀粉(水分的重量百分含量为4. 1%,诸城兴贸玉米开发有限公司)60g,马来酸酐(国药试剂)5. 4g, N, N-二甲基乙酰胺(DMAc,国药试剂)IOOmL,甲苯(国药试剂)20mL,聚乳酸(Natureworks 4032D, LD混合型聚乳酸)80g,环氧花生油(阿拉丁试剂)10g。(I)马来酸酐接枝改性淀粉的制备将干燥后的玉米淀粉60g、马来酸酐5. 4g、IOOmL溶剂DMAc和20mL甲苯加入到250mL三口烧瓶中,于130°C下机械搅拌lh,静止除去上层液体,然后加入丙酮搅拌洗去未反应的马来酸酐,静止除去上层有机溶剂,这样反复进行3次过滤,再用丙酮反复冲洗3次, 过滤后将滤饼放入真空干燥箱于80°C下干燥过夜(干燥12h),最后得到马来酸酐接枝改性淀粉(白色固体粉末);(2)聚乳酸/淀粉全生物基可降解复合材料的制备首先,将80g的PLA,IOg的环氧花生油和步骤⑴中的IOg马来酸酐接枝改性淀粉混合均匀,得到混合后的物料;然后将混合后的物料加入至双螺杆挤出机中熔融共混(混合后的物料依次经过温度分别为 160 °C, 170 °C, 175 °C, 180 V,185 °C, 175 °C, 170 °C, 160 V 的熔融共混区间)后拉条,切粒,得到颗粒状混合树脂;将颗粒状混合树脂进行除水干燥处理,得到聚乳酸/淀粉全生物基可降解复合材料。选用的双螺杆挤出机的螺杆长径比为 40 : I。实施例3称取以下重量的原料干燥后的玉米淀粉(水分的重量百分含量为4. 1%,诸城兴贸玉米开发有限公司)60g,马来酸酐(国药试剂)8. Og, N, N-二甲基乙酰胺(DMAc,国药试剂)IOOmL,甲苯(国药试剂)20mL,聚乳酸(Natureworks 4032D, LD混合型聚乳酸)80g,环氧花生油(阿拉丁试剂)10g。(I)马来酸酐接枝改性淀粉的制备将干燥后的玉米淀粉60g、马来酸酐8. 0g、IOOmL溶剂DMAc和20mL甲苯加入到 250mL三口烧瓶中,于130°C下机械搅拌O. 5h,静止除去上层液体,然后加入丙酮搅拌洗去未反应的马来酸酐,静止除去上层有机溶剂,这样反复进行3次过滤,再用丙酮反复冲洗3 次,过滤后将滤饼放入真空干燥箱于80°C下干燥过夜(干燥12h),最后得到马来酸酐接枝改性淀粉(白色固体粉末);(2)聚乳酸/淀粉全生物基可降解复合材料的制备首先,将80g的PLA,IOg的环氧花生油和步骤⑴中的IOg马来酸酐接枝改性淀粉混合均匀,得到混合后的物料;然后将混合后的物料加入至双螺杆挤出机中熔融共混(混合后的物料依次经过温度分别为 160 °C, 170 °C, 175 °C, 180 V,185 °C, 175 °C, 170 °C, 160 V 的熔融共混区间)后拉条,切粒,得到颗粒状混合树脂;将颗粒状混合树脂进行除水干燥处理,得到聚乳酸/淀粉全生物基可降解复合材料。选用的双螺杆挤出机的螺杆长径比为 40 : I。实施例4称取以下重量的原料干燥后的玉米淀粉(水分的重量百分含量为4. 1%,诸城兴贸玉米开发有限公司)60g,马来酸酐(国药试剂)8. Og, N, N-二甲基乙酰胺(DMAc,国药试剂)IOOmL,甲苯(国药试剂)20mL,聚乳酸(Natureworks 4032D, LD混合型聚乳酸)80g,环氧花生油(阿拉丁试剂)10g。(I)马来酸酐接枝改性淀粉的制备将干燥后的玉米淀粉60g、马来酸酐8. 0g、IOOmL溶剂DMAc和20mL甲苯加入到 250mL三口烧瓶中,于130°C下机械搅拌lh,静止除去上层液体,然后加入丙酮搅拌洗去未反应的马来酸酐,静止除去上层有机溶剂,这样反复进行3次过滤,再用丙酮反复冲洗3次, 过滤后将滤饼放入真空干燥箱于80°C下干燥过夜(干燥12h),最后得到马来酸酐接枝改性淀粉(白色固体粉末);(2)聚乳酸/淀粉全生物基可降解复合材料的制备首先,将80g的PLA,IOg的环氧花生油和步骤⑴中的IOg马来酸酐接枝改性淀粉混合均匀,得到混合后的物料;然后将混合后的物料加入至双螺杆挤出机中熔融共混(混合后的物料依次经过温度分别为 160 °C, 170 °C, 175 °C, 180 V,185 °C, 175 °C, 170 °C, 160 V 的熔融共混区间)后拉条,切粒,得到颗粒状混合树脂;将颗粒状混合树脂进行除水干燥处理,得到聚乳酸/淀粉全生物基可降解复合材料。选用的双螺杆挤出机的螺杆长径比为 40 : I。对比例I称取以下重量的原料干燥后的玉米淀粉(水分的重量百分含量为4. 1%,诸城兴贸玉米开发有限公司)60g,N, N-二甲基乙酰胺(DMAc,国药试剂)100mL,甲苯(国药试剂)20mL,聚乳酸 (Natureworks 4032D, LD混合型聚乳酸)80g,环氧花生油(阿拉丁试剂)10g。(I)改性淀粉的制备将干燥后的玉米淀粉60g、IOOmL溶剂DMAc和20mL甲苯加入到250mL三口烧瓶中,于130°C下机械搅拌lh,静止除去上层液体,然后加入丙酮搅拌,静止除去上层有机溶剂,这样反复进行3次过滤,再用丙酮反复冲洗3次,过滤后将滤饼放入真空干燥箱于80°C 下干燥过夜(干燥12h),最后得到改性淀粉(白色固体粉末);(2)可降解复合材料的制备首先,将80g的PLA,IOg的环氧花生油和步骤⑴中的IOg改性淀粉混合均匀, 得到混合后的物料;然后将混合后的物料加入至双螺杆挤出机中熔融共混(混合后的物料依次经过温度分别为 160°C,170°C,175°C,180°C,185°C,175°C,170°C,160°C 的熔融共混区间)后拉条,切粒,得到颗粒状混合树脂;将颗粒状混合树脂进行除水干燥处理,得到可降解复合材料。选用的双螺杆挤出机的螺杆长径比为40 I。将实施例I 4得到的聚乳酸/淀粉全生物基可降解复合材料和对比例I得到的可降解复合材料分别加入至注塑机中注塑成型,得到拉伸样条和弯曲样条,其中,注塑区温度200°C,模板区温度45°C,按照GB1040-2006进行断裂伸长率和拉伸强度的测试,其测试结果如表I所示。表I
实施例I实施例2实施例3实施例4对比例I断裂伸长率(%)8210111314065拉伸强度(MPa)3640414237 将实施例I 4得到的聚乳酸/淀粉全生物基可降解复合材料和对比例I得到的可降解复合材料分别加入至注塑机中注塑成型,得到拉伸样条和弯曲样条,其中,注塑区温度200°C,模板区温度45°C,将拉伸样条和弯曲样条在空气中放置3个月后,按照 GB1040-2006进行断裂伸长率和拉伸强度的测试,其测试结果如表2所示。表2
实施例I实施例2实施例3实施例4对比例I断裂伸长率(%)809711013760拉伸强度(MPa)3437394031实施例5称取以下重量的原料干燥后的玉米淀粉(水分的重量百分含量为4. 1%,诸城兴贸玉米开发有限公司)60g,马来酸酐(国药试剂)8. Og, N, N-二甲基乙酰胺(DMAc,国药试剂)IOOmL,甲苯(国药试剂)20mL,聚乳酸(Natureworks 4032D, LD混合型聚乳酸)80g,环氧花生油(阿拉丁试剂)10g。(I)马来酸酐接枝改性淀粉的制备将干燥后的玉米淀粉60g、马来酸酐8. 0g、IOOmL溶剂DMAc和20mL甲苯加入到 250mL三口烧瓶中,于130°C下机械搅拌lh,静止除去上层液体,然后加入丙酮搅拌洗去未反应的马来酸酐,静止除去上层有机溶剂,这样反复进行3次过滤,再用丙酮反复冲洗3次, 过滤后将滤饼放入真空干燥箱于80°C下干燥过夜(干燥12h),最后得到马来酸酐接枝改性淀粉(白色固体粉末);(2)聚乳酸/淀粉全生物基可降解复合材料的制备首先,将80g的PLA,IOg的环氧花生油和步骤(I)中的20g马来酸酐接枝改性淀粉混合均匀,得到混合后的物料;然后将混合后的物料加入至双螺杆挤出机中熔融共混(混合后的物料依次经过温度分别为 160 °C, 170 °C, 175 °C, 180 V,185 °C, 175 °C, 170 °C, 160 V 的熔融共混区间)后拉条,切粒,得到颗粒状混合树脂;将颗粒状混合树脂进行除水干燥处理,得到聚乳酸/淀粉全生物基可降解复合材料。选用的双螺杆挤出机的螺杆长径比为 40 : I。实施例6称取以下重量的原料干燥后的玉米淀粉(水分的重量百分含量为4. 1%,诸城兴贸玉米开发有限公司)60g,马来酸酐(国药试剂)8. Og, N, N-二甲基乙酰胺(DMAc,国药试剂)IOOmL,甲苯(国药试剂)20mL,聚乳酸(Natureworks 4032D, LD混合型聚乳酸)80g,环氧花生油(阿拉丁试剂)10g。(I)马来酸酐接枝改性淀粉的制备将干燥后的玉米淀粉60g、马来酸酐8. 0g、100mL溶剂DMAc和20mL甲苯加入到 250mL三口烧瓶中,于130°C下机械搅拌lh,静止除去上层液体,然后加入丙酮搅拌洗去未反应的马来酸酐,静止除去上层有机溶剂,这样反复进行3次过滤,再用丙酮反复冲洗3次, 过滤后将滤饼放入真空干燥箱于80°C下干燥过夜(干燥12h),最后得到马来酸酐接枝改性淀粉(白色固体粉末);(2)聚乳酸/淀粉全生物基可降解复合材料的制备首先,将80g的PLA,10g的环氧花生油和步骤(I)中的30g马来酸酐接枝改性淀粉混合均匀,得到混合后的物料;然后将混合后的物料加入至双螺杆挤出机中熔融共混(混合后的物料依次经过温度分别为 160 °C, 170 °C, 175 °C, 180 V,185 °C, 175 °C, 170 °C, 160 V 的熔融共混区间)后拉条,切粒,得到颗粒状混合树脂;将颗粒状混合树脂进行除水干燥处理,得到聚乳酸/淀粉全生物基可降解复合材料。选用的双螺杆挤出机的螺杆长径比为 40 : I。实施例7称取以下重量的原料干燥后的玉米淀粉(水分的重量百分含量为4. 1%,诸城兴贸玉米开发有限公司)60g,马来酸酐(国药试剂)8. Og, N, N-二甲基乙酰胺(DMAc,国药试剂)IOOmL,甲苯(国药试剂)20mL,聚乳酸(Natureworks 4032D, LD混合型聚乳酸)80g,环氧花生油(阿拉丁试剂)10g。(I)马来酸酐接枝改性淀粉的制备将干燥后的玉米淀粉60g、马来酸酐8. 0g、100mL溶剂DMAc和20mL甲苯加入到 250mL三口烧瓶中,于130°C下机械搅拌lh,静止除去上层液体,然后加入丙酮搅拌洗去未反应的马来酸酐,静止除去上层有机溶剂,这样反复进行3次过滤,再用丙酮反复冲洗3次, 过滤后将滤饼放入真空干燥箱于80°C下干燥过夜(干燥12h),最后得到马来酸酐接枝改性淀粉(白色固体粉末);(2)聚乳酸/淀粉全生物基可降解复合材料的制备首先,将80g的PLA,10g的环氧花生油和步骤(I)中的40g马来酸酐接枝改性淀粉混合均匀,得到混合后的物料;然后将混合后的物料加入至双螺杆挤出机中熔融共混(混合后的物料依次经过温度分别为 160 °C, 170 °C, 175 °C, 180 V,185 °C, 175 °C, 170 °C, 160 V 的熔融共混区间)后拉条,切粒,得到颗粒状混合树脂;将颗粒状混合树脂进行除水干燥处理,得到聚乳酸/淀粉全生物基可降解复合材料。选用的双螺杆挤出机的螺杆长径比为 40 : I。实施例8称取以下重量的原料干燥后的玉米淀粉(水分的重量百分含量为4. 1%,诸城兴贸玉米开发有限公司)60g,马来酸酐(国药试剂)8. Og, N, N-二甲基乙酰胺(DMAc,国药试剂)IOOmL,甲苯(国药试剂)20mL,聚乳酸(Natureworks 4032D, LD混合型聚乳酸)80g,环氧花生油(阿拉丁试剂)10g。(I)马来酸酐接枝改性淀粉的制备将干燥后的玉米淀粉60g、马来酸酐8. 0g、100mL溶剂DMAc和20mL甲苯加入到 250mL三口烧瓶中,于130°C下机械搅拌lh,静止除去上层液体,然后加入丙酮搅拌洗去未反应的马来酸酐,静止除去上层有机溶剂,这样反复进行3次过滤,再用丙酮反复冲洗3次, 过滤后将滤饼放入真空干燥箱于80°C下干燥过夜(干燥12h),最后得到马来酸酐接枝改性淀粉(白色固体粉末);
(2)聚乳酸/淀粉全生物基可降解复合材料的制备首先,将80g的PLA,10g的环氧花生油和步骤(I)中的50g马来酸酐接枝改性淀粉混合均匀,得到混合后的物料;然后将混合后的物料加入至双螺杆挤出机中熔融共混(混合后的物料依次经过温度分别为 160 °C, 170 °C, 175 °C, 180 V,185 °C, 175 °C, 170 °C, 160 V 的熔融共混区间)后拉条,切粒,得到颗粒状混合树脂;将颗粒状混合树脂进行除水干燥处理,得到聚乳酸/淀粉全生物基可降解复合材料。选用的双螺杆挤出机的螺杆长径比为 40 : I。将实施例5 8得到的聚乳酸/淀粉全生物基可降解复合材料分别加入至注塑机中注塑成型,得到拉伸样条和弯曲样条,其中,注塑区温度200°C,模板区温度45°C,按照 GB1040-2006进行断裂伸长率和拉伸强度的测试,其测试结果如表3所示。表权利要求
1.一种聚乳酸/淀粉全生物基可降解复合材料,由以下重量百分比的原料制成
2.根据权利要求I所述的聚乳酸/淀粉全生物基可降解复合材料,其特征在于,所述的聚乳酸为L型聚乳酸、D型聚乳酸或者LD混合型聚乳酸。
3.根据权利要求I所述的聚乳酸/淀粉全生物基可降解复合材料,其特征在于,所述的环氧植物油为环氧花生油、环氧大豆油、环氧蓖麻油、环氧椰子油、环氧棕榈油、环氧亚麻油、环氧棉籽油、环氧玉米油、环氧葵花籽油、环氧松子油、环氧桐油中的一种或两种以上。
4.根据权利要求I所述的聚乳酸/淀粉全生物基可降解复合材料,其特征在于,所述的酸酐接枝改性淀粉由酸酐接枝到淀粉上得到;所述的酸酐为马来酸酐、乙酸酐、戊二酸酐、正己酸酐、丙酸酐、异丁酸酐、正丁酸酐、硬脂酸酐、2-甲基琥珀酸酐、苯基琥珀酸酐、苯甲酸酐、五氟丙酸酐中的一种;所述的淀粉为绿豆淀粉、木薯淀粉、甘薯淀粉、红薯淀粉、马铃薯淀粉、麦类淀粉、菱角淀粉、藕淀粉、玉米淀粉中的一种。
5.根据权利要求I所述的聚乳酸/淀粉全生物基可降解复合材料,其特征在于,由以下重量百分比的原料制成聚乳酸55% 85%;环氧植物油2% 15% ;酸酐接枝改性淀粉5 % 36 % ;所述的环氧植物油为环氧花生油;所述的酸酐接枝改性淀粉为马来酸酐接枝改性淀粉。
6.根据权利要求5所述的聚乳酸/淀粉全生物基可降解复合材料,其特征在于,由以下重量百分比的原料制成聚乳酸66% 80% ;环氧植物油5% 10% ;酸酐接枝改性淀粉10 % 26 % ;所述的环氧植物油为环氧花生油;所述的酸酐接枝改性淀粉为马来酸酐接枝改性淀粉。
7.根据权利要求5或6所述的聚乳酸/淀粉全生物基可降解复合材料,其特征在于,所述的马来酸酐接枝改性淀粉的制备方法如下将淀粉和马来酸酐加入到N,N-二甲基乙酰胺中,采用甲苯或者丁酮作为带水剂,在 100°C 130°C反应O. 5h 2. 5h,反应停止后去除上层液体,再经洗涤和干燥后得到马来酸酐接枝改性淀粉。
8.根据权利要求7所述的聚乳酸/淀粉全生物基可降解复合材料,其特征在于,所述的淀粉与马来酸酐的重量比为5 25 I。
9.根据权利要求I 8任一项所述的聚乳酸/淀粉全生物基可降解复合材料的制备方法,其特征在于,包括以下步骤将聚乳酸、环氧植物油和酸酐接枝改性淀粉充分混合均匀,得到混合后的物料;再将混聚乳酸环氧植物油酸酐接枝改性淀粉55% 85% ; 2% 15% ; 5% 36%。合后的物料加入至双螺杆挤出机中熔融共混后拉条、切粒,得到颗粒状混合树脂;将颗粒状混合树脂进行除水干燥处理,得到聚乳酸/淀粉全生物基可降解复合材料。
10.根据权利要求9所述的聚乳酸/淀粉全生物基可降解复合材料的制备方法,其特征在于,所述的双螺杆挤出机的螺杆长径比为35 45 I ;所述的熔融共混的温度为 160 O 185 O。
全文摘要
本发明公开了一种聚乳酸/淀粉全生物基可降解复合材料,由重量百分比55%~85%的聚乳酸、2%~15%的环氧植物油和5%~36%的酸酐接枝改性淀粉原料制成,该复合材料安全无毒、可生物降解且机械性能优异。本发明还公开了一种聚乳酸/淀粉全生物基可降解复合材料的制备方法,包括将聚乳酸、环氧植物油和马来酸酐接枝改性淀粉充分混合均匀,再将混合后的物料加入至双螺杆挤出机中熔融共混后拉条、切粒,得到颗粒状混合树脂;干燥处理,得到聚乳酸/淀粉全生物基可降解复合材料。该制备方法简单,易于控制,可操作性强,易于实施,生产成本低廉,易于工业化大规模生产,并且制备的复合材料能够应用于薄膜和一次性餐等领域。
文档编号C08L67/04GK102604349SQ20121006267
公开日2012年7月25日 申请日期2012年3月9日 优先权日2012年3月9日
发明者冯建湘, 张传芝, 朱锦, 杨勇, 汤兆宾, 熊竹 申请人:中国科学院宁波材料技术与工程研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1