用于上皮干细胞扩增和培养的组合物和方法与流程

文档序号:14690559发布日期:2018-06-15 20:19阅读:170来源:国知局
用于上皮干细胞扩增和培养的组合物和方法与流程
本申请要求提交于2013年3月14日的美国临时申请61/783,245号的基于35U.S.C.§119(e)的权益,本文通过援引并入其整体内容。政府资助本研究由美国国家牙科和颅面研究学会基金DE013023号所资助。美国政府享有本发明的某些权利。
背景技术
:主动自我更新并被组织化为隐窝(Crypt)和绒毛的上皮细胞单层覆盖着小肠。近来据显示,小肠上皮的更新受驻留在这些隐窝底部的Lgr5+小肠干细胞(ISC)所驱动(Barker等,2007)。可分离并体外培养Lgr5+干细胞以形成含有隐窝-绒毛结构的类器官,所述类器官重现天然小肠上皮(Sato等,2009)。虽然这些干细胞能扩增为类器官形式的多通道,但现有培养条件对自我更新和分化几乎甚至完全没有提供任何控制。典型的培养物由包括干细胞和分化细胞的异源细胞群组成(Sato等,2009)。特别地,Lgr5+干细胞在体外和体内的自我更新和增殖均依赖于Lgr5+干细胞与另一种称为潘氏细胞(panethcell)的隐窝细胞类型之间的直接细胞接触,这使得控制培养物中Lgr5+干细胞的命运的能力显著复杂化并受到限制。无法有效扩增Lgr5+干细胞极大地限制了这种生物学转化为疗法,其中同源干细胞培养和有效的规模放大过程在移植前至关重要。而且,仍然需要开发用于将扩增的上皮组织离体移植至受损的接受者器官中的改善的临床定向的系统。技术实现要素:在一方面,本发明提供了细胞培养溶液。在一个实施方式中,本发明提供了包含骨形态发生蛋白的抑制剂、糖原合成酶激酶-3β的抑制剂、与含富亮氨酸重复G蛋白偶联受体5结合的试剂和组蛋白脱乙酰基酶抑制剂的细胞培养溶液。在一个实施方式中,所述糖原合成酶激酶-3β的抑制剂可以为CHIR99021,所述与含富亮氨酸重复G蛋白偶联受体5结合的试剂可以是R-spondin1,且所述HDAC抑制剂可以是丙戊酸。在另一个实施方式中,本发明提供了包含骨形态发生蛋白的抑制剂、至少约3μM的CHIR99021和组蛋白脱乙酰基酶抑制剂的细胞培养溶液。在再一个实施方式中,本发明提供了包含骨形态发生蛋白的抑制剂、与含富亮氨酸重复G蛋白偶联受体5结合的试剂、Wnt激动剂和HDAC6抑制剂的细胞培养溶液。在又一个实施方式中,本发明提供了包含骨形态发生蛋白的抑制剂、R-spondin1、氯化锂和组蛋白脱乙酰基酶抑制剂的细胞培养溶液。在另一个实施方式中,本发明提供的组蛋白脱乙酰基酶抑制剂是Pan-HDAC抑制剂。所述Pan-HDAC抑制剂可以选自由丙戊酸、曲古霉素A、辛二酰苯胺异羟肟酸和辛二酰异羟肟酸(SBHA)组成的组。在再一个实施方式中,本发明提供的组蛋白脱乙酰基酶抑制剂是HDAC6抑制剂。所述HDAC6抑制剂可以选自由土巴星、土巴他汀A和化合物7组成的组。在另一个实施方式中,本发明提供了可以选自由以下物质组成的组的骨形态发生蛋白的抑制剂:头发生素、脊索发生素、卵泡抑素、DAN、含DAN半胱氨酸结结构域的蛋白、骨硬化蛋白(Sclerostin)、原肠形成蛋白(TwistedGastrulation)、子宫敏感性相关基因-1、结缔组织生长因子、抑制素、BMP-3和Dorsomorphin。在又一个实施方式中,本发明提供了可以选自由以下物质组成的组的糖原合成酶激酶-3β的抑制剂:CHIR99021、LiCl、BIO-丙酮肟、CHIR98014、SB216763、SB415286、3F8、肯帕罗酮(Kenpaullone)、1-氮杂肯帕罗酮(1-Azakenpaullone)、TC-G24、TCS2002、AR-A014418、TCS21311、TWS119、BIO-丙酮肟、10Z-海门地塞、GSK-3β抑制剂II、GSK-3β抑制剂I、GSK-3β抑制剂XXVII、GSK-3β抑制剂XXVI、FRATtide肽、Cdk1/5抑制剂和Bikinin。在另一个实施方式中,本发明提供了与含富亮氨酸重复G蛋白偶联受体5结合的试剂,其可以选自由R-spondin1、R-spondin2、R-spondin3和R-spondin4组成的组。在再一个实施方式中,本发明提供了可以选自由以下物质组成的组的Wnt激动剂:Wnt-1/Int-1、Wnt-2/Irp(Int-I-相关蛋白)、Wnt-2b/13、Wnt-3/Int-4、Wnt-3a、Wnt-4、Wnt-5a、Wnt-5b、Wnt-6、Wnt-7a、Wnt-7b、Wnt-8a/8d、Wnt-8b、Wnt-9a/14、Wnt-9b/14b/15、Wnt-10a、Wnt-10b/12、Wnt-11、Wnt-16、R-spondin1、R-spondin2、R-spondin3、R-spondin4、诺里病蛋白(Norrin)、CHIR99021、LiCl、BIO((2'Z,3'E)-6-溴靛红-3’-肟)、CHIR98014、SB216763、SB415286、3F8、肯帕罗酮、1-氮杂肯帕罗酮、TC-G24、TCS2002、AR-A014418、2-氨基4-[3,4-(亚甲基二氧)苄基-氨基]-6-(3-甲氧基苯基)嘧啶、IQ1、DCA、QS11、WAY-316606、(杂)芳基嘧啶、10Z-海门地塞、TCS21311、TWS119、GSK-3抑制剂IX、GSK-3抑制剂IV、GSK-3β抑制剂II、GSK-3β抑制剂I、GSK-3β抑制剂XXVII、GSK-3β抑制剂XXVI、FRATtide、Cdk1/5抑制剂、Bikinin和1-氮杂肯帕罗酮。在又一个实施方式中,本发明提供了包含头发生素(Noggin)、R-spondin1、CHIR99021和Atoh1抑制剂的细胞培养溶液。所述Atoh1抑制剂可以是抑制性核酸。在另一个实施方式中,本发明提供了还包含表皮生长因子和/或Notch激动剂的细胞培养溶液。所述Notch激动剂可以选自由Notch1抗体(N1Ab)、Delta1、Delta样3、Delta样4、Jagged1、Jagged2、DSL肽和DeltaD组成的组。在再一个实施方式中,本发明提供了约5ng/ml至约500ng/ml的EGF、约5ng/ml至约500ng/ml的头发生素、约50ng/ml至约1000ng/ml的R-spondin、约0.1μΜ至约10μΜ的CHIR99021和约0.1mM至约5mM的丙戊酸。在另一方面,本发明提供了包括本发明的细胞培养溶液的细胞培养系统。在一个实施方式中,本发明提供了一种细胞培养系统,其包括:i)上皮干细胞或上皮祖细胞,或者上皮干细胞或上皮祖细胞的群体;ii)R-spondin1;iii)CHIR99021;iv)组蛋白脱乙酰基酶抑制剂;和v)可选的骨形态发生蛋白的抑制剂。在另一个实施方式中,本发明提供了一种细胞培养系统,其包括:i)上皮干细胞或上皮祖细胞,或者上皮干细胞或上皮祖细胞的群体;ii)R-spondin1;iii)CHIR99021;iv)Atoh1抑制剂;和v)可选的骨形态发生蛋白的抑制剂。在另一个实施方式中,本发明提供了一种细胞培养系统,其包括:i)上皮干细胞或上皮祖细胞,或者上皮干细胞或上皮祖细胞的群体;ii)R-spondin1;iii)氯化锂;iv)组蛋白脱乙酰基酶抑制剂;和v)可选的骨形态发生蛋白的抑制剂。在另一个实施方式中,本发明提供了一种细胞培养系统,其包括:i)上皮干细胞或上皮祖细胞,或者上皮干细胞或上皮祖细胞的群体;ii)R-spondin1;iii)Wnt激动剂;iv)HDAC6抑制剂;和v)可选的骨形态发生蛋白的抑制剂。在另一个实施方式中,本发明的细胞培养系统包含可以包含LGR5阳性干细胞的上皮干细胞和上皮干细胞的群体。在另一个实施方式中,本发明的细胞培养系统中的上皮干细胞或上皮祖细胞的群体占所述系统中细胞的至少30%、85%、90、95%或99%。在另一个实施方式中,本发明提供了一种细胞培养系统,其包括:i)肿瘤类器官;ii)与含富亮氨酸重复G蛋白偶联受体5结合的试剂;iii)Wnt激动剂;iv)组蛋白脱乙酰基酶抑制剂或Atoh1抑制剂;和v)可选的骨形态发生蛋白的抑制剂。在另一个实施方式中,本发明提供了包括粘膜下层基底、包含胶原蛋白的涂层以及包含由上皮干细胞、包含上皮干细胞的分离组织和/或上皮类器官组成的组的任意成员的细胞层的细胞培养系统。所述包含胶原蛋白的涂层可以处于上皮干细胞、包含上皮干细胞的分离组织或上皮类器官的上方或将其包围。所述包含胶原蛋白的涂层也可以处在SIS基底与上皮干细胞、包含上皮干细胞的分离组织或上皮类器官之间。所述粘膜下层基底可以包含SIS,并可进一步包含表皮生长因子、骨形态发生蛋白、与含富亮氨酸重复G蛋白偶联受体5结合的试剂、Wnt激动剂、Y-27632和组蛋白脱乙酰基酶抑制剂。所述细胞培养系统可以进一步包含本发明的细胞培养溶液,包括包含骨形态发生蛋白的抑制剂、与含富亮氨酸重复G蛋白偶联受体5结合的试剂、Wnt激动剂、Y-27632和组蛋白脱乙酰基酶抑制剂的溶液。在另一个实施方式中,本发明提供了包括粘膜下层基底以及上皮干细胞、包含上皮干细胞的分离组织或上皮类器官的细胞培养系统,其中所述粘膜下层基底包含表皮生长因子、骨形态发生蛋白、R-spondin1、CHIR99021、Y-27632和组蛋白脱乙酰基酶抑制剂。该细胞培养系统可以进一步包括包含表皮生长因子、骨形态发生蛋白的抑制剂、R-spondin1、CHIR99021、Y-27632和组蛋白脱乙酰基酶抑制剂的溶液。在另一方面,本发明提供了从分离的上皮干细胞形成上皮类器官的方法。在一个实施方式中,本发明提供了从分离的上皮干细胞高效地形成上皮类器官的方法,所述方法包括以下步骤:i)在头发生素、R-Spondin1、CHIR99021和组蛋白脱乙酰基酶抑制剂的存在下温育分离的上皮干细胞;和ii)从所述分离的上皮干细胞形成上皮类器官,其中所述分离的上皮干细胞的至少约25%、40%、50%、75%、90%形成上皮类器官。在另一方面,本发明提供了从单个分离的上皮干细胞高效地形成上皮类器官的方法,所述方法包括以下步骤:i)在头发生素、R-Spondin1、CHIR99021和组蛋白脱乙酰基酶抑制剂的存在下温育所述单个分离的上皮干细胞;和ii)从所述分离的上皮干细胞形成上皮类器官,其中所述单个分离的上皮干细胞的至少约6%形成上皮类器官。在另一方面,本发明提供了一种确定化学治疗剂相对于肿瘤类器官的功效的方法,所述方法包括以下步骤:i)在骨形态发生蛋白的抑制剂、R-spondin1、Wnt激动剂、组蛋白脱乙酰基酶抑制剂和化学治疗剂的存在下温育肿瘤类器官;和ii)测定选自由细胞生活力的抑制、细胞增殖的抑制、肿瘤相关基因表达的抑制、细胞凋亡的活化和细胞存活的抑制组成的组的参数,其中,检测到所述参数的增加表明所述化学治疗剂相对于肿瘤类器官的功效。在另一方面,本发明提供了一种在细胞培养系统中形成潘氏细胞的方法,该方法包括在至少一种Wnt激动剂和至少一种Notch的抑制剂的存在下温育上皮干细胞,所述至少一种Wnt激动剂和至少一种Notch的抑制剂各自的量是足以产生潘氏细胞的量。在一个实施方式中,可以进一步在至少一种骨形态发生蛋白的抑制剂的存在下温育所述上皮干细胞。在另一个实施方式中,所述Notch抑制剂是DAPT。在另一个实施方式中,所述上皮干细胞是LGR5阳性干细胞。在另一方面,本发明提供了一种在细胞培养系统中形成肠上皮细胞的方法,该方法包括在至少一种Wnt抑制剂和至少一种组蛋白脱乙酰基酶抑制剂的存在下温育上皮干细胞,所述至少一种Wnt抑制剂和至少一种组蛋白脱乙酰基酶抑制剂各自的量是足以产生肠上皮细胞的量。可以进一步在表皮生长因子和/或骨形态发生蛋白的抑制剂的存在下温育所述上皮干细胞。在一个实施方式中,所述Wnt抑制剂可以选自由IWP-2、XAV-939、ICG-001、LGK-974、IWR-1-endo、KY02111、Wnt-C59、DKK-1、FH-535、Box5、肽Pen-N3、抗SFRP抗体和抗LRP6抗体组成的组。在另一方面,本发明提供了一种在细胞培养系统中形成杯状细胞的方法,该方法包括在至少一种Wnt抑制剂和至少一种Notch抑制剂的存在下温育上皮干细胞,所述至少一种Wnt抑制剂和至少一种Notch抑制剂各自的量是足以产生杯状细胞的量。可以进一步在表皮生长因子的存在下温育所述上皮干细胞。在一个实施方式中,所述Notch抑制剂可以选自由DAPT、RO4929097、LY450139、LY900009、LY3039478、LY411575、YO-01027、BMS-708163、BMS-906024、化合物E、BMS-299897、SAHM1、选择性Abeta42(Abeta42-Selective)和SB225002组成的组。在另一方面,本发明提供了一种在细胞培养系统中形成肠内分泌细胞的方法,该方法包括在至少一种Notch抑制剂和抑制受体酪氨酸激酶、丝裂原活化蛋白(MAP)激酶或胞外信号调节激酶(ERK)中的至少一种的试剂的存在下温育上皮干细胞,所述至少一种Notch抑制剂和所述试剂各自的量是足以在细胞培养系统中产生肠内分泌细胞的量。可以进一步在表皮生长因子、与含富亮氨酸重复G蛋白偶联受体5结合的试剂和/或骨形态发生蛋白的抑制剂的存在下温育所述上皮干细胞。MAP激酶可以是丝裂原活化蛋白激酶激酶。在一个实施方式中,抑制MAP激酶的试剂可以选自由AS-703026、PD0325901、PD98059、司美替尼(Selumetinib)、SL-327、U0126、TAK-733和曲美替尼(Trametinib)组成的组。在另一个实施方式中,抑制RTK的试剂可以选自由吉非替尼(Gefitinib)、AG99、厄洛替尼(Erlotinib)、阿法替尼(Afatinib)、拉帕替尼(Lapatinib)、WZ4002和AG-18组成的组。在另一个实施方式中,抑制ERK的试剂可以是AS-703026或PD0325901。在另一方面,本发明提供了在有需要的受试对象中形成小肠上皮细胞的方法,该方法包括对所述受试对象施用足以在该受试对象中形成小肠上皮细胞的量的Wnt激动剂和组蛋白脱乙酰基酶抑制剂。所述Wnt激动剂可以是CHIR99021,而所述组蛋白脱乙酰基酶抑制剂可以是丙戊酸。CHIR99021可以以约0.1mg/kg/日至约100mg/kg/日的量施用,而丙戊酸可以以约1mg/kg/日至约1000mg/kg/日的量施用。在另一方面,本发明提供了在有需要的受试对象中形成小肠上皮细胞的方法,该方法包括以足以在所述受试对象中形成小肠上皮细胞的量对所述受试对象施用Wnt激动剂和Notch激动剂。在再一方面,本发明提供了治疗小肠病症的方法,所述方法包括对受试对象施用Wnt激动剂和组蛋白脱乙酰基酶抑制剂或者Wnt激动剂和Notch激动剂。在某些实施方式中,所述小肠病症选自由以下病症组成的组:小肠结肠炎;病毒感染,如非特异性肠炎或特异性病毒性肠炎;憩室炎;细菌性小肠结肠炎,如沙门氏菌病、志贺氏菌病、弯曲杆菌小肠结肠炎或耶尔森菌小肠结肠炎;原生动物感染,如阿米巴虫病;蠕虫感染;和假膜性结肠炎以及囊性纤维化的肺部并发症和慢性阻塞性肺病;阑尾炎;萎缩性胃炎;巴雷特食管症;肺炎;子宫颈炎;慢性间质性肾炎;大肠炎;结肠憩室炎;结膜炎;接触性皮炎;柯林氏溃疡;库兴氏溃疡;膀胱炎;坏疽;牙龈炎;乳腺炎;食管炎;胰腺炎;脂膜炎;蜂窝织炎性胃炎;肾小球肾炎;以及自体免疫疾病,包括但不限于炎性肠病、溃疡性结肠炎、克罗恩病、艾迪生病和肾小球肾炎(例如,新月体肾小球肾炎、增殖性肾小球肾炎)。本发明的其它特点和优点从以下详细说明和附图以及从权利要求中将变得显而易见。附图说明以下通过实例的方式给出的“具体实施方式”并非意在将本发明限制在所描述的特定的实施方式,可以结合本文通过援引并入的附图来理解。图1展示了Lgr5-GFP在体内的分散表达。小肠收获自Lgr5-GFP小鼠并在荧光显微镜下直接成像。虽然该小肠的所有区域均被隐窝覆盖,但这些隐窝的大约一半含有GFP+细胞。比例尺:100μm。图2A-2H显示了促进Lgr5+干细胞的增殖和自我更新的CHIR和VPA的组合。图2A展示了在ENR(EGF、头发生素和R-spondin1)、ENR+VPA(ENR-V)、ENR+CHIR(ENR-C)和ENR+VPA+CHIR(ENR-CV)的存在下培养了6天的小肠隐窝的GFP和亮场图像。凋亡细胞在管腔中可见且具有自体荧光(红色箭头),而白色箭头指示隐窝底部的特定Lgr5-GFP。比例尺:100μm。图2B展示了在多种条件下培养的隐窝的细胞增殖和GFP表达的定量。隐窝在24孔板中培养6天并利用Accutase解离为单个细胞。对每个孔中的活细胞计数以作为细胞增殖的指标。Lgr5-GFP表达通过流式细胞分析来测定。误差条表示三等分试样孔的标准偏差(S.D.)。实验进行3次并显示出类似的结果。图2C和2D展示了在所指示的多种条件下培养7天后的单个Lgr5-GFP细胞的GFP表达的流式细胞分析。误差条表示三等分试样孔的标准偏差。图2E展示了培养9天后的单个Lgr5-GFP细胞的GFP和亮场图像。比例尺:100μm。图2F展示了在多种条件下培养7天后的4,000FACS分离的单个Lgr5-GFP细胞的代表性图像,而图2G展示了对集落数目的定量。图2H展示了具有正常核型的在CV条件下培养80天的细胞的中期展开(2n=40)。(除非另外指出,在所有图中:***P<0.001;**P<0.01;*P<0.05;NSP>0.05)图3A-3G展示了作为培养条件的函数的细胞生长和GFP表达。图3A和3B分别展示了在每个时间点列举的来自三等分试样孔的集落数和活的单个细胞数。误差条指示标准偏差。在图3A中,从左至右的系列为第0天、第2天、第4天、第6天、第8天和第10天。图3C展示了新鲜分离的单个Lgr5-GFP+细胞的FACS分选。收集GFP高单个细胞群。显示了代表性FACS分析和限定GFP+细胞群的门控策略。来自隐窝的新鲜分离的单个细胞显示出两个有差别的GFP高群和GFP低群,而培养的细胞没有显示出有差别的GFP高群和GFP低群,由此将所有GFP+细胞门控(gate)用于分析。注意ENR-CV培养的细胞显示出GFP高度阳性的单个GFP+群。GFP-群代表Lgr5-细胞以及Lgr5+/GFP-细胞(即,GFP沉默型干细胞),其存在于所有未经分选的隐窝组织中,但不存在于分选的单个Lgr5-GFP细胞培养物中(参见图2C)。对于每个样品分析了总共10,000个活细胞。图3D展示了在CV培养条件下的Lgr5+干细胞自我更新的生长因子要求。在CHIR和VPA存在下将隐窝与EGF、头发生素、R-spondin1和它们的组合一同培养6天,如所指定那样。E:EGF(50ng/ml);N:头发生素(100ng/ml);R:R-spondin1(500ng/ml);C:CHIR(3μΜ);V:VPA(1mM)。图3E展示了在所指定的多种条件下培养6天的隐窝。显示了GFP和亮场图像。比例尺:200μm。图3F展示了在ENR、ENR-C和ENR-CV条件下培养的结肠隐窝的形态和Lgr5-GFP表达。图3G展示了在多种浓度的EGF、头发生素和R-spondin1或R-spondin2存在下在第5天形成的类器官的分离数。所有比例尺:200μm。图4A-4B展示了对用于EPHB2+人结肠干细胞的多种培养条件的测试。在所指定的多种条件下培养隐窝6天。图4A中显示了GFP和亮场图像。W:Wnt3a(100ng/ml);Ni:烟酰胺(10mM);P:PGE2(0.02μΜ);A:A-83-01(0.5μΜ);S:SB202190(10μΜ);V:丙戊酸VPA(1mM)。EGF、头发生素、R-spondin1、Wnt3a和VPA或ENR-W-V,条件充当对照以显示GFP表达的增加。比例尺:200μm。图4B展示了在多种条件下培养的隐窝的细胞增殖和GFP表达的定量。隐窝在24孔板中培养6天并解离为单个细胞。对各孔中的活细胞数进行计数,并通过流式细胞术分析GFP+细胞的百分比。误差条表示三等分试样孔的标准偏差。图5A-5D展示了单个Lgr5-GFP干细胞的培养物。图5A展示了在CV条件下培养9天的单个分离Lgr5-GFP+细胞。比例尺:200μm。图5B展示了在所指定的条件下在基质胶中培养的1500个FACS分选的单个Lgr5+细胞。示出了来自第7天培养的代表性图像。图5C表明对集落数的定量。误差条指示三等分试样孔的标准偏差。图5D显示了接种在48孔板中接种的分选的单个Lgr5+干细胞。在平板接种后12小时对活细胞数进行定量。在第7天对集落数进行计数并对集落形成效率进行定量。V:VPA;C:CHIR;W:Wnt3a,为100ng/ml。误差条表示三等分试样孔的标准偏差。实验进行了3次且显示出类似的结果。图6A-6D展示了通过CHIR和VPA的组合维持Lgr5+干细胞自我更新。示出了在ENR条件下培养的类器官(上图)和在ENR-CV条件下培养的集落(下图)的溶菌酶(图6A)、Ki67(图6B)和EdU(图6C)染色的共聚焦图像。对于EdU染色,将细胞与胸苷类似物Edu(红色)一起培养1小时。在图6B和6C中,在ENR条件下仅隐窝区域含有Ki67阳性细胞或并入EdU(上图),而在CV条件下Ki67或EdU在整个细胞聚集体中存在(下图)。图6D展示了用于在所指定的条件下培养6天的成熟小肠上皮细胞的标志物的相对mRNA表达的定量实时PCR分析(对于肠上皮细胞为小肠碱性磷酸酶[Alpi],对于杯状细胞为粘蛋白2[Muc2],对于肠内分泌细胞为嗜铬粒蛋白A[ChgA],对于潘氏细胞为溶酶体[Lyz],且对于小肠干细胞为Lgr5)。ENR-CV(D40)指示在CV条件下培养40天的细胞。比例尺:50μm。在图6D中,系列从左到右为Alpi、Muc2、ChgA、Lyz和Lgr5。图7A-7D展示了在CV条件下培养的小肠干细胞的分化。图7A展示了从CV条件转移至ENR条件并培养4天的细胞的分化标志物染色(对于肠上皮细胞为Alp,对于杯状细胞为Muc2(白色箭头)以及杯状细胞分泌的粘蛋白,对于肠内分泌细胞为ChgA,且对于潘氏细胞为Lyz)。使用DAPI对核染色,且GFP指示干细胞的存在。图7B显示了来自在多种条件下培养的细胞的成熟小肠上皮标志物的相对mRNA表达的实时RT-PCR分析。然后收获细胞集落、洗涤并再铺平板至24孔板的数个孔内,在所指定的多种条件下在基质胶中培养4天。在所有条件下均添加ENR,且使用仅与ENR一同培养的细胞作为对照。I:IWP-2(2μΜ),D:DAPT(10μΜ),C:CHIR(3μΜ),V:VPA(1mM)。误差条表示标准偏差。图7C展示了在多种条件下培养的细胞的Alp染色。在ID和CD条件下的细胞存在明显的形态变化,这类似于杯状细胞和潘氏细胞。比例尺:50μm。图7D展示了分化标志物的免疫细胞化学染色。使用在CD和ID条件下培养的细胞用于粘蛋白2(Muc2)、嗜铬粒蛋白A(ChgA)和溶酶体(Lyz)染色。示出了三维重建的共聚焦图像。比例尺:50μm。图8A-8F展示了Lgr5+干细胞在体外的受控分化。图8A展示了在ENR条件下培养的类器官的染色。左图展示了肠上皮细胞的Alp染色。在染色之前,在解剖显微镜下用锋利刀片将类器官切开,并移除管腔内容物。中图展示了杯状细胞(箭头)以及杯状细胞所分泌的粘蛋白的Muc2染色,而右图展示了肠内分泌细胞的ChgA染色。GFP+细胞指示Lgr5+干细胞。图8B提供了分化策略的示意图。单个Lgr5+干细胞在CV条件下培养4至6天以形成集落。然后将细胞集落收获、洗涤并包埋至新鲜基质胶内,并且在多种条件下培养。图8C展示了从CV条件转移至ENR条件并培养4天的细胞集落的形态(上图)。示出了在CV条件下连续培养的集落作为对照(下图)。图8D以低倍放大至高倍放大图像展示了对于每种条件的分化细胞的形态。注意大多数细胞在CD和ID条件下的形态的明显变化,这分别反映出潘氏细胞和杯状细胞的形成。图8E展示了在IV条件下培养的集落的Alp染色。示出了Alp的顶端染色(左图)和均匀染色(右图)。图8F展示了在ID和CD条件下培养的集落的Muc2染色。所有比例尺:50μm。图9A-9F展示了CHIR和VPA的作用机理。图9A展示了在多种条件下培养6天的隐窝的形态和Lgr5-GFP表达。C:CHIR(3μΜ);Li:LiCl(5mM);W:Wnt3a(100nM)。图9B展示了6天隐窝培养物的细胞数和GFP+细胞百分比。数据代表三次独立实验。图9C显示了在ENR-C(对照)条件下或与HDAC抑制剂一同的6天隐窝培养物。图9D展示了对图9C中的细胞的GFP百分比、总的活细胞数和相对GFP强度的定量。图9E展示了在多种浓度时VPA和TSA对细胞增殖和GFP表达的效果。图9F展示了烟酰胺(Ni)与Wnt3a(W,100ng/ml)或CHIR(C,3μΜ)的组合的效果。示出了在多种条件下培养6天的隐窝的细胞数和GFP+细胞百分比(除非另外指出,在所有图中:误差条表示标准偏差或三等分试样孔。***P<0.001;**P<0.01;*P<0.05;NSP>0.05)。图10展示了在多种条件下培养的单个Lgr5-GFP细胞的形态和GFP表达。比例尺:100μm。图11A-11D展示了VPA的机理。图11A展示了在Notch抑制后VPA拯救GFP表达。在存在或不存在DAPT(D,5μΜ)以及不同浓度的VPA(V,0.25mM-4mM)的ENR-C条件下培养隐窝3天。比例尺:200μm。图11B和11C展示了在ENR(图11B)或ENR+CHIR(图11C)条件下培养4天随后添加不同浓度的VPA再培养24小时的隐窝。通过实时RT-PCR分析Notch1、Hes1和Atoh1的表达。图11D展示了在培养6天后的隐窝中通过实时RT-PCR对Notch1、Hes1和Atoh1的表达的分析。在图11B-11C中,从左至右的系列为0、0.5、1、2和3。在图11D中,从左至右的系列为ENR、ENR-V、ENR-C和ENR-CV。图12A-12B展示了在生理条件下(图12A)和体外培养物中(图12B)的小肠干细胞自我更新和分化的模型。图13A-13B展示了促进源自小鼠内耳的Lgr5+干细胞/祖细胞的增殖和GFP表达的CHIR和VPA的组合。图13A展示了源自出生后2天的Lgr5-GFP小鼠的分离的耳蜗感觉上皮的亮场和GFP图像。图13B展示了解离为单个细胞并在多种条件下培养11天的分离的耳蜗感觉上皮。E:EGF;N:头发生素;R:R-spondin1;C:CHIR99021,V:VPA。比例尺:100μm。图14A-14F展示了促进源自小鼠内耳的Lgr5+干细胞/祖细胞的增殖和GFP表达的CHIR和VPA的组合。图14A展示了内耳上皮细胞的GFP表达。图14B展示了GFP表达和细胞数的定量。图14C展示了亮场和GFP图像。图14D展示了在所指定的多种条件下的内耳干细胞8天培养物的细胞数。图14E展示了在所指定的多种条件下的内耳干细胞8天培养物的GFP百分比。图14F展示了在多种条件下培养的Lgr5-GFP内耳干细胞的形态和GFP表达。所有比例尺:200μm。图15展示了鼠类小肠隐窝在健康小鼠结肠组织中的体外接种。左图显示了置于具有部分裸露的上皮的结肠上的分离的小肠隐窝。白色箭头指示所接种的隐窝。右图显示了附着至结肠并在其表面扩展24小时的所接种的隐窝。黑色箭头指示与左图中白色箭头所指相同的位置。图16展示了接种后48小时的隐窝植入。示出了接种有隐窝的小鼠结肠组织的荧光(上图)和亮场(下图)图像。在接种前将隐窝用DiD染色。白色线条指示包括植入细胞的区域。图17展示了体外培养6天后的隐窝植入。示出了接种有隐窝的小鼠结肠组织的GFP(左图)、RFP(中图)和亮场(右图)通道图像。GFP信号指示Lgr5细胞的存在。图18展示了从具有植入的隐窝的TRUC小鼠切下的脱垂的溃疡性结肠炎组织的共聚焦图像。在接种前将隐窝用DiD染色。脱垂的组织以绿色自体荧光显示。图19A-19N展示了在所评价的培养系统中的接种(左)和温育后类器官生长(右)的示意图。图19A和19B展示了典型的粘膜下接种方法(本文称作“裸贴片(barepatch)”),其支持单层生长和类器官解离。图19C和19D展示了支持三维类器官生长的GF输注的SIS(GF包括EGF、头发生素、R-spondin1、Y-27632、丙戊酸、CHIR)。图19E和19F展示了由重叠有胶原蛋白的GF输注的SIS组成的凝胶贴片。图19E插图展示了单独封装在软凝胶以及SIS基底层中的各个类器官。图19G和19H展示了具有直接添加至培养基的GF(EGF、头发生素、R-spondin1、Y-27632、丙戊酸、CHIR)的典型胶原蛋白悬浮液。图19I和19J展示了具有包埋在凝胶中的GF(EGF、头发生素、R-spondin1、Y-27632、丙戊酸、CHIR)的典型胶原蛋白悬浮液。图19K和19L展示了不具有添加至培养基的额外GF的典型胶原蛋白悬浮液。图19M和19N展示了不具有添加至培养基的额外GF的典型基质胶悬浮液(实验对照)。图20A展示了采用Lgr5+类器官的接种程序的示意图;图案化的圆圈代表输注的生长因子(EGF、头发生素、R-spondin1、Y-27632、丙戊酸、CHIR)。图20B展示了初始粘附相,箭头指示包埋的生长因子的扩散支持体。图20C展示了具有胶原蛋白重叠的完全培养系统,展示了厚度测定。图21A提供了在7个培养系统中的类器官生长的对比。从左至右的系列为基质胶、具有GF的凝胶贴片(Gel-Patch)、具有GF的裸贴片、胶原蛋白I、具有培养基GF的胶原蛋白I、具有包埋的GF的胶原蛋白I和不具有GF的裸贴片。图21B和21C显示了来自具有GF的凝胶贴片系统的48小时时的代表性类器官,而GFP+荧光指示存在于隐窝底部的Lgr5+干细胞(可见到部分中央自体荧光)。24小时(胶原蛋白I(CI)相对于所有)、48小时(具有GF的裸贴片(BPGF)相对于所有;CI相对于基质胶(M);具有GF的CI(CIGF)相对于M、CI、具有包埋的GF的胶原蛋白I(CIEGF)、裸贴片(BP)、具有GF的凝胶贴片系统(PSGF))、72小时(CI相对于所有;BP、CIEGF和CIGF相对于M、PS、BPGF、CI)、96小时(CI相对于所有,BP、CIEGF和CIGF相对于所有)时*=p<0.05。比例尺(图21B和21C)=200μm。图22展示了在具有GF的凝胶贴片系统中的接种的类器官的成功生长和隐窝扩增。示出了展示出接种的类器官在SIS贴片系统上的离体扩增的一系列代表图。失焦的隐窝是在单平面显微镜下观察的三维生长的效果。图23A提供了显示出4mm胃缺损的建立的示意性。图23B中示出6mm贴片被置于缺损上。如图23C所示,如在术后1周的代表性胃样品上所指示,在外部胃壁上没有可见的缺损。根据所放置的贴片类型展示出从内部胃壁观察的严重缺损(箭头):图23D显示了不具有GF的SIS贴片,图23E显示了SIS贴片+GF,且图23F显示了不具有SIS的仅PGSU背衬。具有GF的SIS贴片显示出胃壁缺损的完全关闭和上皮化,而在仅SIS中缺损保持部分开放且在没有SIS的PGSU中完全开放。图24展示了在多种条件下培养的分离的人小肠隐窝的标志物基因表达的实时RT-PCR分析。在所有条件下添加EGF、头发生素和R-spondin1。C:CHIR,Ni:烟酰胺,W:Wnt3a,A:A83-01,S:SB202190,P:PGE2,V:VPA,Tu:土巴他汀A,隐窝指示新鲜分离的人小肠隐窝。误差条指示标准偏差,n=3。图25A-25B展示了用于人小肠干细胞的优化培养条件。图25A展示了在多种条件下培养的人小肠上皮细胞的增殖。在所指定的多种条件下培养新鲜分离的人小肠隐窝。EGF、头发生素和R-spondin1存在于所有条件下。在接种后第9天对细胞数定量。C:CHIR,V:以0.5-1.5mM使用的VPA,Ni:烟酰胺。图25B展示了在如图15A的多种条件下培养的细胞的LGR5表达。使用1mM的VPA。图26展示了人小肠干细胞培养物。细胞在人小肠干细胞培养基(含EGF、头发生素、R-Spondin1、CHIR99021、VPA和烟酰胺)中培养。示出了传代后第5天的第2代细胞。比例尺:400μm。图27展示了在动物模型系统中在7天过程中体内施用CHIR和VPA后的隐窝尺寸增加。具体实施方式定义如本文所用,“抗体”是具有免疫原结合能力的任何免疫球蛋白多肽或其片段。如本文所用,“激动剂”是分别导致靶基因或蛋白的表达或活性增加的试剂。激动剂可以以某种形式与其同源受体结合并使之活化,这直接或间接地带来对靶基因或蛋白的生理学效应。如本文所用,“抑制剂”是分别导致靶基因或蛋白的表达或活性减少的试剂。“拮抗剂”可以是抑制剂,但其更具体地为与受体结合的试剂,而所述结合进而减少或消除了与其它分子的结合。如本文所用,“抑制性核酸”是在施用至哺乳动物细胞时导致靶基因表达减少的双链RNA、siRNA、shRNA或反义RNA或其一部分或其模拟物。典型地,核酸抑制剂包含靶核酸分子的至少一部分或其直系同源物,或者包含靶核酸分子的互补链的至少一部分。典型地,靶基因的表达减少了10%、25%、50%、75%或者90%-100%。“反义”是指与核酸序列的编码链或mRNA互补的核酸序列,与其长度无关。如本文所提及,“互补核酸序列”是能与由互补核苷酸碱基对组成的另一个核酸序列杂交的核酸序列。“杂交”是指在合适的严格条件下在互补的核苷酸碱基之间配对以形成双链分子(例如,在DNA中,腺嘌呤(A)与胸腺嘧啶(T)形成碱基对,而鸟嘌呤(G)与胞嘧啶(C)形成碱基对)(参见例如,Wahl,G.M.和S.L.Berger(1987)MethodsEnzymol.152:399;Kimmel,A.R.(1987)MethodsEnzymol.152:507)。在一个实施方式中,反义RNA被导入个体细胞、组织或类器官。反义核酸可以含有经修饰的主链,例如本领域中已知的硫代磷酸主链、二硫代磷酸主链或其它经修饰的主链,或者可以含有非天然的核苷间连接。“siRNA”是指双链RNA。最优地,siRNA的长度为18、19、20、21、22、23或24个核苷酸并且在其3’末端具有2个碱基悬突。这些dsRNA可以被引入个体细胞或培养系统中。此类siRNA用于下调mRNA水平或启动子活性。如本文所用,“片段”是多肽或核酸分子的一部分。该部分优选含有参照核酸分子或多肽的整个长度的至少10%、20%、30%、40%、50%、60%、70%、80%或90%。片段可以含有10、20、30、40、50、60、70、80、90或100、200、300、400、500、600、700、800、900或1000个核苷酸或氨基酸。如本文所用,术语“干细胞”是指具有自我更新和分化为多种细胞谱系的能力的多能细胞。如本文所用,术语“上皮干细胞”是指具有致力成为多种细胞谱系(包括产生上皮细胞的细胞谱系)的潜力的多能细胞。如本文所用,术语“祖细胞”是指源自干细胞的限于谱系的细胞。如本文所用,术语“上皮祖细胞”是指具有成为限于产生上皮细胞的细胞谱系的潜力的多能细胞。如本文所用,术语“自我更新(self-renewal)”是指细胞分裂而产生一个(不对称分裂)或两个(对称分裂)具有发育潜力的子细胞的过程,所述子细胞的发育潜力与母细胞的发育潜力没有差别。自我更新涉及增殖和未分化状态的维持。如本文所用,术语“植入”是指通过与组织的现有细胞接触而使干细胞或祖细胞在体内并入所关注的组织的过程。如本文所用,术语“分离的”是指在不同程度上不具有在其天然状态下所见通常与其相伴的成分。“分离”指代与原始来源或环境的分离程度。如本文所用,术语细胞的“群体”是大于1个的任意数目的细胞,但优选为至少1×103个细胞、至少1×104个细胞、至少1×105个细胞、至少1×106个细胞、至少1×107个细胞、至少1×108个细胞、至少1×109个细胞或至少1×1010个细胞。如本文所用,术语“类器官(organoid)”或“上皮类器官”是指类似器官或者器官的一部分并拥有与该特定器官相关的细胞类型的细胞簇或聚集体。如本文所用,“受试对象”是包括哺乳纲的任何成员的脊椎动物。如本文所用,“哺乳动物”是包括但不限于人、小鼠、大鼠、绵羊、猴、山羊、兔、仓鼠、马、牛或猪的任何哺乳动物。如本文所用,“非人哺乳动物”是指不是人的任何哺乳动物。如本文所用,“增加”是指例如与参照水平相比增加至少5%,例如5%、6%、7%、8%、9%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、99%、100%以上。如本文所用,“增加”也指例如与参照标准物水平相比增加至少1倍,例如1倍、2倍、3倍、4倍、5倍、6倍、7倍、8倍、9倍、10倍、15倍、20倍、30倍、40倍、50倍、60倍、70倍、80倍、90倍、100倍、200倍、500倍、1000倍以上。如本文所用,“减少”是指例如与参照水平相比减少至少5%,例如5%、6%、7%、8%、9%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、99%或100%。如本文所用,“减少”也指例如与参照水平相比减少至少1倍,例如1倍、2倍、3倍、4倍、5倍、6倍、7倍、8倍、9倍、10倍、15倍、20倍、30倍、40倍、50倍、60倍、70倍、80倍、90倍、100倍、200倍、500倍、1000倍以上。如本文所用,术语“参照”是指标准物或对照条件(例如,未用测试试剂或测试试剂的组合处理)。如本文所用,术语“消除(eliminate)”是指减少至无法检测的水平。如本文所用,术语“协同”或“协同效应”是指大于单独采用时的每种效应的总和的效应;其大于加和效应。如本文所用,术语“治疗”等等是指减少或减轻病症和/或与其相关的症状。应该理解,对病症或病况的治疗并非要求该病症、病况或与其相关的症状被完全消除,但不排除这种情况。在本公开中,“包含”、“含有”和“具有”等可以具有美国专利法中赋予其的含义,并且可以指“包括”等;同样地,“基本由…组成”具有美国专利法中赋予其的含义,并且该术语是开放式的,使得可以存在多于所叙述的内容,条件是所叙述的内容的基本或新颖特征不为多于所叙述的内容的存在所改变,但不包括现有技术实施方式。其它定义呈现于本发明的上下文中。除非另外指出,本文所用的所有科技术语具有与本发明所述的领域的普通技术人员通常所理解的相同的含义。在存在矛盾时,将以包括定义的本说明书为准。本发明的方法和组合物I.细胞培养溶液和系统现已发现促进均质上皮干细胞培养、有效上皮类器官形成以及其规模放大以用于移植的细胞培养溶液和系统。可以利用包含骨形态发生蛋白的抑制剂、糖原合成酶激酶-3β(GSK3β)的抑制剂、与含富亮氨酸重复G蛋白偶联受体5(LGR5)结合的试剂和组蛋白脱乙酰基酶抑制剂的细胞培养溶液来从分离的上皮干细胞形成上皮细胞集落。在具体实施方式中,在该细胞培养溶液的存在下,分离的上皮干细胞的至少约25%、至少约40%、至少约50%、至少约75%、至少约90%至约100%形成上皮细胞集落。另外,在该细胞培养溶液的存在下,单个分离的上皮干细胞的至少约6%形成上皮细胞集落。作为糖原合成酶激酶-3β的抑制剂的1,6-[[2-[[4-(2,4-二氯苯基)-5-(5-甲基-1H-咪唑-2-基)-2-嘧啶基]氨基]乙基]氨基]-3-吡啶甲腈“CHIR99021”(Ring等,2003)与作为组蛋白脱乙酰基酶抑制剂的丙戊酸的组合对集落形成效率具有协同效应。骨形态发生蛋白(BMP)是TGF-β超家族的成员并且包括参与不同物种间的胚胎模式形成以及胚后期的细胞信号传导的金属蛋白酶。BMP的抑制剂包括例如与BMP分子结合以形成其中BMP活性降低或被消除(例如通过防止或抑制该BMP分子与BMP受体的结合)的复合体的试剂。作为另一选择,所述抑制剂是充当拮抗剂或逆激动剂的试剂。这类抑制剂结合BMP受体并且防止BMP与该受体的结合。后一种试剂的实例是结合BMP受体的抗体,且该抗体防止BMP与抗体所结合的受体结合。BMP的抑制剂是本领域公知的(Rider等,2010),并且可以包括但不限于头发生素、脊索发生素(Chordin)、卵泡抑素(Follistatin)(Schneyer等,1994)、DAN、包含DAN半胱氨酸结结构域的蛋白(包括Cerberus和Gremlin)、骨硬化蛋白、原肠形成蛋白、子宫敏感性相关基因-1、结缔组织生长因子(Abreu等,2002),抑制素(Wiater和Vale,2003)、BMP-3(Gamer等,2005)、Dorsomorphin(Yu等,2008)以及包括DMH1(Hao等,2010)andLDN-193189(Cuny等,2008)在内的衍生物。糖原合成酶激酶-3(GSK3)是脯氨酸定向的丝氨酸-苏氨酸激酶,其最初被鉴定为具有两种已知亚型α(GSK3A)和β(GSK-3β)的磷酸化和失活性的糖原合成酶。包含GSK-3β抑制剂的Wnt激动剂是本领域内公知的,且包括但不限于:1,6-[[2-[[4-(2,4-二氯苯基)-5-(5-甲基-1H-咪唑-2-基)-2-嘧啶基]氨基]乙基]氨基]-3-吡啶甲腈“CHIR99021”(Ring等,2003)、LiCl(Klein等,1996)、BIO-丙酮肟((2'Z,3'E)-6-溴靛红-3’-肟)(Meijer等,2003)、N6-[2-[[4-(2,4-二氯苯基)-5-(1H-咪唑-2-基)-2-嘧啶基]氨基]乙基]-3-硝基-2,6-吡啶二胺“CHIR98014”(Ring等,2003)、3-(2,4-二氯苯基)-4-(1-甲基-1H-吲哚-3-基)-1H-吡咯-2,5-二酮“SB216763”(也称GSK-3抑制剂IV)(Coghlan等,2000)、3-[(3-氯-4-羟基苯基)氨基]-4-(2-硝基苯基)-1H-吡咯-2,5-二酮“SB415286”(Coghlan等,2000)、5-乙基-7,8-二甲氧基-1H-吡咯并[3,4-c]-异喹啉-1,3-(2H)-二酮“3F8”(Zhong等,2009)、9-溴-7,12-二氢吲哚并[3,2-d][1]苯并氮杂卓-6(5H)-酮“肯帕罗酮”(Schultz等,1999;Zaharevitz等,1999)、9-溴-7,12-二氢-吡啶并[3',2':2,3]氮杂卓[4,5-b]吲哚-6(5H)-酮“1-氮杂肯帕罗酮”(Schultz等,1999;Zaharevitz等,1999)、N-(3-氯-4-甲基苯基)-5-(4-硝基苯基)-1,3,4-噁二唑-2-胺“TC-G24”(Khanfar等,2010)、2-甲基-5-[3-[4-(甲基亚硫酰基)苯基]-5-苯并呋喃基]-1,3,4-噁二唑“TCS2002”(Saitoh等,2009)、N-[(4-甲氧基苯基)甲基]-N'-(5-硝基-2-噻唑基)脲“AR-A014418”(Bhat等,2003)、3-[5-[4-(2-羟基-2-甲基-1-氧基丙基)-1-哌嗪基]-2-(三氟甲基)苯基]-4-(1H-吲哚-3-基)-1H-吡咯-2,5-二酮“TCS21311”(Thoma等,2011)、3-[[6-(3-氨基苯基)-7H-吡咯并[2,3-d]嘧啶-4-基]氧基]-苯酚“TWS119”(Ding等,2003)、((2'Z,3'E)-6-溴靛红-3'-丙酮肟)“BIO-丙酮肟”(也称作GSK-3抑制剂IX)(Meijer等,2003)、4-(2-氨基-4-氧基-2–亚咪唑啉-5-亚基(ylidene))-2-溴-4,5,6,7-四氢吡咯并[2,3-c]氮杂卓-8-酮“10Z-海门地塞(Hymenialdisine)”(Breton等,1997)、2-[(3-碘苯基)甲基硫烷基]-5-吡啶-4-基-1,3,4-噁二唑(也称作GSK-3抑制剂II)(Wada,2009)、4-苄基-2-甲基-1,2,4-噻二唑烷-3,5-二酮(也称作GSK-3抑制剂I)(Wada,2009)、3-氨基-6-(4-((4-甲基哌嗪-1-基)磺酰基)苯基)-N-(吡啶-3-基)吡嗪-2-甲酰胺(HCl盐)(也称GSK-3β抑制剂XXVII)(美国专利公开第2006/0173014号)、4,5-二(1-甲基-1H-吲哚-3-基)-1,2-二氢吡唑-3-酮(也称作GSK-3β抑制剂XXVI)(Chen等,2011)、FRATtide肽SQPETRTGDDDPHRLLQQLVLSGNLIKEAVRRLHSRRLQ(SEQIDNO:1)(Bax等,2001)、3-氨基-1H-吡唑并[3,4-b]喹喔啉“Cdk1/5抑制剂”(Andreani等,1996,2000;Katoh等,2011)以及4-((5-溴-2-吡啶基)氨基)-4-氧基丁酸“Bikinin”(DeRybel等,2009)。优选地,GSK-3抑制剂为CHIR99021。含富亮氨酸重复G蛋白偶联受体5(LGR5)以其受限的隐窝表达和在多种成人组织和癌中对干细胞的标记闻名。与LGR5受体结合的试剂包括但不限于R-spondin(Kim等,2006;Nam等,2006),例如R-spondin1、R-spondin2、R-spondin3和R-spondin4。优选地,与LGR5受体结合的试剂是R-spondin1。在替代性实施方式中,可以用氯化锂(LiCl)取代CHIR99021,或可以用至少约3μmCHIR99021取代R-spondin1。组蛋白是结合DNA并形成核小体的核蛋白。其直接参与DNA包装为染色体和对转录的调节。组蛋白乙酰化/去乙酰化是在转录过程中调节染色质结构动力学的主要因素。减少或消除组蛋白去乙酰化的组蛋白脱乙酰基酶抑制剂是本领域公知的,且可以包括但不限于Pan-HDAC抑制剂(例如,丙戊酸、曲古霉素A、辛二酰苯胺异羟肟酸(suberoylanilidehydroxamicacid)和辛二酰异羟肟酸(suberohydroxamicacid,SBHA))和HDAC6抑制剂(例如,土巴星(Tubacin)、土巴他汀(Tubastatin)A和化合物7)。在替代性实施方式中,Atoh1抑制剂可以增强或代替组蛋白脱乙酰基酶抑制剂。Atoh1抑制剂包括例如导致Atoh1表达的减少或消除的抑制性核酸。靶向Atoh1的抑制性核酸是本领域已知的(Shi等,2010)。细胞培养溶液可以可选地包括表皮生长因子和/或Notch激动剂。表皮生长因子是参与包括细胞增殖、分化、移动和存活在内的多种细胞功能以及组织发育的细胞信号传导分子。Notch蛋白是在发育期间调节细胞命运决策的单程跨膜受体。Notch激动剂包括例如增加细胞中的Notch活性的试剂。Notch激动剂是本领域公知的,且可包括但不限于Notch1抗体(N1Ab)、Delta1、Delta样3、Delta样4、Jagged1、Jagged2、DSL肽和DeltaD。在特定实施方式中,细胞培养溶液包括约5ng/ml至约500ng/mlEGF、约5ng/ml至约500ng/ml的头发生素、约50ng/ml至约1000ng/ml的R-spondin、约0.1μΜ至约10μΜ的CHIR99021和约0.1mM至约5mM的丙戊酸。在其它实施方式中,优选的是在细胞培养溶液中的Wnt激动剂和HDAC6抑制剂的组合。因此,细胞培养溶液可以包括骨形态发生蛋白的抑制剂、R-spondin1、Wnt激动剂和HDAC6抑制剂。Wnt蛋白是参与控制胚胎发育的胞外信号传导分子。Wnt激动剂是本领域公知的,并且包括但不限于:Wnt-1/Int-1(Nusse等,1982)、Wnt-2/Irp(Int-I-相关蛋白)(Wainwright等,1988)、Wnt-2b/13(Katoh等,1996)、Wnt-3/Int-4(Katoh等,2001)、Wnt-3a(Saitoh等,2001)、Wnt-4(Smolich等,1993)、Wnt-5a(Burrus等,1995)、Wnt-5b(Burrus等,1995)、Wnt-6(Burrus等,1995)、Wnt-7a(Smolich等,1993)、Wnt-7b(Burrus等,1995)、Wnt-8a/8d(Saitoh等,2001)、Wnt-8b(Lako等,1998)、Wnt-9a/14(Bergstein等,1997)、Wnt-9b/14b/15(Bergstein等,1997)、Wnt-10a(Wang等,1996)、Wnt-10b/12(Wang等,1996)、Wnt-11(Lako等,1998)、Wnt-16(Bergstein等,1997;Fear等,2000)、R-spondin1、R-spondin2、R-spondin3、R-spondin4、诺里病蛋白(Planutis等,2007)、CHIR99021、LiCl、BIO((2'Z,3'E)-6-溴靛红-3’-肟)、CHIR98014、SB216763、SB415286、3F8、肯帕罗酮、1-氮杂肯帕罗酮、TC-G24、TCS2002、AR-A014418、2-氨基4-[3,4-(亚甲基二氧)苄基-氨基]-6-(3-甲氧基苯基)嘧啶(Liu等,2005)、2-[2-(4-乙酰基苯基)二氮烯基]-2-(3,4-二氢-3,3-二甲基-1(2H)-亚异喹啉基)乙酰胺“IQ1”(Miyabayashi等,2007)、(3α,5β,12α,20R)-3,12-二氢胆-24-烷酸“DCA”(Pai等,2004)、(2S)-2-[2-(茚满-5-基氧基)-9-(1,1'-联苯-4-基)甲基]-9H-嘌呤-6-基氨基]-3-苯基-1-丙醇“QS11”(Zhang等,2007)、哌啶基二苯基磺酰基磺酰胺1“WAY-316606”(Bodine等,2009)、(杂)芳基嘧啶(Gilbert等,2010)、10Z-海门地塞、TCS21311、TWS119、GSK-3β抑制剂II、GSK-3β抑制剂I、GSK-3β抑制剂XXVII、GSK-3β抑制剂XXVI、FRATtide、Cdk1/5抑制剂和Bikinin。细胞培养系统包括本发明的细胞培养溶液和上皮类器官、上皮干细胞或上皮祖细胞或者上皮干细胞或上皮祖细胞的群体。上皮类器官是本领域已知的(Yao等,2010;Lukacs等,2010)。上皮干细胞包括但不限于小肠、胃、肺、胰和结肠的干细胞。上皮干细胞还包括LGR5阳性干细胞,其源自包括但不限于小肠、内耳、脑、肾、肝、视网膜、胃、胰、乳腺、毛囊、卵巢、肾上腺髓质、皮肤、胸腺、味蕾、哺乳腺、恶性瘤和肿瘤的来源。上皮干细胞还包括表达LGR5的LGR5阳性干细胞的休眠前体(Buczacki等,2013)。细胞培养系统中的上皮干细胞或上皮祖细胞的群体可以包括例如所述系统中的至少10%、20%、30%、40%、50%、60%、70%、80%、90%、95%、99%或100%细胞。优选的是,在重复传代过程中维持上皮干细胞或上皮祖细胞的群体。在特定实施方式中,可以在包括烟酰胺或Sirt1特异性HDAC抑制剂(例如EX527)的额外成分的存在下培养人上皮干细胞。在特定实施方式中,可以在Wnt激动剂、组蛋白脱乙酰基酶抑制剂、表皮生长因子、碱性成纤维细胞生长因子和可选的骨形态发生蛋白的存在下培养源自内耳的上皮干细胞。细胞培养系统可以包括额外的成分,所述额外成分包括但不限于粘膜下层基底和包含胶原蛋白的涂层,以便形成适于移植的三维组织构建体。胶原蛋白涂层可以覆盖在选定的上皮组织或细胞类型之上和/或将其围绕,以及被置于选定的上皮组织或细胞类型与粘膜下层基底之间。选定的上皮组织或细胞类型包括但不限于上皮干细胞、包括上皮干细胞的分离组织或者上皮类器官。小肠粘膜下层(SIS)是常见的具有生物相容性且在临床中使用的支架(delaFuente等,2003;Ueno等,2007;Schultz等,2002;Kehoe等,2012)。粘膜下层类支架经历快速的新生血管形成、颗粒形成、生物降解,并且就蛋白组成而言通常具有很好的跨物种的保守性。通过用预选出的上皮细胞类型接种粘膜下层并用胶原蛋白类覆层(collagen-basedoverlay)来促进生长,制备了用于三维组织构建体的改良的粘膜下层类支架。改变具有这种覆层的SIS的组成促进SIS伤的细胞粘附和生长,从而导致粘膜下层粘附的细胞三维扩增为大的上皮类器官。来自温血脊椎动物的动物源组织基质支架(例如,胃粘膜下层、膀胱粘膜下层、消化器官粘膜下层、呼吸器官粘膜下层、生殖器官粘膜下层和肝基底膜)可与SIS互换,因此落在本公开的范围内。可以在本领域已知的细胞培养溶液或本发明上文中所描述的细胞培养溶液的存在下培养组织构建体。例如,可以在包括骨形态发生蛋白的抑制剂、R-spondin1、CHIR99021和组蛋白脱乙酰基酶抑制剂的细胞培养溶液的存在下培养组织构建体。另外,粘膜下层基底可以包含类似的小分子和/或生长因子的组合,所述小分子和/或生长因子包括但不限于表皮生长因子、骨形态发生蛋白、R-spondin1、CHIR99021、Y-27632和组蛋白脱乙酰基酶抑制剂。在替代性实施方式中,提供了无胶原蛋白的上皮细胞培养系统,其中粘膜下层基底含有如表皮生长因子、骨形态发生蛋白、R-spondin1、CHIR99021、Y-27632和组蛋白脱乙酰基酶抑制剂等小分子和/或生长因子的组合。可以在本领域已知的或上文所述的细胞培养溶液的存在下培养无胶原蛋白的组织构建体。II.利用细胞培养溶液和系统的方法可以使用本发明的细胞培养溶液和系统来从分离的上皮干细胞高效地形成上皮类器官。在特定实施方式中,在头发生素、R-spondin1、CHIR99021和组蛋白脱乙酰基酶抑制剂(例如,丙戊酸)的存在下温育分离的上皮干细胞以至少约25%、35%、40%、50%、60%、70%、80%、90%或100%的效率形成了上皮细胞集落。在另一个特定实施方式中,在头发生素、R-spondin1、CHIR99021和组蛋白脱乙酰基酶抑制剂的存在下温育单个分离的上皮干细胞以至少约6%至约100%的效率形成了上皮细胞集落。随后可将保持在本发明的细胞培养溶液和系统内的上皮干细胞引导至特定的分化途径,包括会导致形成潘氏细胞、肠上皮细胞、杯状细胞和肠内分泌细胞的那些分化途径。据显示,潘氏细胞是为肝细胞维持提供关键信号的小肠隐窝内的Lgr5+干细胞壁龛(stemcellniche)的重要成分(Sato等,2011b;Yilmaz等,2012)。如下生成潘氏细胞:首先在包含BMP的抑制剂、R-spondin1、CHIR99021和组蛋白脱乙酰基酶抑制剂(例如,丙戊酸)的细胞培养溶液的存在下温育上皮干细胞,随后进一步在至少一种Wnt激动剂和至少一种Notch抑制剂(例如,DAPT)的存在下温育上皮干细胞。类似地,随后进一步在至少一种Wnt抑制剂和至少一种组蛋白脱乙酰基酶抑制剂的存在下温育上皮干细胞来生成肠上皮细胞;以及随后进一步在至少一种Wnt抑制剂和和至少一种Notch抑制剂的存在下温育上皮干细胞来生成杯状细胞。Wnt抑制剂可以为但不限于:N-(6-甲基-2-苯并噻唑基)-2-[(3,4,6,7-四氢-4-氧-3-苯基噻吩并[3,2-d]嘧啶-2-基)硫基]乙酰胺("IWP-2")(Chen,Dodge等,2009)。Notch可以为但不限于:N-[N-(3,5-二氟苯乙酰基)-L-丙氨酰基]-S-苯基甘氨酸叔丁酯("DAPT"或"LY-374973")(Dovey,John等,2001)、N1-[(7S)-6,7-二氢-6-氧-5H-二苯并[b,d]氮杂卓-7-基]-2,2-二甲基-N3-(2,2,3,3,3-五氟丙基)-("RO4929097",丙二酰胺)(He,Luistro等,2011)、(S)-2-羟基-3-甲基-N-((S)-1-((S)-3-甲基-2-氧-2,3,4,5-四氢-1H-苯并[d]氮杂卓-1-基氨基)-1-氧丙-2-基)丁酰胺("LY450139")(Lanz,Hosley等,2004),N-[(1S)-2-[[(7S)-6,7-二氢-5-甲基-6-氧-5H-二苯并[b,d]氮杂卓-7-基]氨基]-1-甲基-2-氧乙基]-2-羟基-3-甲基-,(2S)-("LY900009",丁酰胺)Selleckchem:目录号S7168、N-[(1S)-2-[[(7S)-6,7-二氢-5-(2-羟基乙基)-6-氧-5H-吡啶并[3,2-a][3]苯并[d]氮杂卓-7-基]氨基]-1-甲基-2-氧乙基]-4,4,4-三氟-("LY3039478",丁酰胺)Selleckchem:目录号S7169、N-[(1S)-2-[[(7S)-6,7-二氢-5-甲基-6-氧-5H-二苯并[b,d]氮杂卓-7-基]氨基]-1-甲基-2-氧乙基]-3,5-二氟-α-羟基-,(αS)-("LY411575",苯乙酰胺)(Wehner,Cizelsky等,2014)、7-(S)-[N'(3,5-二氟苯乙酰基)-L-丙氨酰基]氨基-5-甲基-5,7-二氢-6H-二苯并[b,d]氮杂卓-6-酮("YO-01027"(DBZ))(Milano,McKay等,2004)、(2R)-2-(N-(2-氟-4-(1,2,4-噁二唑-3-基)苄基)-4-氯苯磺酰氨基)-5,5,5-三氟戊酰胺("BMS-708163")(Saito,Fu等,2014)、(2R,3S)-N-[(3S)-1-甲基-2-氧-5-苯基-2,3-二氢-1H-1,4-苯并二氮杂卓-3-基]-2,3-双(3,3,3-三氟丙基)琥珀酰胺("BMS-906024")(Huang,Greer等,2009)、(S,S)-2-[2-(3,5-二氟苯基)-乙酰氨基]-N-(1-甲基-2-氧-5-苯基-2,3-二氢-1H-苯并[e][1,4]二氮杂卓-3-基)-丙酰胺("化合物E")(Milano,McKay等,2004)、2-[(1R)-1-[[(4-氯苯基)磺酰基](2,5-二氟苯基)氨基]乙基-5-氟苯丁酸("BMS-299897")(Anderson,Holtz等,2005)、SAHM1Calbiochem目录号:491002、(选择性Abeta42)Calbiochem目录号:565792和N-(2-溴苯基)-N’-(2-羟基-4-硝基苯基)脲("SB225002")(Bakshi,Jin等,2009)。随后在至少一种Notch抑制剂和抑制受体酪氨酸激酶(RTK)、丝裂原活化蛋白(MAP)激酶(也称作MAPK/ERK)或胞外信号调节激酶(ERK)(也称作MAPK/ERK)中的至少一种的试剂的存在下进一步温育上皮干细胞产生了上皮内分泌细胞。MAP激酶可以是但不限于丝裂原活化蛋白(MAP)激酶激酶,而抑制MAP激酶的试剂可以是但不限于:N-[(2S)-2,3-二羟基丙基]-3-[(2-氟-4-碘苯基)氨基]-4-吡啶甲酰胺("AS-703026")(Kim,Kong等,2010)、N-[(2R)-2,3-二羟基丙基]-3,4-二氟-2-[(2-氟-4-碘苯基)氨基]苯甲酰胺("PD0325901")(Thompson和Lyons,2005)、5-(2-苯基-吡唑并[1,5-a]吡啶-3-基)-1H-吡唑并[3,4-c]哒嗪-3-基胺("FR180204")(Ohori,Kinoshita等,2005)、2-(2-氨基-3-甲氧基苯基)-4H-色烯-4-酮("PD98059")(Alessi,Cuenda等,1995)、6-(4-溴-2-氯苯基氨基)-7-氟-N-(2-羟基乙氧基)-3-甲基-3H-苯并[d]咪唑-5-甲酰胺("Selumetinib")(Huynh,Soo等,2007)、(Z)-3-氨基-3-(4-氨基苯基硫基)-2-(2-(三氟甲基)苯基)丙烯腈("SL-327")(Chen,Operana等,2005)、(2Z,3Z)-2,3-双(氨基(2-氨基苯基硫基)亚甲基)丁二腈,乙醇("U0126")(Favata,Horiuchi等,1998)、(R)-3-(2,3-二羟基丙基)-6-氟-5-(2-氟-4-碘基苯基氨基)-8-甲基吡啶并[2,3-d]嘧啶-4,7(3H,8H)-二酮("TAK-733")(Dong,Dougan等,2011)和N-(3-(3-环丙基-5-(2-氟-4-碘苯基氨基)-6,8-二甲基-2,4,7-三氧-3,4,6,7-四氢吡啶并[4,3-d]嘧啶-1-(2H)-基)苯基)乙酰胺("Trametinib")(Gilmartin,Bleam等,2011)。抑制RTK的试剂可以是但不限于:N-(3-氯-4-氟苯基)-7-甲氧基-6-[3-(4-吗啉基)丙氧基]-4-喹唑啉胺("吉非替尼(Gefitinib)")(Ciardiello2000)、(E)-2-氰基-3-(3,4-二羟基苯基)-2-丙烯酰胺("AG99")(Gazit,Yaish等,1989)、4-[[(2S)-2-(3-氯苯基)-2-羟基乙基]氨基]-3-[7-甲基-5-(4-吗啉基)-1H-苯并咪唑-2-基]-2(1H)-吡啶酮("BMS536924")(Huang,Greer等,2009)、5-(2-苯基-吡唑并[1,5-a]吡啶-3-基)-1H-吡唑并[3,4-c]哒嗪-3-醇("FR180209")(Anastassiadis,Duong-Ly等,2013)、N-(3-乙炔基苯基)-6,7-双(2-甲氧基乙氧基)喹唑啉-4-胺盐酸盐("厄洛替尼(Erlotinib)")(Kuiper,Heideman等,2014)、(S,E)-N-(4-(3-氯-4-氟苯基氨基)-7-(四氢呋喃-3-基氧基)喹唑啉-6-基)-4-(二甲基氨基)丁-2-烯酰胺("阿法替尼(Afatinib)")(Minkovsky和Berezov,2008)、N-(4-(3-氟苄氧基)-3-氯苯基)-6-(5-((2-(甲基磺酰基)乙基氨基)甲基)呋喃-2-基)喹唑啉-4-胺,二(4-甲基苯磺酸盐)("拉帕替尼(Lapatinib)")(Xia,Mullin等,2002),N-(3-(5-氯-2-(2-甲氧基-4-(4-甲基哌嗪-1-基)苯基氨基)嘧啶-4-基氧基)苯基)丙烯酰胺("WZ4002")(Sakuma,Yamazaki等,2012)和2-[(3,4-二羟基苯基)亚甲基]-("AG-18",丙二腈)(Gazit,Yaish等,1989)。本发明的细胞培养溶液和系统可以另外用于形成包含可移植上皮的三维组织构建体以用于再生目的。这种组织构建体可以根据本领域已知方法移植至宿主内(Lloyd等,2006;Gupta等,2006;Yui等,2012)。对治疗易感的组织包括所有受损组织,包括那些可能经疾病、损伤、外伤、自体免疫反应或者经由病毒或细菌感染而已受到损害的组织。可以采用微创移植技术,包括图像引导技术。组织构建体可以被直接注入或植入受损组织内,其在所述受损组织内可以复制并根据其在体内的位置最终分化为所需的细胞类型。组织构建体可以经由结肠灌肠直接植入或注入。对于上部肠应用,可以在口服输送前采用微粉化(micronization)。因此,特别适用于修复的受损组织包括结肠、小肠、胰腺、食管和胃部系统。技术人员可理解对于特定的待治疗病况而言组织构建体的适当剂量是多少。本发明的细胞培养溶液和系统可以另外用于预测化学治疗剂或化学治疗剂的组合在体内的效力。这类方法与临床设定下的应用特别相关,因为许多患者采用多种药物治疗。通过在本发明的培养溶液中培养分离的肿瘤细胞聚集体或单个细胞,可以根据本领域已知的方法形成肿瘤类器官(Sato等,2011a)。这类培养物可以用作各种癌的临床模型,所述癌包括但不限于前列腺癌、乳腺癌、胃癌、胰腺癌、肺癌、脑癌、结肠癌、小肠癌和膀胱癌。可以在本发明的细胞培养溶液(例如,包括BMP抑制剂、R-spondin1、Wnt激动剂、组蛋白脱乙酰基酶抑制剂)和化学治疗剂的存在下温育肿瘤类器官。随后,对相关参数进行测定和评估。相关参数包括对细胞生活力的抑制、细胞增殖的抑制、肿瘤相关基因表达的抑制、凋亡的活化以及细胞存活的抑制。检测到与参照(例如,对照)相比的参数的增加表明化学治疗剂相对于肿瘤类器官的效力,这可预测所述化学治疗剂在体内的效力。一般而言,将化学治疗剂在据估计有治疗性的剂量范围与细胞培养系统温育,且其持续时间足以产生生理学效果。温育时间可以为约1小时至约24小时,或者可根据需要延长至数日甚至数周。温育条件通常涉及使用本发明的培养溶液并保持温度为约37℃。化学治疗剂是对其治愈、缓解、治疗或预防受试对象中的癌症的能力进行过评估的任何物质,其可以包括但不限于化学化合物、生物试剂、蛋白、肽、核酸、脂质、多糖、补充剂和抗体。对肿瘤相关基因表达的抑制可根据本领域已知方法来确定。例如,相对于对照的对肿瘤相关基因表达的抑制可以通过微芯片分析、RT-PCR、原位杂交、荧光原位杂交或Northern分析来检测。相对于对照的对肿瘤相关蛋白表达的抑制可以通过定量Western印迹、免疫组织化学、免疫荧光、酶联免疫吸附测试、氨基酸序列分析、荧光活化细胞分选或蛋白浓度测试来检测。例如,可以利用胃癌基因筛选测试来鉴定血管紧张素、载脂蛋白E、载脂蛋白A-I、铜蓝蛋白、凝血酶原、纤维连接蛋白、维生素D结合蛋白、凝溶胶蛋白、间α胰蛋白酶抑制剂重链H3、激肽原-1、血清对氧磷酶/芳香酯酶1、α-1-抗糜蛋白酶和转甲状腺素蛋白的基因表达的变化。凋亡的活化可以根据本领域已知的方法来确定。例如,相对于对照的细胞死亡的增加可以通过乳酸脱氢酶释放、半胱天冬酶活性、膜联蛋白V染色、磷脂酰丝氨酸染色或TUNEL测试来检测。某些测试检测细胞死亡过程中相对较晚期的事件,例如乳酸脱氢酶释放。半胱天冬酶活化是慢性毒性和细胞死亡的共有特征。半胱天冬酶活性可以通过荧光光谱在毒性损伤后相对快速地测定(30分钟至4小时),由此使其自身适于高通量筛选技术。常用于检测细胞的凋亡或坏死的其它标志物和测试可以包括但不限于受影响的细胞的质膜外层上的磷脂酰丝氨酸的存在、膜联蛋白V染色以及末端脱氧核苷酰转移酶缺口末端(nick-end)标记测试(TUNEL)。细胞生活力的抑制可以根据本领域已知方法来确定,所述方法包括但不限于利用如台盼蓝、4,6-二氨基苯基吲哚(DAPI)和碘化吡啶等活体染料对活细胞和死细胞的差分计数。细胞增殖的抑制可以根据本领域已知方法来确定,所述方法包括但不限于通过溴脱氧尿苷引入的DNA定量、氚代胸苷(3H-胸苷)的测定、碘化吡啶染色、通过四唑盐或阿尔玛蓝(AlamarBlue)还原的胞内代谢分析以及胞内ATP浓度定量。其它方法包括:通过分光光度分析测定裂解细胞的总核酸含量;采用抗cdc6肽抗体、抗人mRNA结合蛋白HuR抗体(抗HuR抗体)、针对D细胞周期蛋白和细胞周期蛋白依赖性激酶抑制剂的抗体的荧光标记;Ki-67抗原检测;通过定量Western印迹、免疫组织化学、免疫荧光、酶联免疫吸附测试、氨基酸序列分析、荧光活化细胞分选或蛋白浓度测试对蛋白含量的测定。采用上述方法的可商购试剂盒包括:ChromaTideTM核苷酸标记、羧基荧光素二乙酸酯的琥珀酰亚氨基酯、ABSOLUTE-STMSBIP细胞增殖测试试剂盒、VybrantDiI细胞标记溶液、CyQUANT细胞增殖测试试剂盒、VybrantTMMTT细胞增殖测试试剂盒和FluoReporterTMBlue荧光分析核酸测试试剂盒。对细胞存活的遏制可以根据包括克隆生成测试在内的本领域已知方法来确定。III.促进体内的上皮细胞扩增或上皮组织生长的方法通过对受试对象施用Wnt激动剂和组蛋白脱乙酰基酶抑制剂或者Wnt激动剂和Notch激动剂可以将上皮干细胞在体内扩增,所述上皮干细胞包括肠、胃、肺、胰腺和结肠的干细胞,特别是存在于小肠、内耳、脑、肾、肝、视网膜、胃、胰腺、乳腺、毛囊、卵巢、肾上腺髓质、皮肤、胸腺、味蕾和哺乳腺内的LGR5阳性干细胞。这些组合促进上皮细胞的扩增,从而导致体内上皮组织的生长。在特定实施方式中,可以在对受试对象施用Wnt激动剂(例如,CHIR99021)和组蛋白脱乙酰基酶抑制剂(例如,丙戊酸)或者Wnt激动剂(例如,CHIR99021)和Notch激动剂之后在体内形成肠上皮细胞。在某些实施方式中,这些组合(例如,CHIR99021和丙戊酸)可以治疗受试对象中的肠病症,所述肠病症包括但不限于:小肠结肠炎;病毒感染,例如非特异性肠炎或特异性病毒性肠炎;憩室炎;细菌性小肠结肠炎,例如沙门氏菌病、志贺氏菌病、弯曲杆菌小肠结肠炎或耶尔森菌小肠结肠炎;原生动物感染,例如阿米巴病;蠕虫感染(helminthicinfection);和假膜性结肠炎、以及慢性阻塞性肺病和囊性纤维化的肺部并发症;阑尾炎;萎缩性胃炎;Barrett食管病;肺炎;宫颈炎;慢性间质性肾炎;结肠炎;结肠憩室炎;结膜炎;接触性皮炎;柯林氏溃疡;库兴氏溃疡;膀胱炎;坏疽;牙龈炎;乳腺炎;食道炎;胰腺炎;脂膜炎;蜂窝织炎性胃炎;肾小球肾炎;和字体免疫疾病,其包括但不限于炎性肠病、溃疡性结肠炎、克罗恩病、艾迪生病和肾小球肾炎(例如,新月体性肾小球肾炎、增殖性肾小球肾炎)。施用的剂量将取决于接受者的年龄、性别、健康和体重、同时进行的治疗的种类(如果有的话)、治疗频率以及所需的效果的性质。本发明的组合物的施用的剂量范围是足以产生所需效果的剂量。剂量不应过大而导致不良副作用,例如不希望的交叉反应和过敏性反应等等。一般而言,剂量将随患者的状况和疾病程度而变化。禁忌症(counterindication)(如果有的话)、免疫耐受性以及其它变量也会影响适合的剂量。例如,要考虑到诸如患者的年龄、体重、性别、物种、一般健康/状况、待治疗的病况、治疗时机、合适的动物模型(例如,啮齿类、小鼠)中涉及的活性成分的LD50以及其它已知因素等因素;并且这类剂量可以为毫克量级(例如,0.5mg/kg至500mg/kg的量级)或其它合适的量,或者可以由本文中的实施例来计算,例如考虑到典型的受试动物(例如小鼠)的平均体重和向其施用的剂量(例如,100毫克),且因此本领域技术人员能够在不经过度实验的情况下确定剂量。特别是,在人受试对象中,CHIR99021以约0.1mg/kg/日至约100mg/kg/日的量施用,而丙戊酸的量是以约1mg/kg/日至约1000mg/kg/日的量施用。在特定实施方式中,丙戊酸的量是15mg/kg/日至约40mg/kg/日。CHIR99021和丙戊酸的药物组合物可以通过实现其预定目的的任何方式同时或依次施用。例如,施用可以为局部、胃肠外、皮下、静脉内、肌内、腹膜内、透皮、经直肠或经颊途径。作为另外的选择,或者同时地,可以通过口服途径进行施用。从上面的描述中,显而易见的是可以对本文所述的发明进行变化和修改以使其适用于各种应用和条件。本文中描述了方法和材料以用于本发明;也可以使用本领域已知的其它的合适的方法和材料。所述材料、方法和实例仅出于说明性目的,而并非意在进行限制。这些实施方式也落在后续权利要求的范围内。在本文的变量的任何定义中对一系列要素的叙述包括了作为任何单个要素或所列要素的组合(或子组合)的该变量的定义。本文中对实施方式的叙述包括了作为任何单个实施方式或与任何其它实施方式或其部分的组合的实施方式。通过援引将本文提及的任何公开、专利申请、专利、序列、数据库登录条目和其它参考文献以其整体并入。本文的示例性实施方式也可以通过以下编号段落的任一段来描述:1.一种在细胞培养系统中形成肠上皮细胞的方法,所述方法包括在至少一种Wnt抑制剂和至少一种组蛋白脱乙酰基酶抑制剂的存在下温育上皮干细胞,所述至少一种Wnt抑制剂和至少一种组蛋白脱乙酰基酶抑制剂各自为足以在细胞培养系统中产生肠上皮细胞的量。2.如第1段所述的方法,其中所述组蛋白脱乙酰基酶抑制剂是Pan-HDAC抑制剂。3.如第2段所述的方法,其中所述Pan-HDAC抑制剂选自由丙戊酸、曲古霉素A、辛二酰苯胺异羟肟酸和SBHA组成的组。4.如第1段所述的方法,其中所述组蛋白脱乙酰基酶抑制剂是HDAC6抑制剂。5.如第4段所述的方法,其中所述HDAC6抑制剂选自由土巴星、土巴他汀A和化合物7组成的组。6.如第1段所述的方法,其中所述Wnt激动剂选自由IWP-2、XAV-939、ICG-001、LGK-974、IWR-1-endo、KY02111、Wnt-C59、DKK-1、FH-535、Box5、肽Pen-N3、抗-SFRP抗体和抗LRP6抗体组成的组。7.如第1段所述的方法,还包括在骨形态发生蛋白的抑制剂的存在下温育上皮干细胞。8.如第7段所述的方法,其中所述骨形态发生蛋白的抑制剂选自由头发生素、脊索发生素、卵泡抑素、DAN、含DAN半胱氨酸结结构域的蛋白、骨硬化蛋白、原肠形成蛋白、子宫敏感性相关基因-1、结缔组织生长因子、抑制素、BMP-3和Dorsomorphin组成的组。9.如第1段所述的方法,还包括在表皮生长因子的存在下温育上皮干细胞。10.一种在细胞培养系统中形成杯状细胞的方法,所述方法包括在至少一种Wnt抑制剂和至少一种Notch抑制剂的存在下温育上皮干细胞,所述至少一种Wnt抑制剂和至少一种Notch抑制剂各自为足以在细胞培养系统中产生杯状细胞的量。11.如第10段所述的方法,其中所述Notch抑制剂选自由DAPT、RO4929097、LY450139、LY900009、LY3039478、LY411575、YO-01027、BMS-708163、BMS-906024、化合物E、BMS-299897、SAHM1、选择性Abeta42(Abeta42-Selective)和SB225002组成的组。12.如第10段所述的方法,其中所述Wnt抑制剂选自由IWP-2、XAV-939、ICG-001、LGK-974、IWR-1-endo、KY02111、Wnt-C59、DKK-1、FH-535、Box5、肽Pen-N3、抗-SFRP抗体、抗LRP6抗体和抗APC抗体组成的组。13.如第10段所述的方法,还包括在表皮生长因子的存在下温育上皮干细胞。14.一种在培养系统中形成肠内分泌细胞的方法,该方法包括在至少一种Notch抑制剂和抑制受体酪氨酸激酶、丝裂原活化蛋白(MAP)激酶或胞外信号调节激酶(ERK)中的至少一种的试剂的存在下温育上皮干细胞,所述至少一种Notch抑制剂和所述试剂各自的量是足以在细胞培养系统中产生肠内分泌细胞的量。15.如第14段所述的方法,其中所述Notch抑制剂选自由DAPT,RO4929097,LY450139,LY900009,LY3039478,LY411575,YO-01027,BMS-708163,BMS-906024,化合物E,BMS-299897,SAHM1,选择性Abeta42和SB225002组成的组。16.如第14段所述的方法,其中所述MAP激酶是丝裂原活化蛋白激酶激酶(MEK)。17.如第14段所述的方法,其中抑制MAP激酶的试剂选自由AS-703026、PD0325901、PD98059、司美替尼(Selumetinib)、SL-327、U0126、TAK-733和曲美替尼(Trametinib)组成的组。18.如第14段所述的方法,其中抑制RTK的试剂选自由吉非替尼(Gefitinib)、AG99、厄洛替尼(Erlotinib)、阿法替尼(Afatinib)、拉帕替尼(Lapatinib)、WZ4002和AG-18组成的组。19.如第14段所述的方法,其中抑制ERK的试剂是AS-703026或PD0325901。20.如第14段所述的方法,还包括在骨形态发生蛋白的抑制剂的存在下温育上皮干细胞。21.如第20段所述的方法,其中所述骨形态发生蛋白选自由头发生素、脊索发生素、卵泡抑素、DAN、含DAN半胱氨酸结结构域的蛋白、骨硬化蛋白、原肠形成蛋白、子宫敏感性相关基因-1、结缔组织生长因子、抑制素、BMP-3和Dorsomorphin组成的组。22.如第14段所述的方法,还包括在与含富亮氨酸重复G蛋白偶联受体5结合的试剂的存在下温育上皮干细胞。23.如第22段所述的方法,其中所述与含富亮氨酸重复G蛋白偶联受体5结合的试剂选自由R-spondin1、R-spondin2、R-spondin3和R-spondin4组成的组。24.如第14段所述的方法,还包括在表皮生长因子的存在下温育上皮干细胞。25.一种在有需要的受试对象中形成小肠上皮细胞的方法,所述方法包括对所述受试对象施用足以在该受试对象中形成小肠上皮细胞的量的至少一种Wnt激动剂和组蛋白脱乙酰基酶抑制剂。26.如第25段所述的方法,其中所述受试对象是人。27.如第25段所述的方法,其中所述Wnt激动剂由以下组成的组:Wnt-1/Int-1、Wnt-2/Irp(Int-I-相关蛋白)、Wnt-2b/13、Wnt-3/Int-4、Wnt-3a、Wnt-4、Wnt-5a、Wnt-5b、Wnt-6、Wnt-7a、Wnt-7b、Wnt-8a/8d、Wnt-8b、Wnt-9a/14、Wnt-9b/14b/15、Wnt-10a、Wnt-10b/12、Wnt-11、Wnt-16、R-spondin1、R-spondin2、R-spondin3、R-spondin4、诺里病蛋白、CHIR99021、LiCl、BIO((2'Z,3'E)-6-溴靛红-3’-肟)、CHIR98014、SB216763、SB415286、3F8、肯帕罗酮、1-氮杂肯帕罗酮、TC-G24、TCS2002、AR-A014418、2-氨基-4-[3,4-(亚甲基二氧)苄基-氨基]-6-(3-甲氧基苯基)嘧啶、IQ1、DCA、QS11、WAY-316606、(杂)芳基嘧啶、10Z-海门地塞、TCS21311、TWS119、GSK-3抑制剂IX、GSK-3抑制剂IV、GSK-3β抑制剂II、GSK-3β抑制剂I、GSK-3β抑制剂XXVII、GSK-3β抑制剂XXVI、FRATtide、Cdk1/5抑制剂、Bikinin和1-氮杂肯帕罗酮。28.如第25段所述的方法,其中所述组蛋白脱乙酰基酶抑制剂是Pan-HDAC抑制剂。29.如第28段所述的方法,其中所述Pan-HDAC抑制剂选自由丙戊酸、曲古霉素A、辛二酰苯胺异羟肟酸和SBHA组成的组。30.如第25段所述的方法,其中所述组蛋白脱乙酰基酶抑制剂是HDAC6抑制剂。31.如第30段所述的方法,其中所述HDAC6抑制剂选自由土巴星、土巴他汀A和化合物7组成的组。32.如第25段所述的方法,其中所述Wnt激动剂是CHIR99021且所述组蛋白脱乙酰基酶抑制剂是丙戊酸。33.如第32段所述的方法,其中所述CHIR99021以约0.1mg/kg/日至约100mg/kg/日的量施用,而丙戊酸以约1mg/kg/日至约1000mg/kg/日的量施用。34.一种在有需要的受试对象中生成上皮组织的方法,所述方法包括对所述受试对象施用足以增加所述上皮组织内的上皮干细胞的量的至少一种Wnt激动剂和组蛋白脱乙酰基酶抑制剂或者Wnt激动剂和Notch激动剂,由此在所述受试对象中生成上皮组织。35.如第34段所述的方法,其中所示上皮干细胞是存在于小肠、内耳、脑、肾、肝、视网膜、胃、胰腺、乳腺、毛囊、卵巢、肾上腺髓质、皮肤、胸腺、味蕾或哺乳腺内的LGR5阳性干细胞。36.一种在有需要的受试对象中形成小肠上皮细胞的方法,所述方法包括对所述受试对象施用足以在该受试对象中形成小肠上皮细胞的量的至少一种Wnt激动剂和Notch激动剂。35.如第34或36段所述的方法,其中所述受试对象是人。36.如第34或36段所述的方法,其中所述Wnt激动剂选自由以下组成的组:Wnt-1/Int-1、Wnt-2/Irp(Int-I-相关蛋白)、Wnt-2b/13、Wnt-3/Int-4、Wnt-3a、Wnt-4、Wnt-5a、Wnt-5b、Wnt-6、Wnt-7a、Wnt-7b、Wnt-8a/8d、Wnt-8b、Wnt-9a/14、Wnt-9b/14b/15、Wnt-10a、Wnt-10b/12、Wnt-11、Wnt-16、R-spondin1、R-spondin2、R-spondin3、R-spondin4、诺里病蛋白、CHIR99021、LiCl、BIO((2'Z,3'E)-6-溴靛红-3’-肟)、CHIR98014、SB216763、SB415286、3F8、肯帕罗酮、1-氮杂肯帕罗酮、TC-G24、TCS2002、AR-A014418、2-氨基-4-[3,4-(亚甲基二氧)苄基-氨基]-6-(3-甲氧基苯基)嘧啶、IQ1、DCA、QS11、WAY-316606、(杂)芳基嘧啶、10Z-海门地塞、TCS21311、TWS119、GSK-3抑制剂IX、GSK-3抑制剂IV、GSK-3β抑制剂II、GSK-3β抑制剂I、GSK-3β抑制剂XXVII、GSK-3β抑制剂XXVI、FRATtide、Cdk1/5抑制剂、Bikinin和1-氮杂肯帕罗酮。37.如第34或36段所述的方法,其中所述Notch激动剂是Notch1抗体(N1Ab)、Delta1、Delta样3、Delta样4、Jagged1、Jagged2、DSL肽和DeltaD。38.一种治疗小肠病症的方法,所述方法包括对受试对象施用Wnt激动剂和组蛋白脱乙酰基酶抑制剂或者Wnt激动剂和Notch。39.如第38段所述的方法,其中所述受试对象是人。40.如第38段所述的方法,其中所述Wnt激动剂选自由以下组成的组:Wnt-1/Int-1、Wnt-2/Irp(Int-I-相关蛋白)、Wnt-2b/13、Wnt-3/Int-4、Wnt-3a、Wnt-4、Wnt-5a、Wnt-5b、Wnt-6、Wnt-7a、Wnt-7b、Wnt-8a/8d、Wnt-8b、Wnt-9a/14、Wnt-9b/14b/15、Wnt-10a、Wnt-10b/12、Wnt-11、Wnt-16、R-spondin1、R-spondin2、R-spondin3、R-spondin4、诺里病蛋白、CHIR99021、LiCl、BIO((2'Z,3'E)-6-溴靛红-3’-肟)、CHIR98014、SB216763、SB415286、3F8、肯帕罗酮、1-氮杂肯帕罗酮、TC-G24、TCS2002、AR-A014418、2-氨基-4-[3,4-(亚甲基二氧)苄基-氨基]-6-(3-甲氧基苯基)嘧啶、IQ1、DCA、QS11、WAY-316606、(杂)芳基嘧啶、10Z-海门地塞、TCS21311、TWS119、GSK-3抑制剂IX、GSK-3抑制剂IV、GSK-3β抑制剂II、GSK-3β抑制剂I、GSK-3β抑制剂XXVII、GSK-3β抑制剂XXVI、FRATtide、Cdk1/5抑制剂、Bikinin和1-氮杂肯帕罗酮。41.如第38段所述的方法,其中所述组蛋白脱乙酰基酶抑制剂是Pan-HDAC抑制剂。42.如第41段所述的方法,其中所述Pan-HDAC抑制剂选自由丙戊酸、曲古霉素A、辛二酰苯胺异羟肟酸和SBHA组成的组。43.如第38段所述的方法,其中所述组蛋白脱乙酰基酶抑制剂是HDAC6抑制剂。44.如第43段所述的方法,其中所述HDAC6抑制剂选自由土巴星、土巴他汀A和化合物7组成的组。45.如第38段所述的方法,其中所述Wnt激动剂是CHIR99021且所述组蛋白脱乙酰基酶抑制剂是丙戊酸。46.如45所述的方法,其中所述CHIR99021以约0.1mg/kg/日至约100mg/kg/日的量施用,而丙戊酸以约1mg/kg/日至约1000mg/kg/日的量施用。47.如第38段所述的方法,其中所述Notch激动剂是Notch1抗体(N1Ab)、Delta1、Delta样3、Delta样4、Jagged1、Jagged2、DSL肽和DeltaD。48.如第38至47段中任一段所述的方法,其中所述小肠病症选自由以下病症组成的组:小肠结肠炎;病毒感染,如非特异性肠炎或特异性病毒性肠炎;憩室炎;细菌性小肠结肠炎,如沙门氏菌病、志贺氏菌病、弯曲杆菌小肠结肠炎或耶尔森菌小肠结肠炎;原生动物感染,如阿米巴虫病;蠕虫感染;和假膜性结肠炎以及囊性纤维化的肺部并发症和慢性阻塞性肺病;阑尾炎;萎缩性胃炎;巴雷特食管症;肺炎;子宫颈炎;慢性间质性肾炎;大肠炎;结肠憩室炎;结膜炎;接触性皮炎;柯林氏溃疡;库兴氏溃疡;膀胱炎;坏疽;牙龈炎;乳腺炎;食管炎;胰腺炎;脂膜炎;蜂窝织炎性胃炎;肾小球肾炎;以及自体免疫疾病,包括但不限于炎性肠病、溃疡性结肠炎、克罗恩病、艾迪生病和肾小球肾炎(例如,新月体肾小球肾炎、增殖性肾小球肾炎)。在以下实施例中对本发明进行进一步描述,但这些实施例并不会限制权利要求书中所记载的本发明的范围。实施例实施例1.利用小分子的组合维持了Lgr5+小肠干细胞的自我更新ISC的自我更新和分化经数个信号传导途径的协同调节而受到控制(Crosnier,Stamataki,&Lewis,2006;Scoville,Sato,He,&Li,2008;vanderFlier&Clevers,2009)。在本研究中,鉴定了这样的小分子:所述小分子靶向相关的信号传导途径以维持Lgr5+干细胞的自我更新状态并且不依赖于其它细胞类型所提供的提示而控制所述Lgr5+干细胞的分化。如前所述(Sato等,2009)分离出隐窝和单个Lgr5-GFP细胞。简言之,收获小肠的近侧一半、纵向打开并用冷PBS清洗以去除腔内容物。然后用剪刀将组织剪为2至4mm的碎片,再通过用10-ml移液管移取出来用冷PBS洗涤5至10次。将组织片段与2mMEDTA在PBS中于冰上温育30分钟。去除EDTA后,将组织片段用PBS洗涤以释放隐窝。收集富集有隐窝的上清液部分,使其通过70μm细胞过滤器(cellstrainer)并在300g离心5分钟。将细胞颗粒在没有生长因子的细胞培养基中重悬,并在150g离心以除去单个细胞。然后将隐窝培养或用于单个细胞分离。为获取单个细胞,将隐窝于37℃在培养基中温育45分钟,然后用玻璃移液管捣碎。使解离的细胞通过20μm细胞过滤器,将其用碘化丙啶负染色,并如前所述(Sato等,2009)通过流式细胞仪(FACSAria,BD)分选出单个活的高GFP细胞。将分离自Lgr5-EGFP-ires-CreERT2小鼠的小肠隐窝包埋在基质胶中并在EGF、头发生素和R-spondin1(统称为ENR)的存在下于常规培养条件下培养,从而产生了具有隐窝的类器官和在隐窝尖端的绒毛样结构域和GFP+细胞,这与此前报道相一致(Sato等,2009)。在最小改动的情况下如前所述(Sato等,2009)培养分离的隐窝或单细胞。简言之,将隐窝或单细胞包埋在基质胶中并平板接种至24孔板的孔的中心。在基质胶(生长因子经减少;BDBioscience)聚合后,添加含有生长因子和小分子的500μl培养基(AdvancedDMEM/F12(LifeTechnologies)),所述生长因子包括EGF(50ng/ml,LifeTechnologies)、头发生素(100ng/ml,Peprotech)和R-spondin1(500ng/ml,R&D),小分子包括CHIR99021(3μΜ,Stemgent)和丙戊酸(1mM,Sigma-Aldrich)。为比较不同培养条件,在基质胶中铺平板后立即将小分子或生长因子添加至新鲜分离的隐窝,以便测试使隐窝内的ISC的潜在分化最小化且由此维持隐窝培养物的能力。每隔1天更换细胞培养基。对于单细胞的培养物,将细胞包埋在含有Jagged-1肽(1μΜ;AnaSpec)的基质胶中并在开始的2天添加Y-27632(10μΜ;Tocris)。使细胞如前所述作为细胞集落传代(Sato等,2009)或者作为单细胞传代。对于单细胞传代,除去细胞培养基并添加Accutase(LifeTechnologies)。在37℃温育10至20分钟后,通过移液吸取(pipetting)将细胞集落解离为单个细胞。然后将细胞洗涤、在新鲜基质胶中包埋并铺平板至24孔板内。每6天以1:20的分裂比将在CV条件下培养的细胞传代。培养的隐窝的大约一半含有GFP+细胞,这与Lgr5-GFP小鼠的体内GFP表达相一致(图1)。ENR条件中所用的生长因子提供了关键但不足够的维持Lgr5+干细胞自我更新的提示(cue)。为了鉴定出维持小肠干细胞的自我更新状态的关键因子,利用Lgr5-GFP报告子在ENR条件下测试了选定的调节ISC信号传导途径的小分子,例如Wnt、Notch和BMP。CHIR99021(本文中称为CHIR或C)是活化Wnt信号传导途径的GSK3抑制剂,其促进了隐窝细胞的增殖,这通过对培养物中的类器官的平均尺寸和细胞数目的定量所指示(图2A、2B和3A、3B)。CHIR增加了培养物中的GFP+细胞的百分比和相对GFP强度,这指示了干细胞自我更新的增加(图2A和2B)。特别是,大量GFP阴性细胞仍存在于类器官内(图2A),这可能是干细胞自我更新的维护不充分的结果或是促进了隐窝中更成熟的GFP阴性细胞的增殖的结果。丙戊酸(VPA或V)是一种组蛋白脱乙酰基酶抑制剂,其也在存在最小量的GFP阴性细胞的情况下显著增加了GFP+类器官的GFP表达(图2A)。令人感兴趣的是,当将CHIR和VPA组合时(CV),培养物中的细胞增殖以及表达GFP的细胞的百分比和相对GFP强度都显著增加(图2A和2B),且GFP+类器官中几乎为纯的GFP+细胞(图2A),这表明该培养条件下的分化或分化细胞增殖最小化并且干细胞自我更新增加。CV条件下的GFP+细胞显示出与新鲜分离的单细胞相对应的单个高GFP群体(图3C),表现出如前所报道(Sato等,2009)的Lgr5+干细胞群体。特别是,在CV条件下,R-spondin1和头发生素仍是维持Lgr5+干细胞的自我更新所需要的,而EGF促进隐窝的增殖,其可以从培养物中移除而不影响对Lgr5+细胞的维持(图3D)。增加CHIR浓度进一步消除了对R-Spondin1促进GFP表达的需求(图3E),这与R-Spondin1增加Wnt/β-连环素信号传导的作用相一致。此外,VPA或CHIR+VPA还促进来自结肠的Lgr5+干细胞的GFP表达(图3F)。另外,与R-Spondin1相比,R-Spondin2在促进ENR条件下的类器官形成方面在更低的浓度显示出更好的效力(图3G)。发明人还测试了此前据显示会使人EPHB2+结肠干细胞或结肠隐窝维持在极大未分化状态的培养条件(Jung等,2011;Sato等,2011a),但对于小肠Lgr5-GFP干细胞未能实现类似的效果(图4A和4B),这表明这些因素可能对EPHB2+结肠干细胞相对于Lgr5+干细胞通过不同的机理起作用。为了进一步证实在不存在成熟细胞类型和GFP阴性干细胞时CHIR和VPA的增殖和Lgr5+自我更新效果(条件是隐窝显示出马赛克式的GFP表达图案),通过FACS分选分离出单个高GFP细胞(图3C)并在ENR以及CHIR或VPA的存在下或者两种化合物都存在时(CV条件)在基质胶中培养。在前两天如前所述(Sato等,2009)添加抑制单个干细胞的失巢凋亡的Rho激酶抑制剂Y-27632(Watanabe等,2007)。在培养7天后,含GFP+干细胞的集落自发地形成。与隐窝培养物类似,CHIR显著增加了细胞增殖但其仅中等程度地增加了GFP表达,而VPA促进了GFP表达且具有最小的促增殖效果。对于CV条件,细胞增殖显著地增加,并且培养基中大于97%的细胞是GFP+细胞(图2C-2E和5A)。值得注意的是,与隐窝培养物相比,当在CHIR中培养纯的单个Lgr5+干细胞时,所形成的类器官含有大量的GFP阴性细胞,从而表明干细胞在该条件下分化并因此需要其它因素来维持Lgr5+干细胞的自我更新状态。当在标准ENR条件下培养单个Lgr5-GFP+细胞时,极少细胞生长为类器官,这与此前报道相一致(Sato等,2009),且很可能是出于次优的培养条件的原因。当CHIR被添加到培养物后(ENR-C),集落形成效率显著增加了20倍至50倍(图2F、2G和5B、5C),从而提供了与Wnt3A以100ng/ml添加时相似的响应(图2F和Sato等,2011b)。与此形成极大反差的是,VPA在不存在CHIR时仅微弱地增加了集落形成效率(ENR-V,图2F、2G和5B、5C)。令人惊奇的是,当在CHIR和VPA都存在的情况下培养分离的单个Lgr5-GFP+干细胞时,存在协同效应并且总细胞群体的约25%至40%生长为集落(图2F)。据认为这代表着对于Lgr5+干细胞已有报道的最有效的集落形成。表1.图2G中的集落形成的集落数ENRENR--CENR-VENR-CVENR-WENR-WV平均7.333333158.666732.33333956135.3333475.3333表2.图5C中的集落形成效率的集落数ENRENR-CENR-WENR-VENR-CV平均3164.7556.2524.5495.25考虑到经FACS分选的细胞的一部分处于促凋亡状态下并且通常在12小时内死亡(Sato等,2011b),在接种后12小时对活细胞手动计数。在CHIR和VPA均存在于培养基中时,大于90%的活细胞生长为类器官(图5D)。表3.图5D中的集落形成效率ENRENR-VENR-CENR-CVENR-WENR-WV平均000.1422910.9211540.1325760.190111注:接种了<100个细胞,因此对于R或RV计算的效率为0此外,在CV条件下培养的细胞可以作为单个细胞以与新鲜分离的Lgr5-GFP+细胞相似的集落形成效率传代超过10代,且没有损失增殖能力,并且其显示出正常的核型(2n=40)(图2H)。这些结果表明,CHIR和VPA提供了在标准ENR条件中不存在的信号从而维持Lgr5+干细胞的自我更新。如前所报道,ENR条件下的细胞生长为具有含有所有小肠上皮细胞类型的隐窝-绒毛结构的类器官,这由碱性磷酸酶(Alp)阳性肠上皮细胞、粘蛋白2(Muc2)阳性杯状细胞、嗜铬粒蛋白A(ChgA)阳性肠内分泌细胞、溶菌酶(Lyz)阳性潘氏细胞和Lgr5-GFP+干细胞的染色所证实。Lgr5+干细胞仅驻留在隐窝的尖端处(图6A和7A)。Ki67和EdU染色揭示,增殖细胞仅存在于隐窝结构域内(图6B和6C)。然而,在CV条件下,GFP+干细胞存在于整个集落中,且存在极少的潘氏细胞(图6A)而不存在其它细胞类型。与ENR培养物相比,CV条件下的Ki67或EdU阳性增殖细胞存在于整个细胞集落(图6B和6C)。这由定量实时PCR所证实,与ENR条件下的细胞相比,CV条件下的细胞表达了最低水平的Alpi(肠上皮细胞)、Muc2(杯状细胞)、ChgA(肠内分泌细胞)、中等水平的溶菌酶(潘氏细胞)和高水平的Lgr5(ISC)(图6D)。该表达模式在多次传代中得到维持,且Lgr5表达水平也得到维持(图6D)。仅CHIR会减少肠上皮细胞分化,但同时增加潘氏细胞分化(图6D),这与此前的报道相一致(Farin等,2012)。虽然仅VPA会减少分泌性分化(图6D)并且有助于维持更高比例的GFP+干细胞,其不足以抑制干细胞的分化。事实上,在存在VPA但不存在CHIR或其它促进Wnt信号传导的试剂的情况下培养分离的单个干细胞时,其存活率远低于存在Wnt时。当Wnt途径被IWP-2阻断时,仅VPA不能维持干细胞的自我更新(图7B、7C中的IV条件)。CHIR和VPA的组合抑制了肠上皮细胞和分泌性分化并且维持了Lgr5+干细胞的自我更新程序(图6D)。这些结果表明仅CHIR或仅VPA并不足以维持Lgr5+干细胞的自我更新,但在与CHIR或其它Wnt活化物组合时显示出协同效应。综上,CHIR和VPA这两种小分子能在不与潘氏细胞直接接触或不存在潘氏细胞的情况下支持Lgr5+干细胞自我更新。特别地,这些小分子能极大地改善从单个干细胞的集落形成,从而表明其提供了通常由潘氏细胞所提供的关键的壁龛信号。实施例2.Lgr5+干细胞在CHIR和VPA中培养后维持了多能性小肠干细胞具有自我更新以及分化为小肠上皮中的所有细胞类型(包括四种主要细胞类型:肠上皮细胞、杯状细胞、肠内分泌细胞和潘氏细胞)的能力。为了测试在CV条件下培养的Lgr5+干细胞的分化能力,将细胞集落转移至ENR条件下,该ENR条件允许Lgr5+干细胞自发地分化为小肠中的成熟细胞类型。如所预期的,在移除CHIR和VPA之后,类器官的形态改变为在ENR条件下培养的类器官的典型形态,具有隐窝-绒毛结构和处于隐窝尖端的Lgr5+干细胞(图7A和8A)。分化标志物Alpi、Muc2和ChgA的mRNA表达提高并且细胞表达了相似水平的溶菌酶(比较图7B中的ENR和CV)。对这些标志物的免疫细胞化学染色证实了培养物中分化的细胞类型的存在(图7A)。实施例3.小肠干细胞的分化受到控制接下来,在具有在体外扩增高纯度Lgr5+干细胞的能力的情况下,尝试了引导Lgr5+干细胞分化为成熟细胞类型。由于Wnt和Notch是控制ISC分化的两个主要信号传导途径,使用了Wnt途径抑制剂IWP-2(也称I)和Notch途径抑制剂DAPT(也称D)来诱导培养的Lgr5+干细胞的分化。由于细胞在ENR条件下自发分化为含有所有上皮细胞类型的类器官,将ENR包括在分化培养物中。在将单个干细胞在CV条件下培养6天后,收获细胞集落并将其转移至数个孔内并且在单一或多种抑制剂的存在下进行培养(图8B)。如图7B所示,用IWP-2或DAPT代替CV减少了ISC标志物Lgr5表达并且诱导了分化标志物Alpi、Muc2、ChgA和溶菌酶的表达。特别是,VPA的存在(例如,比较R和V、I和IV、C和CV,或者D和DV)导致了更低水平的Muc2、ChgA和溶菌酶的表达,但对Alpi并非如此,这表明VPA特异性地抑制了分泌性细胞系的分化。作为另一选择,采用IWP-2的Wnt抑制有限诱导Alpi表达,且中等的程度提高了Muc2和ChgA表达但完全消除了溶菌酶和Lgr5表达。这表明Wnt信号传导是维持严格性(sternness)和抑制分化所必需,但也为潘氏细胞分化所需。Notch抑制剂DAPT极大提高了包括Muc2、ChgA和溶菌酶在内的分泌性细胞类型的标志物,这与此前对于Notch抑制诱导了分泌性细胞分化的报道相一致(Milano等,2004;VanDussen等,2012;Wong等,2004)。此外,IWP-2和VPA的组合据推测通过结合两种抑制剂的效果而特异性诱导了肠上皮细胞分化,其中IWP-2诱导Lgr5+干细胞分化而VPA抑制Lgr5+干细胞向分泌性细胞类型的分化。类似地,DAPT和CHIR的组合主要诱导了潘氏细胞分化,而IWP-2和DAPT的组合主要诱导了杯状细胞分化。这些条件也诱导了类似于每种分化细胞类型的形态的明显形态变化(图7C和8D)。对肠上皮细胞、杯状细胞和潘氏细胞标志物的染色证实了上述观察(图7C、7D和8E、8F)。IWP-2或CHIR的存在没有显著影响ChgA表达,这表明与杯状细胞和潘氏细胞相比,肠内分泌细胞的分化并不严格地需要Wnt抑制或活化。实施例4.对介导CHIR和VPA的响应的机理的检查CHIR是激活Wnt/β-连环素信号传导途径的高度特异性GSK3抑制剂(Bain等,2007),且已被用于维持胚胎干细胞的自我更新状态(Ying等,2008)。为证实CHIR的效果是通过激活Wnt途径实现,测试了包括锂和Wnt3a在内的其它Wnt途径活化物的效果。用LiCl或Wnt3a代替CHIR增加了隐窝增殖,这由与ENR条件相比集落尺寸和细胞数目的增加所指示(图9A和9B)。这些条件下的集落如前所述(Sato等,2011b)显示出孢囊样结构(图9A)。类似地,测试了包括pan-HDAC抑制剂和类型特异性抑制剂在内的其它HDAC抑制剂的效果。pan-HDAC抑制剂TSA以及HDAC6特异性抑制剂土巴他汀A和化合物7显示出与VPA类似的促进GFP表达的效果(图9C和9D)。然而,包括SBHA和丁酸盐以及I类(CI-994、MS275,图9C和9D)、IIA类(MC1568,图9C和9D)和III类(烟酰胺,图9F)HDAC抑制剂在内的其它pan-HDAC抑制剂不显示或仅显示中等程度的促进GFP表达的效果。TSA和VPA在更高浓度显示出显著的增殖抑制效果,但在两种浓度下均维持GFP表达(图9E)。值得注意的是,用在人结肠隐窝的培养中(Jung等,2011;Sato等,2011a)的作为Sirtuin家族HDAC抑制剂(III类)的烟酰胺在与CHIR或Wnt3a组合时没有促进GFP表达或细胞增殖,这表明其通过不同于VPA的机理起作用。此外,当使用CHIR与TSA或土巴他汀A、或者VPA与Wnt3a、BIO或LiCl来培养单个Lgr5+干细胞时,细胞展示出与CV条件类似的集落形成效率、集落形态和GFP表达(图10)。此前报道已显示,Notch途径活化是抑制分泌性细胞分化和维持干细胞的自我更新所需,这与VPA处理的效果相一致。对VPA是否靶向Notch途径的要素以发挥其效果进行了评估。首先,测试了通过添加VPA对Notch抑制的恢复,用γ-分泌酶抑制剂DAPT的处理导致细胞增殖和GFP表达受损,这通过VPA以剂量依赖性方式得到恢复(图11A)。这表明VPA作用于NICD形成的下游并且能够规避配体-受体介导的Notch活化。此前据显示,VPA会活化癌细胞系中的Notch途径(Greenblatt等,2007;Stockhausen等,2005)。为了研究VPA对Notch途径活化的效果,用VPA处理了在ENR或ENRC条件下培养的细胞,并对其Notch途径基因的表达进行了分析。然而,确定了对ENR或ENR-C添加VPA24小时中等程度地减少了Notch1或Hes1(Notch的下游靶基因)的表达(图11B和11C)。另外,观察到用VPA和CHIR处理24小时或6天的细胞中阴性Notch靶标Atoh1(Math1)的显著减少(图11B-11D)。Atoh1据显示对于ISC朝分泌性细胞系的分化至关重要(vanEs等,2010;Yang等,2001)。在通过Atoh1缺乏诱导的潘氏细胞消融(ablation)后小肠干细胞在体内和体外均维持了功能性(Durand等,2012;Kim等,2012)。CHIR或CHIR+VPA处理后的Atoh1抑制会有助于维持小肠干细胞的自我更新程序。因此,通过使用生长因子和小分子抑制剂的组合,现已实现了在体外对Lgr5+小肠干细胞的自我更新及其向小肠上皮中的分化的细胞类型分化的控制,这近似地模拟了小肠上皮生物学(图12A和12B)。在生理学条件下(图12A),通过Wnt和Notch途径的协作,ISC的自我更新和分化得到了控制。两种途径的活化(由WntOn和NotchOn所指示)将ISC维持在未分化的处于自我更新中的状态。Notch途径的失活(NotchOff)导致分泌性细胞类型的特化,且Wnt途径的进一步失活(WntOff)导致杯状细胞分化。在不存在Notch时的Wnt途径连续活化导致潘氏细胞分化。肠内分泌细胞分化不存在对Wnt途径的强依赖性。作为另一选择,连续的Notch活化和Wnt失活导致肠上皮细胞分化。当在体外培养Lgr5+干细胞时(图12B),CHIR99021使Wnt途径活化并抑制肠上皮细胞分化,但仅VPA或其与CHIR一同抑制了分泌性细胞特化。CHIR和VPA的组合将ISC维持在未分化的处于自我更新中的状态。Notch途径被DAPT抑制导致分泌性细胞类型的特化,且进一步添加CHIR导致潘氏细胞分化,而添加Wnt途径抑制剂IWP-2导致杯状细胞分化。作为另一选择,诱导分化和抑制分泌性细胞特化的IWP-2和VPA的组合会导致肠上皮细胞分化。实施例5.源自内耳的Lgr5阳性干细胞的增殖在存在CHIR和VPA时得到增加内耳中的Corti哺乳动物器官的感觉毛细胞在受损害时不会再生。Li等,2003发现成熟小囊感觉上皮含有展示出干细胞的特征性特点的细胞。在EGF、bFGF和IGF-1的存在下,这些内耳干细胞可以在体外作为悬浮球培养(Li等,2003)。后来据发现,有丝分裂后支持细胞在培养物中维持了分裂和转分化(trans-differentiate)为新的毛细胞的能力(Patricia等,2006,Nature),这表明这些支持细胞可能是内耳干细胞。可以在EGF、bFGF的存在下在胚胎耳周间充质饲养细胞上于体外培养纯化的耳蜗支持细胞(Patricia等,2006)。Shi等发现,新生和成年鼠科耳蜗中的支持细胞亚组表达了作为成熟干细胞标志物的Lgr5(Shi等,2012)。重要的是,在EGF、bFGF和IGF-1的存在下,可以在单细胞悬浮液中分离并培养Lgr5阳性细胞,且其展示出与Lgr5阴性细胞相比自我更新能力的增强。在此前内耳干细胞培养物所利用的悬浮培养方法中,仅约0.068%的总细胞(Li等,2003)或2%的经分选的Lgr5阳性细胞能形成球体(Shi等,2012),这可能是因为细胞生长环境不适宜。如本文所述,现已开发出用于内耳干细胞的高度有效的体外培养系统。来自P1至P2Lgr5-GFP小鼠的分离小鼠耳蜗含有Lgr5阳性细胞,如图13A所示。首先建立了与Lgr5+小肠干细胞培养物中所用相同的培养条件(EGF、头发生素、R-spondin1或"ENR")。如图13B所示,与仅EGF相比,EGF、头发生素和R-spondin1的组合增加了来自单个耳蜗上皮干细胞的集落形成效率。如所预期的,与仅CHIR不同,CHIR和VPA的组合极大地增加了细胞的集落形成效率、细胞增殖和GFP表达。令人惊讶的是,从ENR-CV组合("ER-CV"条件)中去除头发生素导致了略微更高的集落形成效率和更高的GFP表达水平,如图13B中的亮场和GFP图像所示。这些结果表明,通过R-spondin1或CHIR的Wnt途径活化促进了内耳干细胞的增殖,并且CHIR和VPA极大地促进了内耳干细胞的增殖和自我更新。包括EGF、bFGF和IGF-1在内的促有丝分裂生长因子此前被用于悬浮培养系统,且据显示会促进分离的内耳干细胞的球体形成(Li等,2003;Shi等,2011)。下面对在存在如表1所述的这些生长因子时的CHIR和VPA的效果进行了测试。表4.细胞培养溶液利用Accutase将来自Lgr5-GFP小鼠的分离的Corti器官解离为单细胞并在基质胶中的可溶性因子和小分子的多种组合中培养8天。将所得培养物进一步解离为单个细胞并利用FACS进行分析。与此前结果一致的是,添加CHIR和VPA,而不是仅添加CHIR或VPA,极大地增加了细胞增殖(9至20倍)和GFP表达,如GFP+细胞的百分比(60倍)和GFP+细胞的相对GFP强度(2倍)所显示(图14A和14B)。另外,与ENR条件相比,EGF、bFGF和IGF-1的组合(称为EFI)改善了细胞增殖和GFP表达(图14A-14C)。为了进一步研究在组合CHIR和VPA时的各生长因子的效果,对包括促有丝分裂生长因子(EGF、bFGF和IGF-1)在内的生长因子以及与CHIR和VPA组合的Wnt激动剂R-spondin1进行了测试。对CV条件添加EGF极大地增加了细胞增殖,如培养物中细胞数目增加所指示。对EGF+CV添加bFGF而不是添加IGF-1或R-spondin1进一步增加了细胞增殖和GFP表达(图14D)。虽然向EGF+bFGF组合添加IGF-1或R-Spondin1略微增加了GFP表达(图14E),发明人发现其对于维持所培养的细胞的增殖和GFP表达并不关键(图14F)。实施例6.Lgr5阳性小肠干细胞形成可移植隐窝为了检查移植小肠干细胞的潜力,在体外对健康结肠组织的小肠隐窝植入进行了测试。从野生型小鼠收集结肠组织并纵向剖开。取下1cm片段并用PBS冲洗。通过用手术刀刮削除去上皮层,并将组织置于24孔板内。用DiD膜染料对分离自Lgr5-GFP小鼠的小肠隐窝进行染色,并将其置于5μl-10μl隐窝培养基内的结肠组织之上,所述隐窝培养基包含下述材料:高级DMEM/F12(Invitrogen)、2mMGlutaMax(Invitrogen)、10mMHepes(Invitrogen)、100U/ml青霉素/100ug/ml链霉素(Invitrogen)、1xN2补充剂(Invitrogen)、1xB27补充剂(Invitrogen)、50ng/mlEGF(Peprotech)、500ng/mlR-spondin1(R&DSystems)、10μΜY-27632(Rho激酶抑制剂,Sigma-Aldrich)和100ng/ml头发生素(Peprotech)。将上述组织进一步在湿润环境中在37℃温育30至60分钟以使隐窝能够附着。其后向孔内添加隐窝培养基并将隐窝再培养7天。接种的隐窝在24小时中附着于结肠并扩增(图15)。荧光图像显示,隐窝在48小时中植于结肠上(图16)并维持了至少1周的Lgr5-GFP表达(图17)。为了进一步测试小肠隐窝的植入能力,使用了展示出自发性溃疡性结肠炎并模拟人类条件的TRUC小鼠模型。从TRUC小鼠切下脱垂的组织并用PbS冲洗并置于24孔板内。小肠隐窝用DiD染色并置于脱垂组织之上。然后将上述组织在湿润环境中于37℃温育30分钟至60分钟以使隐窝能够附着。将脱垂组织和隐窝在体外进一步培养2天。如所预期的,隐窝植于脱垂组织上(图17)。实施例7.小肠类器官的贴片培养系统模拟三维生理环境现已开发了能够支持大规模的有组织的三维细胞结构体(例如,类器官)在粘膜下层支架上的生长的体外培养系统。如下文所述,通过用预先选择的细胞类型来接种粘膜下层并用独特的胶原蛋白类覆层促进生长,制备了用于三维组织构建体的改进的基于小肠粘膜下层("SIS")的培养系统。该覆层起初为粘性液体预聚合物,其被用于覆盖接种的早期细胞或类器官(从细胞继代培养),以及覆盖SIS基底来将细胞包覆在胶原蛋白残留物中(图19E和19F)。在聚合后,液体固化以维持其与细胞膜以及SIS接触的位置和促进类器官扩展。现已发现,改变SIS与该覆层的组成促进细胞附着和生长。与体内相反,这在体外会促进组织成熟。这与其它基于粘膜下层的类似合成体系相比是独特的改进,因为在移植之前实现了粘附的细胞三维扩增为大的内生型类器官。另外,也发现了不使用凝胶层的以与基质胶相当的速度支持三维类器官在粘膜下层上的生长的方法。该系统由脊椎动物SIS和接种在SIS贴片上的预先选择的细胞组成。在细胞接种之前,将预先选择的生物活性剂灌注在所述贴片中以支持该无凝胶培养系统(图19C和19D)。为了开发所述贴片培养系统,研究了SIS基底和具有灌注的生长因子的胶原蛋白覆层的各种组合(图19E和19F)。这使得能够创建更生理性的组织界面,该组织界面具有从坚实(SiS)至柔软(胶原蛋白)基质的过度。经确定,对接种的细胞和涂覆有胶原蛋白残基的类器官提供了与基质胶所提供的类似的三维环境。因此,该系统是用在三维类器官构建体的培养中的基质胶的合适替代物。接种的细胞或类器官的大部分既在细胞膜的下半部分附着于SIS而且被在膜的未附着区上的聚合的胶原蛋白所包绕(图19E,内插图)。因此,每个细胞膜都被功能性地封装在某种形式的基质(SIS或胶原蛋白)中。在某些样品中,除了仅SIS外采用了各种生物活性剂来支持细胞和类器官接种、生长和分化(图19F)。虽然申请人描述了关注对小肠干细胞培养物特异性的生物分子,据宣称可以将生物分子定制来辅助来自包括胰腺、乳腺、肝和胃组织的不同组织的其它接种的细胞的生长。因此,组织特异性生物分子可以选自以下:抗病毒剂、抗微生物剂、抗生物剂、氨基酸、肽、蛋白、糖蛋白、脂蛋白、抗体、甾体化合物、抗生素、抗真菌剂、细胞因子、维生素、糖、脂质、胞外基质、胞外基质成分、化学治疗剂、细胞毒性剂、生长因子、抗排斥剂、镇痛剂、抗炎性剂、病毒载体、蛋白合成辅因子、激素、内分泌组织、合成物、酶、具有实质细胞的聚合物-细胞支架剂、血管生成药物、小分子、纳米颗粒、胶原晶格、抗原性剂、细胞支架剂、核酸、细胞诱引剂。开始时,根据前述方法(Sato等,2009,Yui等,2012)将隐窝分离。分离鼠科小肠,纵向剖开并用冰冷PBS冲洗以清除腔内容物。将片段切为2mm的碎片,转移至50ml离心管(falcontube)并用10ml移液管在50ml冰冷PBS中轻缓冲洗。除去上清液,继续进行所述过程直至上清液已清除。将片段在4℃在含2mMEDTA的PBS中温育45分钟以释放隐窝。除去上清液并用50mlPBS将片段移取移出。一经证实上清液含有隐窝成分,将悬浮液过滤通过70μm细胞过滤器并在300g在离心机中旋转5分钟。将隐窝重悬在10ml冰冷基底培养基(含有高级DMEM/F12(Invitrogen)、2mMGlutaMax(Invitrogen)、10mMHepes(Invitrogen)以及100U/ml青霉素/100μg/ml链霉素(Invitrogen))中并转移至15ml离心管。重复进行PBS洗涤并将隐窝在200g旋转2分钟以除去单细胞。对隐窝计数并以1000隐窝/孔的浓度铺平板至具有基质胶或胶原蛋白I(由100μl10xPBS、4.9μlNaOH、684μlH2O和211μlI型胶原蛋白(大鼠尾部高浓度9.49mg/ml;BDBiosciences)组成)的48孔板中,每个孔内含有200μl基质。在所选凝胶产品聚合后,添加500μl1x标准隐窝培养基(无血清),该培养基含有高级DMEM/F12(Invitrogen)、2mMGlutaMax(Invitrogen)、10mMHepes(Invitrogen)、100U/ml青霉素/100μg/ml链霉素(Invitrogen)、1xN2补充剂(Invitrogen)、1xB27补充剂(Invitrogen)、50ng/mlEGF(Peprotech)、500ng/mlR-spondin1(R&DSystems)、10μΜY-27632(Rho激酶抑制剂,Sigma-Aldrich)和100ng/ml头发生素(Peprotech)。使细胞在接种至贴片上之前生长4至5天,每隔1天更换培养基。仅在开始的48小时在培养基中包含Y-27632。在培养4至5天后,利用经改良的此前所述的策略(Sato等,2009)将Lgr5+类器官传代。从基质胶除去培养基,然后用p1000移液管手动破碎并转移至BSA涂覆的15ml离心管。在37℃将胶原蛋白凝胶在含XI型胶原蛋白酶的DMEM中温育5分钟,然后转移至BSA涂覆的15ml离心管。添加基底培养基并通过倒置显微镜频繁检视来温和地将类器官搅动,直至大部分类器官为单个隐窝。将类器官在10ml基底培养基中冲洗并在200g离心2分钟。将沉淀颗粒在隐窝培养基中以500个单隐窝类器官/500μl的浓度重悬。生成并制备了贴片以用于接种至标准48孔板的孔内部(1贴片/孔,腔侧朝上)。将SIS切为所需长度以覆盖每个孔的底部(对于48孔板而言为约1cm)。SIS的分离如前所述(Badylak等,1989)。使用钝端镊将每个SIS片段转移至孔底部并小心展开至其全直径,腔侧朝上。通过在倒置显微镜下分析以使浅表面上的隐窝非细胞残留物可见来证实定位。根据所需的顺应性和强度,可以将多层SIS分层并结合起来。在此情形中,可以将每个片段铺展于另一个之上以实现所需的片段数目,并用镊子轻压贴片并允许其在5%CO2、37℃空气干燥5分钟。在接种前,通过被动蒸发24小时将每个贴片节段脱水并关注浓缩的隐窝培养基以及可选的下文所述的小分子。具体而言,将贴片的每个节段放置并铺展在48孔板的孔中(腔侧朝上),并沉积100μl浓缩因子(EGF、头发生素、R-spondin1、Y-27632、丙戊酸和CHIR)以在5%CO2、37℃进行24小时温育。将各个500μl单隐窝类器官样品沉积在含有贴片基底的孔内并在5%CO2和37℃温育24小时(图20A)。接种的贴片在培养基中维持24小时以使其能够牢固附着并且从贴片中内嵌的生长因子获得养料支持(图20B)。在某些实例中,在贴片/类器官复合体的顶部涂覆薄的胶原蛋白凝胶残留物(称之为凝胶-贴片),以便为每个类器官提供最小但具功能的三维环境。从细胞表面获得的物理和化学线索增强了三维细胞结构体增殖,以便复制生理学形态(Seidi,A.等,2011)。胶原蛋白I基质(20μl-40μl)层铺在接种的贴片上,负责借助表面张力来避免凝胶展开超过贴片(图20C)并将孔板在5%CO2、37℃进行30分钟温育。将隐窝培养基(500μl)沉积于各孔内并每隔1天更换。在某些实例中,在接种前将贴片在生长因子中温育,以检查其是否有助于类器官在开始的24小时的附着。因此,接种了GF灌注(包括EGF、头发生素、R-spondin1、Y-27632、丙戊酸和CHIR)和未经灌注的贴片(PBS中的SIS)。在本测试中,未经灌注的贴片使用基底培养基代替上述培养基以使类器官也不能享有培养基的生长因子。通过在7个分离的系统中对每个类器官的隐窝数目进行定量来评估小肠类器官的生长:具有灌注的生长因子(本文称之为GF,且包括EGF、头发生素、R-spondin1、Y-27632、丙戊酸和CHIR)的基质胶(对照)、具有灌注的GF但没有胶原蛋白覆层的裸贴片、仅胶原蛋白I凝胶、具有直接添加至培养基的GF(包括EGF、头发生素、R-spondin1、Y-27632、丙戊酸和CHIR)的胶原蛋白I凝胶、具有嵌入凝胶自身的GF(包括EGF、头发生素、R-spondin1、Y-27632、丙戊酸和CHIR)的胶原蛋白I凝胶以及没有胶原蛋白覆层或灌注的GF的裸贴片。除具有GF和直接添加于培养基的小分子的胶原蛋白I组之外,各系统间的所有培养基都是标准培养基,每隔1天更换,并且包括EGF、头发生素、R-spondin1、Y-27632(仅前48小时)。标准隐窝培养基如上文所述。实验于96小时内进行并通过目视检查每个类器官的隐窝数目来对类器官生长的每日定量进行文字记录。具有GF的凝胶-贴片系统能以与基质胶对照相当的水平支持类器官生长(图19)。不具有GF的裸贴片不能支持可测定的类器官生长。在更进一步的检视中,裸SIS贴片似乎以片状生长Lgr5+细胞,而不是三维的类器官。然而,具有灌注的GF(EGF、头发生素、R-spondin1、Y-27632、丙戊酸和CHIR)的裸贴片以与凝胶-贴片系统和基质胶在同等水平支持类器官生长。这表明,在充分的GF支持下,无凝胶培养系统能够维持短期的与基质胶同等水平的三维类器官生长。虽然胶原蛋白I自身有助于中等程度的类器官生长,灌注有GF的SIS是对于胶原蛋白的三维生长促进效果的有益替代。此外,当向胶原蛋白I凝胶培养物的培养基直接添加相同的GF(EGF、头发生素、R-spondin1、Y-27632、丙戊酸和CHIR)时,类器官生长维持在较低的速率。另外,当在接种之前用前述直接嵌入凝胶的GF来制备胶原蛋白I凝胶时,类器官生长维持在较低的速率。GFP信号维持在整个凝胶-贴片系统中(图21B和21C中的代表性实例)。对于裸贴片(没有胶原蛋白覆层或GF的SIS)没有支持结构化的类器官生长的观察确证了充分的物理和化学线索对于促进三维结构体的重要性。在文献中已经使用了仅SIS或胶原蛋白作为细胞接种的基底支架,从而致使形成细胞单层(Baumert等,2007;Campodonico等,2004;Feil,G.等,2006;Zhang,Y.等,2000)。相比之下,在这两种基质的界面处使细胞生长与单层生长相比更有利于三维类器官生长。这更为近似地模拟了生理学环境,使得能够加速生长并使其结构化。重要的是,这些结果描述了作为基质胶的优秀替代品的小肠类器官用贴片培养系统。动物模型中的基质胶类移植在向人类模型的进展中遭遇了显著的障碍,最关键的问题包括生物相容性问题。使三维的基于细胞的结构体生长常常需要嵌入厚的基质凝胶。上述贴片培养系统克服了这种需要,同时提供了与之相当的结果。用内源性胞外基质材料和特定的生物活性生长因子的组合代替基质胶避开了生物相容性问题,同时维持了三维类器官离体生长。图22中展示了来自初始种的三维离体类器官扩增的时间推移图像。对接种前贴片在生长因子中的温育是否有助于类器官在前24小时的附着进行了评估。比较了灌注生长因子的贴片(包括EGF、头发生素、R-spondin1、Y-27632、丙戊酸和CHIR)与未经处理的贴片(储存于PBS中)的接种效率。通过对细胞在缺乏生长因子的培养基(仅基底培养基)中单独培养时的4小时和12小时进行的培养基冲洗后保留的类器官的百分比的测定来进行测试。当省略SIS并将类器官直接接种至塑性胶原蛋白涂覆的孔和未经胶原蛋白涂覆的孔上时,所有类器官在24小时内发生解离。然而,SIS贴片在24小时时维持了大部分的类器官,在结构和GFP表达方面均是如此。当细胞接种到灌注有生长因子的贴片(包括EGF、头发生素、R-spondin1、Y-27632、丙戊酸和CHIR)上时观察到附着的改善。因此,生长因子灌注也可用于在培养和后续移植期间提供适当的养分和因子,通过桥接与细胞植入间的空缺。实施例8.植入的贴片在体内展示出生长促进性质对贴片系统的非细胞的无凝胶变形形式进行了测试以评估在体内的粘膜愈合性质。设计了粘膜缺陷的大鼠手术模型以便测试在体内的植入贴片的生长促进性质。所述植入贴片通过小心地在6mm的圆形聚(癸二酸乙二酯)氨基甲酸酯(PGSU)背衬上铺展一部分SIS(腔侧向上)来组装。将贴片在5%CO2、37℃温育30分钟以使PGSU和SIS粘结。通过刺穿活检来在胃壁中造出4mm缺陷,如图23所示。将无细胞贴片(直径6mm)置于外部胃壁上,小心地用所选材料将缺陷覆盖。通过改良的Graham贴片方法(等,1996)使用缝合线和附近的结缔组织使贴片固定。应用了包括以下的三种无细胞贴片变体:a)PGSU背衬的SIS贴片(无GF);b)具有灌注的GF(EGF、头发生素、R-spondin1、Y-27632、丙戊酸和CHIR)的PGSU背衬的SIS贴片;和c)仅PGSU背衬(无SIS)。未在任何时间点在任何大鼠中观察到腹膜炎。在以机械方式诱导的胃壁缺陷上进行植入1周后,收获含有缺陷和贴片植入物的胃组织以进行组织的组织学检查。据假设,植入的贴片变体会显示出不同程度的粘膜愈合。粗检显示出具有GF的SIS贴片的显著益处,因为缺陷进行上皮化(epithelialized)并封闭。在没有GF的SIS贴片中观察到没有上皮化的部分封闭,而在仅PGSU(对照)贴片中观察到没有封闭或上皮化。组织学检查揭示,在具有GF和不具有GF的SIS贴片中均有轻度炎症,但没有胃内容物泄露。对仅PGSU贴片的组织学检查展示出中度炎症以及巨细胞的存在,这可能是响应于胃内容物的泄露。因此,本文所述的贴片培养系统可从培养皿直接移植至患者,具有增加的平移潜力,这是因为该贴片是刚性的但出于其较低的高度轮廓而更不容易在小的空间(例如,小肠腔、血管空间)内阻塞。实施例9.人小肠隐窝/干细胞的培养从切除的正常小肠试样分离出人小肠隐窝并如实施例1所述进行培养。将与小鼠小肠干细胞/隐窝培养物中所用相同的细胞培养溶液(其包含添加至ENR(EGF、头发生素、R-Spondin1)条件的CHIR99021和VPA或土巴他汀A的组合)与公开的人小肠干细胞/隐窝用细胞培养溶液(Jung等,2011;Sato等,2011)进行比较。使用RT-PCR来评估培养物中上皮干细胞的维持,具体地通过确定自我更新或分化状态来进行评估。使用LGR5作为干细胞标志物,并使用ALP1、MUC2、CHGA和LYZ作为分化标志物。通过对培养物中的细胞数目进行计数和通过观察集落的形态和尺寸来评估细胞生长。与小鼠小肠干细胞培养物类似,CHIR+VPA或CHIR+土巴他汀A的组合极大地促进了干细胞标志物LGR5的表达,这表明培养的细胞富集有干细胞(图24)。特别是,包含CHIR和VPA或者CHIR和土巴他汀A培养条件比已公开的条件在促进LGR5表达方面表现更好(图24)。另外,对包括A83-01(ALK4、5、7、Tgf-β抑制剂)、SB202190(p38抑制剂)和烟酰胺(维生素B衍生物)在内的显示出对培养基的改良的个体成分进行了测试。经确定,10mM烟酰胺在添加至CHIR+VPA条件时增加了人小肠隐窝的增殖,如培养物中的细胞数增加所指示(图25A),而且对LGR5表达没有较大影响(图25B)。而A83-01和SB202190(AS)的组合增加了细胞增殖(Fig.25A),他们极大地减少了LGR5的表达(Fig.25B)。另外,较低浓度的VPA(0.5mM,与小鼠培养物中所用相比(1mM-2mM))增加了人小肠隐窝的细胞增殖(图25A)。综上,经确定,含有EGF、头发生素、R-spondin1、CHIR、VPA(0.5mM)和烟酰胺或EX527的培养条件对于人小肠干细胞是最佳培养条件。在该条件下,分离的小肠隐窝生长为与小鼠小肠干细胞相当的集落(图26)。实施例10.为了测试CHIR和VPA对小肠上皮细胞的体内效果,将CHIR99021(30mg/Kg,在100μlDMSO中)和VPA(200mg/Kg,在100μl水中)经管饲施用至4至6周龄雌性Lgr5-GFP小鼠。对对照小鼠给予100μlDMSO和100μl水的混合物。药物每48小时施用,持续7天(第0天、第2天、第4天和第6天)。第7天时,处死小鼠并收集小肠组织。将小肠进而用PBS冲洗,用4%PFA固定12小时,包埋在石蜡中并使用标准苏木精和曙红(H&E)染色策略进行染色。使用倒置显微镜(EVOS,AdvancedMicroscopyGroup)采集图像。CHIR和VPA的体内施用在7天时长的3次施用后增加了隐窝尺寸(图27)。参考文献本说明书中提及的所有专利、专利申请和公开均通过援引并入本文,其程度等同于专门且分别地指定将每个独立的专利和公开通过援引并入。Abreu,J.G.,Ketpura,N.I.,Reversade,B.和DeRobertis,E.M.(2002).Connective-tissuegrowthfactor(CTGF)modulatescellsignallingbyBMPandTGF-beta.NatCellBiol4,599-604.Alessi,D.R.,A.Cuenda,P.Cohen,D.T.Dudley和A.R.Saltiel(1995).PD098059isaspecificinhibitoroftheactivationofmitogen-activatedproteinkinasekinaseinvitroandinvivo.JBiolChem270(46):27489-27494.Anastassiadis,T.,K.C.Duong-Ly,S.W.Deacon,A.Lafontant,H.Ma,K.Devarajan,R.L.Dunbrack,Jr.,J.Wu和J.R.Peterson(2013).Ahighlyselectivedualinsulinreceptor(IR)/insulin-likegrowthfactor1receptor(IGF-1R)inhibitorderivedfromanextracellularsignal-regulatedkinase(ERK)inhibitor.JBiolChem288(39):28068-28077.Anderson,J.J.,G.Holtz,P.P.Baskin,M.Turner,B.Rowe,B.Wang,M.Z.Kounnas,B.T.Lamb,D.Barten,K.Felsenstein,I.McDonald,K.Srinivasan,B.Munoz和S.L.Wagner(2005).Reductionsinbeta-amyloidconcentrationsinvivobythegamma-secretaseinhibitorsBMS-289948andBMS-299897.BiochemPharmacol69(4):689-698.Andreani,A.,Cavalli,A.,Granaiola,M.,Leoni,A.,Locatelli,A.,Morigi,R.,Meijer,L.(2000).Imidazo[2,1-b]thiazolylmethylene-andindolylmethylene-2-indolinones:anewclassofcyclin-dependentkinaseinhibitors.Design,synthesis,andCDK1/cyclinBinhibition.Anti-cancerdrugdesign,15(6),447-452.Andreani,A.,Locatelli,A.,Rambaldi,M.,Leoni,A.,Bossa,R.,Fraccari,A.和Galatulas,I.(1996).Potentialantitumoragents.25[1].Synthesisandcytotoxicactivityof3-(2-chloro-3-indolylmethylene)1,3-dihydroindol-2-ones.Anticancerresearch,16(6B),3585-3588.Bain,J.,Plater,L.,Elliott,M.,Shpiro,N.,Hastie,C.J.,McLauchlan,H.,Klevernic,I.,Arthur,J.S.,Alessi,D.R.和Cohen,P.(2007).Theselectivityofproteinkinaseinhibitors:afurtherupdate.TheBiochemicaljournal408,297-315.Badylak,S.F.等,(1989).Smallintestinalsubmucosaasalargediametervasculargraftinthedog.TheJournalofSurgicalResearch47(1):p.74-80.Bakshi,P.,C.Jin,P.Broutin,B.Berhane,J.Reed和M.Mullan(2009).StructuraloptimizationofaCXCR2-directedantagonistthatindirectlyinhibitsgamma-secretaseandreducesAbeta.BioorgMedChem17(23):8102-8112.Barker,N.,vanEs,J.H.,Kuipers,J.,Kujala,P.,vandenBorn,M.,Cozijnsen,M.,Haegebarth,A.,Korving,J.,Begthel,H.,Peters,P.J.等,(2007).IdentificationofstemcellsinsmallintestineandcolonbymarkergeneLgr5.Nature449,1003-1007.Bax,B.,Carter,P.S.,Lewis,C,Guy,A.R.,Bridges,A.,Tanner,R.和Reith,A.D.(2001).TheStructureofPhosphorylatedGSK-3PComplexedwithaPeptide,FRATtide,thatInhibitsβ-CateninPhosphorylation.Structure,9(12),1143-1152.doi:10.1016/S0969-2126(01)00679-7.Bhat,R.,Xue,Y.,Berg,S.,Hellberg,S.,Ormo,M.,Nilsson,Y.,Radesater,A.C.,Jerning,E.,Markgren,P.O.,Borgegard,T.等,(2003).Structuralinsightsandbiologicaleffectsofglycogensynthasekinase3-specificinhibitorAR-A014418.JBiolChem278,45937-45945.Baumert,H.等,(2007).Developmentofaseededscaffoldinthegreatomentum:feasibilityofaninvivo.EurUrol52(3):p.884-90.Baumert,H.等,(2007).Terminalurotheliumdifferentiationofengineeredneoureterafterinvivo.EurUrol52(5):p.1492-8.Bergstein,I.,Eisenberg,L.M.,Bhalerao,J.,Jenkins,N.A.,Copeland,N.G.,Osborne,M.P.和Brown,A.M.(1997).IsolationoftwonovelWNTgenes,WNT14andWNT15,oneofwhich(WNT15)iscloselylinkedtoWNT3onhumanchromosome17q21.Genomics,46(3),450-458.doi:10.1006/geno.1997.5041Breton,J.J.,&Chabot-Fletcher,M.C.(1997).Thenaturalproducthymenialdisineinhibitsinterleukin-8productioninU937cellsbyinhibitionofnuclearfactor-kappaB.TheJournalofpharmacologyandexperimentaltherapeutics,282(1),459-466.Burrus,L.W.,&McMahon,A.P.(1995).BiochemicalanalysisofmurineWntproteinsrevealsbothsharedanddistinctproperties.Experimentalcellresearch,220(2),363-373.doi:10.1006/excr.l995.1327Bodine,P.V.,Stauffer,B.,Ponce-de-Leon,H.,Bhat,R.A.,Mangine,A.,Seestaller-Wehr,L.M.,Moran,R.A.,Billiard,J.,Fukayama,S.,Komm,B.S.等,(2009).AsmallmoleculeinhibitoroftheWntantagonistsecretedfrizzled-relatedprotein-1stimulatesboneformation.Bone44,1063-1068.BuczackiSJ,ZecchiniHI,NicholsonAM,RussellR,VermeulenL,KempR和WintonDJ.(2013)Intestinallabel-retainingcellsaresecretoryprecursorsexpressingLgr5.Nature.2013Feb27.doi:10.1038/naturell965.[Epub提前书面公开].Campodonico,F.等,(2004).Bladdercellcultureonsmallintestinalsubmucosaasbioscaffold:experimental.EurUrol46(4):p.531-7.Chen,B.,M.E.Dodge,W.Tang,J.Lu,Z.Ma,C.W.Fan,S.Wei,W.Hao,J.Kilgore,N.S.Williams,M.G.Roth,J.F.Amatruda,C.Chen和L.Lum(2009).Smallmolecule-mediateddisruptionofWnt-dependentsignalingintissueregenerationandcancer.NatChemBiol5(2):100-107.Chen,S.,T.Operana,J.Bonzo,N.Nguyen和R.H.Tukey(2005).ERKkinaseinhibitionstabilizesthearylhydrocarbonreceptor:implicationsfortranscriptionalactivationandproteindegradation.JBiolChem280(6):4350-4359.ChenW,GaisinaIN,GunosewoyoH,MalekianiSA,HananiaT,KozikowskiAP(2011)Structure-guideddesignofahighlyselectiveglycogensynthasekinase-3betainhibitor:asuperiorneuroprotectivepyrazoloneshowingantimaniaeffects.ChemMedChem6:1587-1592.Ciardiello,F.(2000).Epidermalgrowthfactorreceptortyrosinekinaseinhibitorsasanticanceragents.Drugs60Suppl1:25-32;discussion41-22.Coghlan,M.P.,Culbert,A.A.,Cross,D.A.,Corcoran,S.L.,Yates,J.W.,Pearce,N.J.,Rausch,O.L.,Murphy,G.J.,Carter,P.S.,RoxbeeCox,L.等,(2000).Selectivesmallmoleculeinhibitorsofglycogensynthasekinase-3modulateglycogenmetabolismandgenetranscription.Chemistry&biology7,793-803.Crosnier,C,Stamataki,D.和Lewis,J.(2006).Organizingcellrenewalintheintestine:stemcells,signalsandcombinatorialcontrol.NatureReviewsGenetics7,349-359.Cuny,G.D.,Yu,P.B.,Laha,J.K.,Xing,X.,Liu,J.F.,Lai,C.S.,Deng,D.Y.,Sachidanandan,C,Bloch,K.D.和Peterson,R.T.(2008).Structure-activityrelationshipstudyofbonemorphogeneticprotein(BMP)signalinginhibitors.Bioorganic&medicinalchemistryletters18,4388-4392.delaFuente,S.G.,等,(2003)Evaluationofporcine-derivedsmallintestinesubmucosaasabiodegradablegraftforgastrointestinalhealing.Journalofgastrointestinalsurgery:officialjournaloftheSocietyforSurgeryoftheAlimentaryTract.7(1):p.96-101.DeRybel,B.,Audenaert,D.,Vert,G.,Rozhon,W.,Mayerhofer,J.,Peelman,F.和Beeckman,T.(2009).ChemicalinhibitionofasubsetofArabidopsisthalianaGSK3-likekinasesactivatesbrassinosteroidsignaling.Chemistry&biology,16(6),594-604.doi:10.1016/j.chembiol.2009.04.008Ding,S.,Wu,T.Y.,Brinker,A.,Peters,E.C.,Hur,W.,Gray,N.S.和Schultz,P.G.(2003).Syntheticsmallmoleculesthatcontrolstemcellfate.ProcNatlAcadSciUSA100,7632-7637.Dong,Q.,D.R.Dougan,X.Gong,P.Halkowycz,B.Jin,T.Kanouni,S.M.O'Connell,N.Scorah,L.Shi,M.B.Wallace和F.Zhou(2011).DiscoveryofTAK-733,apotentandselectiveMEKallostericsiteinhibitorforthetreatmentofcancer.BioorgMedChemLett21(5):1315-1319.Dovey,H.F.,V.John,J.P.Anderson,L.Z.Chen,P.deSaintAndrieu,L.Y.Fang,S.B.Freedman,B.Folmer,E.Goldbach,E.J.Holsztynska,K.L.Hu,K.L.Johnson-Wood,S.L.Kennedy,D.Kholodenko,J.E.Knops,L.H.Latimer,M.Lee,Z.Liao,I.M.Lieberburg,R.N.Motter,L.C.Mutter,J.Nietz,K.P.Quinn,K.L.Sacchi,P.A.Seubert,G.M.Shopp,E.D.Thorsett,J.S.Tung,J.Wu,S.Yang,C.T.Yin,D.B.Schenk,P.C.May,L.D.Altstiel,M.H.Bender,L.N.Boggs,T.C.Britton,J.C.Clemens,D.L.Czilli,D.K.Dieckman-McGinty,J.J.Droste,K.S.Fuson,B.D.Gitter,P.A.Hyslop,E.M.Johnstone,W.Y.Li,S.P.Little,T.E.Mabry,F.D.MillerandJ.E.Audia(2001).Functionalgamma-secretaseinhibitorsreducebeta-amyloidpeptidelevelsinbrain.JNeurochem76(l):173-181.Durand,A.,Donahue,B.,Peignon,G.,Letoumeur,F.,Cagnard,N.,Slomianny,C,Perret,C,Shroyer,N.F.,andRomagnolo,B.(2012).FunctionalintestinalstemcellsafterPanethcellablationinducedbythelossoftranscriptionfactorMathl(Atohl).ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica.Favata,M.F.,K.Y.Horiuchi,E.J.Manos,A.J.Daulerio,D.A.Stradley,W.S.Feeser,D.E.VanDyk,W.J.Pitts,R.A.Earl,F.Hobbs,R.A.Copeland,R.L.Magolda,P.A.ScherleandJ.M.Trzaskos(1998).Identificationofanovelinhibitorofmitogen-activatedproteinkinasekinase.JBiolChem273(29):18623-18632.Fear,M.W.,Kelsell,D.P.,Spurr,N.K.,&Barnes,M.R.(2000).Wnt-16a,anovelWnt-16isoform,whichshowsdifferentialexpressioninadulthumantissues.Biochemicalandbiophysicalresearchcommunications,278(3),814-820.doi:10.1006/bbrc.2000.3852.Feil,G.等,(2006).Investigationsofurothelialcellsseededoncommerciallyavailablesmall.EurUrol50(6):p.1330-7.Farin,H.F.,VanEs,J.H.和Clevers,H.(2012).RedundantsourcesofWntregulateintestinalstemcellsandpromoteformationofPanethcells.Gastroenterology143,1518-1529el517.Gamer,L.W.,Nove,J.,Levin,M.和Rosen,V.(2005).BMP-3isanovelinhibitorofbothactivinandBMP-4signalinginXenopusembryos.DevBiol285,156-168.Gazit,A.,P.Yaish,C.Gilon和A.Levitzki(1989).TyrphostinsI:synthesisandbiologicalactivityofproteintyrosinekinaseinhibitors.JMedChem32(10):2344-2352.Gilbert,A.M.,Bursavich,M.G.,Alon,N.,Bhat,B.M.,Bex,F.J.,Cain,M.,Coleburn,V.,Gironda,V.,Green,P.,Hauze,D.B.等,(2010).Hittoleadstudieson(hetero)arylpyrimidines-agonistsofthecanonicalWnt-beta-catenincellularmessagingsystem.Bioorganic&medicinalchemistryletters20,366-370.Gilmartin,A.G.,M.R.Bleam,A.Groy,K.G.Moss,E.A.Minthorn,S.G.Kulkarni,C.M.Rominger,S.Erskine,K.E.Fisher,J.Yang,F.Zappacosta,R.Annan,D.Sutton和S.G.Laquerre(2011).GSK1120212(JTP-74057)isaninhibitorofMEKactivityandactivationwithfavorablepharmacokineticpropertiesforsustainedinvivopathwayinhibition.ClinCancerRes17(5):989-1000.Greenblatt,D.Y.,Vaccaro,A.M.,Jaskula-Sztul,R.,Ning,L.,Haymart,M.,Kunnimalaiyaan,M.和Chen,H.(2007).Valproicacidactivatesnotch-1signalingandregulatestheneuroendocrinephenotypeincarcinoidcancercells.Theoncologist12,942-951.Gupta,A.等,(2006).Tissueengineeringofsmallintestine-currentstatus.Biomacromolecules,2006.7(10):p.2701-2709.Handeli,S.和J.A.Simon(2008).Asmall-moleculeinhibitorofTcf/beta-cateninsignalingdown-regulatesPPARgammaandPPARdeltaactivities.MolCancerTher7(3):521-529.Hao,J.,Ho,J.N.,Lewis,J.A.,Karim,K.A.,Daniels,R.N.,Gentry,P.R.,Hopkins,C.R.,Lindsley,C.W.和Hong,C.C.(2010).Invivostructure-activityrelationshipstudyofdorsomorphinanaloguesidentifiesselectiveVEGFandBMPinhibitors.ACSchemicalbiology5,245-253.He,W.,L.Luistro,D.Carvajal,M.Smith,T.Nevins,X.Yin,J.Cai,B.Higgins,K.Kolinsky,C.Rizzo,K.Packman,D.Heimbrook和J.F.Boylan(2011).HightumorlevelsofIL6andIL8abrogatepreclinicalefficacyofthegamma-secretaseinhibitor,RO4929097.MolOncol5(3):292-301.Huang,F.,A.Greer,W.Hurlburt,X.Han,R.Hafezi,G.M.Wittenberg,K.Reeves,J.Chen,D.Robinson,A.Li,F.Y.Lee,M.M.Gottardis,E.Clark,L.Helman,R.M.Attar,A.Dongre和J.M.Carboni(2009).Themechanismsofdifferentialsensitivitytoaninsulin-likegrowthfactor-1receptorinhibitor(BMS-536924)andrationaleforcombiningwithEGFR/HER2inhibitors.CancerRes69(1):161-170.Huynh,H.,K.C.Soo,P.K.Chow和E.Tran(2007).Targetedinhibitionoftheextracellularsignal-regulatedkinasekinasepathwaywithAZD6244(ARRY-142886)inthetreatmentofhepatocellularcarcinoma.MolCancerTher6(1):138-146.Jung,P.,Sato,T.,Merlos-Suarez,A.,Barriga,F.M.,Iglesias,M.,Rossell,D.,Auer,H.,Gallardo,M.,Blasco,M.A.,Sancho,E.等,(2011).Isolationandinvitroexpansionofhumancolonicstemcells.NatMed17,1225-1227.Kazanjian,A.,Noah,T.,Brown,D.,Burkart,J.和Shroyer,N.F.(2010).Atonalhomolog1isrequiredforgrowthanddifferentiationeffectsofnotch/gamma-secretaseinhibitorsonnormalandcancerousintestinalepithelialcells.Gastroenterology139,918-928,928e911-916.Katoh,M,Hirai,M.,Sugimura,T.,&Terada,M.(1996).Cloning,expressionandchromosomallocalizationofWnt-13,anovelmemberoftheWntgenefamily.Oncogene,13(4),873-876.Katoh,Masaru.(2001).MolecularcloningandcharacterizationofhumanWNT3.InternationalJournalofOncology,19(5),977.Katoh,Masaru.(2011).NetworkofWNTandotherregulatorysignalingcascadesinpluripotentstemcellsandcancerstemcells.Currentpharmaceuticalbiotechnology,12(2),160-170.Khanfar,M.A.,Hill,R.A.,Kaddoumi,A.和ElSayed,K.A.(2010).DiscoveryofnovelGSK-3betainhibitorswithpotentinvitroandinvivoactivitiesandexcellentbrainpermeabilityusingcombinedligand-andstructure-basedvirtualscreening.Journalofmedicinalchemistry53,8534-8545.Kim,K.A.,Zhao,J.,Andarmani,S.,Kakitani,M.,Oshima,T.,Binnerts,M.E.,Abo,A.,Tomizuka,K.和Funk,W.D.(2006).R-Spondinproteins:anovellinktobeta-cateninactivation.CellCycle5,23-26.Kim,K.,S.Y.Kong,M.Fulciniti,X.Li,W.Song,S.Nahar,P.Burger,M.J.Rumizen,K.Podar,D.Chauhan,T.Hideshima,N.C.Munshi,P.Richardson,A.Clark,J.Ogden,A.Goutopoulos,L.Rastelli,K.C.Anderson和Y.T.Tai(2010).BlockadeoftheMEK/ERKsignallingcascadebyAS703026,anovelselectiveMEKl/2inhibitor,inducespleiotropicanti-myelomaactivityinvitroandinvivo.BrJHaematol149(4):537-549.Kim,T.H.,Escudero,S.和Shivdasani,R.A.(2012).IntactfunctionofLgr5receptor-expressingintestinalstemcellsintheabsenceofPanethcells.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica109,3932-3937.Kim,T.H.和Shivdasani,R.A.(2011).GeneticevidencethatintestinalNotchfunctionsvaryregionallyandoperatethroughacommonmechanismofMathlrepression.JBiolChem286,11427-11433.Kehoe,S.,X.F.Zhang和D.Boyd(2012)FDAapprovedguidanceconduitsandwrapsforperipheralnerveinjury:Areviewofmaterialsandefficacy.Injury.43(5):p.553-572.Klein,P.S.,&Melton,D.A.(1996).Amolecularmechanismfortheeffectoflithiumondevelopment.ProceedingsoftheNationalAcademyofSciences,93(16),8455-8459.Koizumi,Y.,N.Kawashima,M.Yamamoto,K.Takimoto,M.Zhou,N.Suzuki,M.Saito,H.Harada和H.Suda(2013).Wntl1expressioninratdentalpulpandpromotionaleffectsofWntsignalingonodontoblastdifferentiation.CongenitAnom(Kyoto)53(3):101-108.Kuiper,J.L.,D.A.Heideman,E.Thunnissen,A.W.vanWijk,P.E.Postmus和E.F.Smit(2014).High-dose,weeklyerlotinibisnotaneffectivetreatmentinEGFR-mutatednon-smallcelllungcancer-patientswithacquiredextracranialprogressivediseaseonstandarddoseerlotinib.EurJCancer.Lako,M.,Lindsay,S.,Bullen,P.,Wilson,D.I.,Robson,S.C,&Strachan,T.(1998).Anovelmammalianwntgene,WNT8B,showsbrain-restrictedexpressioninearlydevelopment,withsharplydelimitedexpressionboundariesinthedevelopingforebrain.Humanmoleculargenetics,7(5),813-822.Lako,M.,Strachan,T.,Bullen,P.,Wilson,D.I.,Robson,S.C,&Lindsay,S.(1998).Isolation,characterisationandembryonicexpressionofWNT11,agenewhichmapsto1lql3.5andhaspossiblerolesinthedevelopmentofskeleton,kidneyandlung.Gene,219(1-2),101-110.Lanz,T.A.,J.D.Hosley,W.J.Adams和K.M.Merchant(2004).StudiesofAbetapharmacodynamicsinthebrain,cerebrospinalfluid,andplasmainyoung(plaque-free)Tg2576miceusingthegamma-secretaseinhibitorN2-[(2S)-2-(3,5-difluorophenyl)-2-hydroxyethanoyl]-Nl-[(7S)-5-methyl-6-oxo-6,7-dihydro-5H-dibenzo[b,d]azepin-7-yl]-L-alaninamide(LY-411575).JPharmacolExpTher309(1):49-55.Lazarova,D.L.,C.Chiaro,T.Wong,E.Drago,A.Rainey,S.O'Malley和M.Bordonaro(2013).CBPActivityMediatesEffectsoftheHistoneDeacetylaseInhibitorButyrateonWNTActivityandApoptosisinColonCancerCells.JCancer4(6):481-490.LiH,LiuH,HellerS.(2003).Pluripotentstemcellsfromtheadultmouseinnerear.NatMed.Oct;9(10):1293-9.Lien,W.H.,L.Polak,M.Lin,K.Lay,D.Zheng和E.Fuchs(2014).InvivotranscriptionalgovernanceofhairfolliclestemcellsbycanonicalWntregulators.NatCellBiol16(2):179-190.Liu,J.,S.Pan,M.H.Hsieh,N.Ng,F.Sun,T.Wang,S.Kasibhatla,A.G.Schuller,A.G.Li,D.Cheng,J.Li,C.Tompkins,A.Pferdekamper,A.Steffy,J.Cheng,C.Kowal,V.Phung,G.Guo,Y.Wang,M.P.Graham,S.Flynn,J.C.Brenner,C.Li,M.C.Villarroel,P.G.Schultz,X.Wu,P.McNamara,W.R.Sellers,L.Petruzzelli,A.L.Boral,H.M.Seidel,M.E.McLaughlin,J.Che,T.E.Carey,G.Vanasse和J.L.Harris(2013).TargetingWnt-drivencancerthroughtheinhibitionofPorcupinebyLGK974.ProcNatlAcadSciUSA110(50):20224-20229.Liu,J.,Wu,X.,Mitchell,B.,Kintner,C,Ding,S.和Schultz,P.G.(2005).Asmall-moleculeagonistoftheWntsignalingpathway.AngewChemIntEdEngl44,1987-1990.Lloyd,D.A.J.等,(2006).Apilotstudyinvestigatinganovelsubcutaneouslyimplantedpre-cellularisedscaffoldfortissueengineeringofintestinalmucosa.Europeancells&materials,11:p.27-33;discussion34.LukacsRU,GoldsteinAS,LawsonDA,ChengD,WitteON.(2010)Isolation,cultivationandcharacterizationofadultmurineprostatestemcells.NatProtoc.5(4):702-13.Mariadason,J.M.(2008).HDACsandHDACinhibitorsincoloncancer.Epigenetics:officialjournaloftheDNAMethylationSociety3,28-37.Meijer,L.,Skaltsounis,A.L.,Magiatis,P.,Polychronopoulos,P.,Knockaert,M.,Leost,M.,Ryan,X.P.,Vonica,C.A.,Brivanlou,A.,Dajani,R.等,(2003).GSK-3-selectiveinhibitorsderivedfromTyrianpurpleindirubins.Chemistry&biology10,1255-1266.Milano,J.,McKay,J.,Dagenais,C,Foster-Brown,L.,Pognan,F.,Gadient,R.,Jacobs,R.T.,Zacco,A.,Greenberg,B.和Ciaccio,P.J.(2004).Modulationofnotchprocessingbygamma-secretaseinhibitorscausesintestinalgobletcellmetaplasiaandinductionofgenesknowntospecifygutsecretorylineagedifferentiation.Toxicologicalsciences:anofficialjournaloftheSocietyofToxicology82,341-358.Minami,I.,K.Yamada,T.G.Otsuji,T.Yamamoto,Y.Shen,S.Otsuka,S.Kadota,N.Morone,M.Barve,Y.Asai,T.Tenkova-Heuser,J.E.Heuser,M.Uesugi,K.Aiba和N.Nakatsuji(2012).Asmallmoleculethatpromotescardiacdifferentiationofhumanpluripotentstemcellsunderdefined,cytokine-andxeno-freeconditions.CellRep2(5):1448-1460.Minkovsky,N.和A.Berezov(2008).BIBW-2992,adualreceptortyrosinekinaseinhibitorforthetreatmentofsolidtumors.CurrOpinInvestigDrugs9(12):1336-1346.Montgomery,R.K.,Carlone,D.L.,Richmond,C.A.,Farilla,L.,Kranendonk,M.E.,Henderson,D.E.,Baffour-Awuah,N.Y.,Ambruzs,D.M.,Fogli,L.K.,Algra,S.等,(2011).Mousetelomerasereversetranscriptase(mTert)expressionmarksslowlycyclingintestinalstemcells.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica108,179-184.Miyabayashi,T.,Teo,J.L.,Yamamoto,M.,McMillan,M.,Nguyen,C和Kahn,M.(2007).Wnt/beta-catenin/CBPsignalingmaintainslong-termmurineembryonicstemcellpluripotency.ProcNatlAcadSciUSA104,5668-5673.Nam,J.S.,Turcotte,T.J.,Smith,P.F.,Choi,S.和Yoon,J.K.(2006).Mousecristin/R-spondinfamilyproteinsarenovelligandsfortheFrizzled8andLRP6receptorsandactivatebeta-catenin-dependentgeneexpression.JBiolChem281,13247-13257.Nusse,R.,&Varmus,H.E.(1982).Manytumorsinducedbythemousemammarytumorviruscontainaprovirusintegratedinthesameregionofthehostgenome.Cell,31(1),99-109.Ohori,M.,T.Kinoshita,M.Okubo,K.Sato,A.Yamazaki,H.Arakawa,S.Nishimura,N.Inamura,H.Nakajima,M.Neya,H.Miyake和T.Fujii(2005).IdentificationofaselectiveERKinhibitorandstructuraldeterminationoftheinhibitor-ERK2complex.BiochemBiophysResCommun336(1):357-363.Ootani,A.,Li,X.,Sangiorgi,E.,Ho,Q.T.,Ueno,H.,Toda,S.,Sugihara,H.,Fujimoto,K.,Weissman,I.L.,Capecchi,M.R.等,(2009).SustainedinvitrointestinalepithelialculturewithinaWnt-dependentstemcellniche.NatMed15,701-706.Pai,R.,Tarnawski,A.S.和Tran,T.(2004).Deoxycholicacidactivatesbeta-cateninsignalingpathwayandincreasescoloncellcancergrowthandinvasiveness.Molecularbiologyofthecell15,2156-2163.Pellegrinet,L.,Rodilla,V.,Liu,Z.,Chen,S.,Koch,U.,Espinosa,L.,Kaestner,K.H.,Kopan,R.,Lewis,J.和Radtke,F.(2011).Dill-anddll4-mediatednotchsignalingarerequiredforhomeostasisofintestinalstemcells.Gastroenterology140,1230-1240el231-1237.Planutis,K.,Planutiene,M.,Moyer,M.P.,Nguyen,A.V.,Perez,C.A.和Holcombe,R.F.(2007).Regulationofnorrinreceptorfrizzled-4byWnt2incolon-derivedcells.BMCcellbiology8,12.Powell,D.W.,Pinchuk,I.V.,Saada,J.I.,Chen,X.和Mifflin,R.C.(2011).Mesenchymalcellsoftheintestinallaminapropria.Annualreviewofphysiology73,213-237.Proffitt,K.D.,B.Madan,Z.Ke,V.Pendharkar,L.Ding,M.A.Lee,R.N.Hannoush和D.M.Virshup(2013).PharmacologicalinhibitionoftheWntacyltransferasePORCNpreventsgrowthofWNT-drivenmammarycancer.CancerRes73(2):502-507.Riccio,O.,vanGijn,M.E.,Bezdek,A.C.,Pellegrinet,L.,vanEs,J.H.,Zimber-Strobl,U.,Strobl,L.J.,Honjo,T.,Clevers,H.和Radtke,F.(2008).LossofintestinalcryptprogenitorcellsowingtoinactivationofbothNotchlandNotch2isaccompaniedbyderepressionofCDKinhibitorsp27Kiplandp57Kip2.EMBORep9,377-383.Rider,C.C.和Mulloy,B.(2010).Bonemorphogeneticproteinandgrowthdifferentiationfactorcytokinefamiliesandtheirproteinantagonists.BiochemJ429,1-12.Ring,D.B.,Johnson,K.W.,Henriksen,E.J.,Nuss,J.M.,Goff,D.,Kinnick,T.R.,Ma,S.T.,Reeder,J.W.,Samuels,I.,Slabiak,T.等,(2003).Selectiveglycogensynthasekinase3inhibitorspotentiateinsulinactivationofglucosetransportandutilizationinvitroandinvivo.Diabetes52,588-595.Saito,N.,J.Fu,S.Zheng,J.Yao,S.Wang,D.D.Liu,Y.Yuan,E.P.Sulman,F.F.Lang,H.Colman,R.G.Verhaak,W.K.Yung和D.Koul(2014).AhighNotchpathwayactivationpredictsresponsetogammasecretaseinhibitorsinproneuralsubtypeofgliomatumor-initiatingcells.StemCells32(1):301-312.Sangiorgi,E.和Capecchi,M.R.(2008).Bmilisexpressedinvivoinintestinalstemcells.Naturegenetics40,915-920.Sakuma,Y.,Y.Yamazaki,Y.Nakamura,M.Yoshihara,S.Matsukuma,H.Nakayama,T.Yokose,Y.Kameda,S.Koizume和Y.Miyagi(2012).WZ4002,athird-generationEGFRinhibitor,canovercomeanoikisresistanceinEGFR-mutantlungadenocarcinomasmoreefficientlythanSrcinhibitors.LabInvest92(3):371-383.Sato,T.,Stange,D.E.,Ferrante,M.,Vries,R.G.,VanEs,J.H.,VandenBrink,S.,VanHoudt,W.J.,Pronk,A.,VanGorp,J.,Siersema,P.D.等,(2011a).Long-termexpansionofepithelialorganoidsfromhumancolon,adenoma,adenocarcinoma,andBarrett'sepithelium.Gastroenterology141,1762-1772.Sato,T.,vanEs,J.H.,Snippert,H.J.,Stange,D.E.,Vries,R.G.,vandenBorn,M.,Barker,N.,Shroyer,N.F.,vandeWetering,M.和Clevers,H.(201lb).PanethcellsconstitutethenicheforLgr5stemcellsinintestinalcrypts.Nature469,415-418.Sato,T.,Vries,R.G.,Snippert,H.J.,vandeWetering,M.,Barker,N.,Stange,D.E.,vanEs,J.H.,Abo,A.,Kujala,P.,Peters,P.J.等,(2009).SingleLgr5stemcellsbuildcrypt-villusstructuresinvitrowithoutamesenchymalniche.Nature459,262-265.Saitoh,M.,Kunitomo,J.,Kimura,E.,Iwashita,H.,Uno,Y.,Onishi,T.,Uchiyama,N.,Kawamoto,T.,Tanaka,T.,Mol,CD.等,(2009).2-{3-[4-(Alkylsulfmyl)phenyl]-1-benzofuran-5-yl}-5-methyl-l,3,4-oxadiazolederivativesasnovelinhibitorsofglycogensynthasekinase-3betawithgoodbrainpermeability.Journalofmedicinalchemistry52,6270-6286.Saitoh,T.,Hirai,M.,&Katoh,M.(2001).MolecularcloningandcharacterizationofWNT3AandWNT14clusteredinhumanchromosomelq42region.Biochemicalandbiophysicalresearchcommunications,284(5),1168-1175.doi:10.1006/bbrc.2001.5105Saitoh,T.,&Katoh,M.(2001).MolecularcloningandcharacterizationofhumanWNT8A.Internationaljournalofoncology,19(1),123-127.Schneyer,A.L.,Rzucidlo,D.A.,Sluss,P.M.和Crowley,W.F.,Jr.(1994).Characterizationofuniquebindingkineticsoffollistatinandactivinorinhibininserum.Endocrinology135,667-674.Schultz,C,Link,A.,Leost,M.,Zaharevitz,D.W.,Gussio,R.,Sausville,E.A.,Meijer,L.和Kunick,C.(1999).Paullones,aseriesofcyclin-dependentkinaseinhibitors:synthesis,evaluationofCDKl/cyclinBinhibition,andinvitroantitumoractivity.Journalofmedicinalchemistry42,2909-2919.Scoville,D.H.,Sato,T.,He,X.C.和Li,L.(2008).Currentview:intestinalstemcellsandsignaling.Gastroenterology134,849-864.Seidi,A.,等,(2011).Gradientbiomaterialsforsoft-to-hardinterfacetissueengineering.ActaBiomaterialia,7(4):p.1441-1451.Shi,F.,Kempfle,J.S.和Edge,A.S.(2012).Wnt-responsiveLgr5-expressingstemcellsarehaircellprogenitorsinthecochlea.JNeurosci.32,9639-9648.ShiF,ChengYF,WangXL,EdgeAS.(2010)Beta-cateninup-regulatesAtohlexpressioninneuralprogenitorcellsbyinteractionwithanAtohl3'enhancer.JBiolChem.285(1):392-400.Snippert,H.J.,L.G.VanDerFlier,T.Sato,J.H.VanEs,M.VanDenBorn,C.Kroon-Veenboer,N.Barker,A.M.Klein,J.VanRheenen和B.D.Simons(2010).IntestinalcrypthomeostasisresultsfromneutralcompetitionbetweensymmetricallydividingLgr5stemcells.Cell143(1):134-144.Snippert,H.J.,VanDerFlier,L.G.,Sato,T.,VanEs,J.H.,VanDenBorn,M.,Kroon-Veenboer,C,Barker,N.,Klein,A.M.,VanRheenen,J.和Simons,B.D.(2010).IntestinalcrypthomeostasisresultsfromneutralcompetitionbetweensymmetricallydividingLgr5stemcells.Cell143,134-144.Stockhausen,M.T.,Sjolund,J.,Manetopoulos,C和Axelson,H.(2005).EffectsofthehistonedeacetylaseinhibitorvalproicacidonNotchsignallinginhumanneuroblastomacells.BrJCancer92,751-759.So,J.B.Y.,Kum,C.K.,Fernandes,M.L.,&Goh,P.(1996).Comparisonbetweenlaparoscopicandconventionalomentalpatchrepairforperforatedduodenalulcer.SurgicalEndoscopy,10,1060-1063.Schultz,D.J.,等,(2002)Porcinesmallintestinesubmucosaasatreatmentforenterocutaneousfistulas.JournaloftheAmericanCollegeofSurgeons.194(4):p.541-543.Smolich,B.D.,McMahon,J.A.,McMahon,A.P.,&Papkoff,J.(1993).Wntfamilyproteinsaresecretedandassociatedwiththecellsurface.MolecularBiologyoftheCell,4(12),1267-1275.Takeda,N.,Jain,R.,LeBoeuf,M.R.,Wang,Q.,Lu,M.M.和Epstein,J.A.(2011).Interconversionbetweenintestinalstemcellpopulationsindistinctniches.Science334,1420-1424.Thoma,G.,Nuninger,F.,Falchetto,R.,Hermes,E.,Tavares,G.A.,Vangrevelinghe,E.和Zerwes,H.G.(2011).IdentificationofapotentJanuskinase3inhibitorwithhighselectivitywithintheJanuskinasefamily.Journalofmedicinalchemistry54,284-288.Thompson,N.和J.Lyons(2005).RecentprogressintargetingtheRaf/MEK/ERKpathwaywithinhibitorsincancerdrugdiscovery.CurrOpinPharmacol5(4):350-356.Wiater,E.和Vale,W.(2003).Inhibinisanantagonistofbonemorphogeneticproteinsignaling.JBiolChem278,7934-7941.Ueno,T.,等,(2007)Functionalevaluationofthegraftedwallwithporcine-derivedsmallintestinalsubmucosa(SIS)toastomachdefectinrats.Surgery.142(3):p.376-383.vanderFlier,L.G.和Clevers,H.(2009).Stemcells,self-renewal,anddifferentiationintheintestinalepithelium.Annualreviewofphysiology71,241-260.vanEs,J.H.,deGeest,N.,vandeBorn,M.,Clevers,H.和Hassan,B.A.(2010).IntestinalstemcellslackingtheMathltumoursuppressorarerefractorytoNotchinhibitors.NatCommun1,1-5.vanEs,J.H.,vanGijn,M.E.,Riccio,O.,vandenBorn,M.,Vooijs,M.,Begthel,H.,Cozijnsen,M.,Robine,S.,Winton,D.J.,Radtke,F.等,(2005).Notch/gamma-secretaseinhibitionturnsproliferativecellsinintestinalcryptsandadenomasintogobletcells.Nature435,959-963.VanDussen,K.L.,Carulli,A.J.,Keeley,T.M.,Patel,S.R.,Puthoff,B.J.,Magness,S.T.,Tran,IT.,Maillard,I.,Siebel,C,Kolterud,A.等,(2012).Notchsignalingmodulatesproliferationanddifferentiationofintestinalcryptbasecolumnarstemcells.Development139,488-497.Wada,A.(2009).GSK-3inhibitorsandinsulinreceptorsignalinginhealth,disease,andtherapeutics.Frontiersinbioscience:ajournalandvirtuallibrary,14,1558-1570.Wainwright,B.J.,Scambler,P.J.,Stanier,P.,Watson,E.K.,Bell,G.,Wicking,C,...Pedersen,P.S.(1988).Isolationofahumangenewithproteinsequencesimilaritytohumanandmurineint-1andtheDrosophilasegmentpolaritymutantwingless.TheEMBOJournal,7(6),1743-1748.Wang,J.,&Shackleford,G.M.(1996).MurineWntlOaandWntlOb:cloningandexpressionindevelopinglimbs,faceandskinofembryosandinadults.Oncogene,13(7),1537-1544.Watanabe,K.,Ueno,M.,Kamiya,D.,Nishiyama,A.,Matsumura,M.,Wataya,T.,Takahashi,J.B.,Nishikawa,S.,Muguruma,K.和Sasai,Y.(2007).AROCKinhibitorpermitssurvivalofdissociatedhumanembryonicstemcells.Naturebiotechnology25,681-686.Wehner,D.,W.Cizelsky,M.D.Vasudevaro,G.Ozhan,C.Haase,B.Kagermeier-Schenk,A.Roder,R.I.Dorsky,E.Moro,F.Argenton,M.Kuhl和G.Weidinger(2014).Wnt/beta-CateninSignalingDefinesOrganizingCentersthatOrchestrateGrowthandDifferentiationoftheRegeneratingZebrafishCaudalFin.CellRep6(3):467-481.White,P.M.,Doetzlhofer,A.,Lee,Y.S.,Groves,A.K.,Seigil,N.(2006).Mammaliancochlearsupportingcellscandivideandtrans-differentiateintohaircells.Nature441,984-987.Wiater,E.和Vale,W.(2003).Inhibinisanantagonistofbonemorphogeneticproteinsignaling.JBiolChem278,7934-7941.Wong,G.T.,Manfra,D.,Poulet,F.M.,Zhang,Q.,Josien,H.,Bara,T.,Engstrom,L.,Pinzon-Ortiz,M.,Fine,J.S.,Lee,H.J.等,(2004).Chronictreatmentwiththegamma-secretaseinhibitorLY-411,575inhibitsbeta-amyloidpeptideproductionandalterslymphopoiesisandintestinalcelldifferentiation.JBiolChem279,12876-12882.Xia,W.,R.J.Mullin,B.R.Keith,L.H.Liu,H.Ma,D.W.Rusnak,G.Owens,K.J.Alligood和N.L.Spector(2002).Anti-tumoractivityofGW572016:adualtyrosinekinaseinhibitorblocksEGFactivationofEGFR/erbB2anddownstreamErkl/2andAKTpathways.Oncogene21(41):6255-6263.Yang,Q.,Bermingham,N.A.,Finegold,M.J.和Zoghbi,H.Y.(2001).RequirementofMathlforsecretorycelllineagecommitmentinthemouseintestine.Science294,2155-2158.Yilmaz,O.H.,Katajisto,P.,Lamming,D.W.,Gultekin,Y.,Bauer-Rowe,K.E.,Sengupta,S.,Birsoy,K.,Dursun,A.,Yilmaz,V.O.,Selig,M.等,(2012).mTORClinthePanethcellnichecouplesintestinalstem-cellfunctiontocalorieintake.Nature.486,490-495.Ying,Q.L.,Wray,J.,Nichols,J.,Batlle-Morera,L.,Doble,B.,Woodgett,J.,Cohen,P.和Smith,A.(2008).Thegroundstateofembryonicstemcellself-renewal.Nature453,519-523.Yui,S.,等,(2012).FunctionalengraftmentofcolonepitheliumexpandedinvitrofromasingleadultLgr5+stemcell.NatureMedicine18(4):p.618-623.YaoM,TaylorRA,RichardsMG,SvedP,WongJ,EisingerD,XieC,SalomonR,RisbridgerGP,DongQ.(2010)Prostate-regeneratingcapacityofculturedhumanadultprostateepithelialcells.CellsTissuesOrgans.191(3):203-12.Yu,P.B.,Hong,C.C.,Sachidanandan,C,Babitt,J.L.,Deng,D.Y.,Hoyng,S.A.,Lin,H.Y.,Bloch,K.D.和Peterson,R.T.(2008).DorsomorphininhibitsBMPsignalsrequiredforembryogenesisandironmetabolism.Naturechemicalbiology4,33-41.Zhang,Q.,Major,M.B.,Takanashi,S.,Camp,N.D.,Nishiya,N.,Peters,E.C.,Ginsberg,M.H.,Jian,X.,Randazzo,P.A.,Schultz,P.G.等,(2007).Small-moleculesynergistoftheWnt/beta-cateninsignalingpathway.ProcNatlAcadSciUSA104,7444-7448.Zhang,Y.等,(2000).Cocultureofbladderurothelialandsmoothmusclecellsonsmallintestinal.JUrol164(3Pt2):p.928-34;discussion934-5.Zhong,H.,Zou,H.,Semenov,M.V.,Moshinsky,D.,He,X.,Huang,H.,Li,S.,Quan,J.,Yang,Z.和Lin,S.(2009).Characterizationanddevelopmentofnovelsmall-moleculesinhibitingGSK3andactivatingWntsignaling.MolecularbioSystems5,1356-1360.Zaharevitz,D.W.,Gussio,R.,Leost,M.,Senderowicz,A.M.,Lahusen,T.,Kunick,C,Meijer,L.和Sausville,E.A.(1999).Discoveryandinitialcharacterizationofthepaullones,anovelclassofsmall-moleculeinhibitorsofcyclin-dependentkinases.CancerRes59,2566-2569.其它实施方式应该理解,虽然已结合本发明的具体描述对其进行了说明,但前文描述意在进行举例说明而非限制本发明的范围,该范围由所附权利要求限定。其它方面、优点和修改落在后附权利要求的范围内。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1