一种黄精果胶类多糖的制备及应用的制作方法

文档序号:12453293阅读:504来源:国知局
一种黄精果胶类多糖的制备及应用的制作方法与工艺

本发明涉及天然药物化学领域和化妆品领域,更具体地说,涉及一种从黄精中提取分离得到的果胶类多糖以及该多糖的还原和降解产物。本发明也涉及从黄精块茎中提取分离得到该果胶类多糖的制备方法。此外,本发明还涉及所述方法提取得到的黄精果胶类多糖的抗氧化应用。



背景技术:

衰老是一种自然过程,人都会变老,逃不出这一过程。人体的衰老,最先从皮肤开始被察觉,表现为皮肤松弛,皱纹的出现,皮肤暗淡无光泽。日常生活中,紫外线UVA对皮肤的损伤最大。研究表明,UVA主要通过产生过量的活性氧自由基,对皮肤细胞进行损伤。

活性氧自由基为正常细胞代谢产物,也可作为细胞信号传导分子。随着人体的衰老,人体自身抗氧化系统下降以及外界因素的干扰,如UV照射,导致体内活性氧自由基水平的升高。过量活性氧自由基对细胞造成损伤,如引起DNA损伤,蛋白氧化,非酶糖基化,基质金属蛋白酶表达的升高,炎症等等。这些都称为活性氧自由基所造成的氧化损伤。

为了满足人们对抗衰老产品的需求,各大公司对这一领域产品极为重视和关注。现已经有不少抗氧化作用的物质用于美容或医学药物中,如抗坏血酸及其衍生物,原花青素,茶多酚等等。然而将它们加入化妆品时会可能带来皮肤安全性,配方和稳定性等问题,因此人们对抗衰老新化合物的开发还在不断进行中。

我国中医药资源丰富,为我们寻找优越的抗衰老产品提供了基础。

黄精(Polygonatum sibiricum),又名老虎姜、鸡头姜,为百合科黄精属多种植物的干燥块茎。黄精具有滋肾养阴,补中益气,延年益寿等功效。药理研究表明,黄精具有抗衰老、增强免疫、提高学习和记忆能力、抗炎、 抗病毒、降血糖等作用。黄精含有黄精皂苷、烟酸、糖类、醌类、氨基酸及微量元素。但是关于黄精多糖对皮肤成纤维细胞的抗氧化作用还尚未见报导,而对于从黄精粗多糖中分离纯化出的确定结构的均一多糖单组分对皮肤成纤维细胞的抗氧化作用更为未知。

中国专利CN200980145098公开了含有经加工的牡丹、黄精或百合的提取物的抗氧化化妆品组合。具体说,该申请涉及一种含有使用药草加工技术加工的牡丹、黄精和百合中的至少一种的提取物或者所述提取物与未经加工的牡丹、黄精和百合中的至少一种的提取物的混合物作为活性成分的抗氧化化妆品组合物。该申请缺陷在于:只是采用黄精提取混合液,并且提取物为80%的醇提物,且为粗提物。该申请并未揭示本发明所述的果胶类多糖。

黄精多糖的体外抗氧化作用研究(参见《湖南中医杂志》,2006,22(4):90-96页)研究了黄精多糖(PSP)体外抗氧化作用。通过TBA法测定大鼠肝匀浆自发和诱导的脂质过氧化产物MDA的量,研究PSP对脂质过氧化的作用;利用Fenton反应和邻苯三酚体系研究PSP对羟自由基和超氧阴离子的清除作用。结果表明,PSP能抑制自发的和诱导的脂质过氧化产物MDA的生成;对化学体系产生的羟自由基和超氧阴离子有清除作用。因此,该文献认为PSP具有抑制体外脂质过氧化和清除自由基作用。该文献的缺陷在于:文章所用的为黄精水提粗多糖,利用了大鼠组织提取液进行生化实验检测,没有检测样品对皮肤细胞的作用,没有更好地为化妆品开发提供科学数据支持。

黄精块茎分离得到的两种中性多糖的结构研究(Structural investigation of two neutral polysaccharides isolated from rhizome of Polygonatum sibiricum)(参见Carbohydrate polymers,2007,70:304-309页)和滇黄精多糖I的分离纯化及结构研究(参见《林产化学与工业》,2005,25(2):80-82页)公开了两个中性多糖PSW-1a,PSW-1b。经过分离纯化及结构鉴定发现,PSW-1a为一β-1,4-半乳聚糖,每7个糖残基中有一个支链;PSW-1a为一高度分支化的半乳甘露聚糖,为β-1,4-连接的甘露聚糖,每9个甘露糖残基连有一个β-半乳糖残基。PKP I,是以滇黄精为原料,得到的葡聚糖,为 α-1,4-葡萄糖为主链,在6位上有少量短支链。该两篇文献中得到的多糖的结构跟本发明得到的结果完全不同。

由此可见,目前关于黄精的抗衰老、抗氧化研究都集中在水提粗多糖,还没有详细研究过其中的主要多糖成分,确定其中具有抗氧化活性的均一多糖的结构。同时关于该黄精多糖对皮肤真皮层成纤维细胞的抗氧化作用也未见报导。

因此,本发明首次分离纯化得到了一种新型的黄精果胶类多糖PSPW2。本申请描述的黄精果胶类多糖为均一成分且结构清晰。本发明首次研究发现该黄精果胶类多糖无毒,且具有优异的抗氧化功效,能够抑制成纤维细胞凋亡,可以作为活性物应用在化妆品、保健食品以及医药中,特别适用于在化妆品中的应用。



技术实现要素:

本发明的目的是提供一种成分均一且结构清晰的新型黄精果胶类多糖。该黄精果胶类多糖在成纤维细胞中具有抗氧化作用,能够抑制成纤维细胞的凋亡。因此,在本发明的一方面,提供了一种从黄精提取果胶类多糖的制备方法,所述方法包括以下步骤:

a)沸水提取;

b)浓缩,然后脱蛋白,然后碱中和;

c)透析,浓缩,离心去沉淀,上清液用有机溶剂沉淀;

d)收集沉淀,干燥后得到黄精水提多糖;

e)步骤d)所得黄精水提多糖用二乙基氨乙基纤维素分离,冷冻干燥后得到固体;

f)将步骤e)所得固体用丙烯葡聚糖凝胶分离纯化,冷冻干燥后得到黄精果胶类多糖。

在本发明的一些实施方式中,所述步骤a)之前还包括用有机溶剂脱脂的步骤。在一些优选的实施方式中,用于脱脂步骤的有机溶剂包括但不限于:乙醇、丙酮以及其他具有3-5个碳原子的低级醇。在一个优选的实施方式中,重复进行沸水提取步骤,直至苯酚-硫酸法检测无颜色。

在本发明的一些实施方式中,所述步骤b)中以1:1的体积比采用30%(w/v)三氯乙酸溶液进行脱蛋白处理。在本发明的一些实施方式中,所述碱中和步骤直至pH为7.0至8.0。

在本发明的一些实施方式中,所述步骤c)中用有机溶剂沉淀的步骤包括采用乙醇、丙酮以及其他具有3-5个碳原子的低级醇进行沉淀的步骤。

在本发明的一些实施方式中,所述步骤d)中收集沉淀包括用无水乙醇,丙酮洗涤沉淀的步骤。在本发明的一些实施方式中,所述步骤d)中真空干燥后得到干燥黄精水提多糖PSP。

在本发明的一些实施方式中,所述步骤e)包括将水提粗多糖PSP用适量水溶解,离心除去不溶物,上清液通过二乙基氨乙基纤维素[DEAE纤维素(Cl-)]柱进行分离。在本发明的一些实施方式中,以0.2mol/L氯化钠洗脱。在本发明的一些实施方式中,采用苯酚-硫酸法绘制洗脱曲线,根据洗脱曲线收集合并洗脱液。在本发明的一些实施方式中,将洗脱液浓缩至小体积,对蒸馏水透析4-6次,每次2L,透析袋内液冷冻干燥得到棕色絮状固体PSPW2N。

在本发明的一些实施方式中,所述步骤f)包括取PSPW2N样品,用0.2mol/L氯化钠溶解,离心,上清液上丙烯葡聚糖凝胶S-300凝胶柱。在本发明的一些实施方式中,用0.2mol/L氯化钠洗脱液。在本发明的一些实施方式中,采用苯酚-硫酸法绘制洗脱曲线,根据洗脱曲线收集合并洗脱液。在本发明的一些实施方式中,将洗脱液浓缩至小体积,对蒸馏水透析4-6次,每次2L,透析内液冷冻干燥得棕色粉末黄精果胶多糖PSPW2。

在本发明的一些实施方式中,所述方法还包括在步骤f)之后进行还原的步骤。在一些优选的实施方式中,采用硼氢化钠溶液进行还原反应。在一些优选的实施方式中,还原反应在酸性条件下进行。在一些优选的实施方式中,还原反应在pH 4.75的条件下进行。在本发明的一些实施方式中,将还原反应之后用去离子水透析,内液减压浓缩,冷冻干燥后得到黄精果胶多糖还原物PSPW2-Re。

在本发明的一些实施方式中,所述方法还包括在步骤f)之后进行酸降解的步骤。在本发明的一些实施方式中,酸降解采用的酸是三氟乙酸。在 本发明的一些实施方式中,酸降解在100℃的条件下进行。在本发明的一些实施方式中,酸降解之后,减压蒸干三氟乙酸,对蒸馏水透析,透析袋内液浓缩后冻干,得到黄精果胶多糖酸降解物PSPW2-De2。

另一方面,本发明还涉及一种黄精果胶类多糖PSPW2,所述黄精果胶类多糖的主链结构为RG I与HG的交替连接,对应的重均分子量为8-15.0KDa,其糖醛酸含量为0-76.9%,其中:RGI的重复单元为:二糖[→4]-α-半乳糖醛酸-(1→2)-α-鼠李糖-(1→)],HG的重复单元结构为:(1→4)-α-D-半乳糖醛酸。

在本发明一些优选的实施方式中,所述黄精果胶类多糖PSPW2的单糖组成为鼠李糖Rha,阿拉伯糖Ara,半乳糖Gal,半乳糖醛酸GalA,其摩尔比为1:2:2:4。在本发明一些优选的实施方式中,所述黄精果胶类多糖含有T-Ara,1,5-Ara,1,3,5-Ara,1,2-Rha,1,2,4-Rha,T-Gal以及1,4-Gal。在本发明一些优选的实施方式中,所述黄精果胶类多糖具有60%的甲酯化。在本发明一些优选的实施方式中,所述黄精果胶类多糖的糖醛酸含量为30~60%。在本发明一些优选的实施方式中,所述黄精果胶类多糖主链的分支位点为Rhap糖残基的O-4位,支链分别由β-1,4-半乳糖残基以及α-1,5-阿拉伯糖残基组成,而在阿拉伯糖残基的O-3位上连接了两种末端糖残基,分别为α-Arap和β-Galp。

本发明所述的黄精果胶类多糖为黄精果胶类多糖及其衍生物,黄精果胶类多糖的还原物和黄精果胶类多糖的酸降解物。

黄精果胶类多糖可应用于皮肤外用剂、保健食品和医药,尤其是可应用于化妆品中,根据制剂的不同类型添加不同的用量。

在本发明的另一方面,提供了一种具有抗氧化作用的化妆品,所述化妆品包含按照本发明方法制备得到的黄精果胶多糖以及化妆品领域可接受的赋形剂。在一些实施方式中,所述化妆品选自:洁面乳、化妆水、乳液、膏霜、啫喱、面膜。在一个优选的实施方式中,所述黄精果胶类多糖在皮肤外用剂中的重量百分比为0.0001%-20%(w/w)。优选的重量百分比为0.001%-10%(w/w)。更优选的重量百分比为0.001%-5%(w/w)。最优选的重量百分比为0.01%-5%(w/w)。

所述皮肤外用剂组合物是通常用于皮肤外部的所有成分的统称概念,例如可以是化妆料组合物或药学组合物。所述化妆料组合物中可以是基础化妆料、面部妆容化妆料、身体用化妆料、头发护理用化妆料等,对其剂型无特殊限制,根据不同目的可合理选择。

所述化妆料组合物中根据剂型和目的的不同还含有不同的化妆品学层面允许的介质或基质赋形剂。

可以用于本发明皮肤外用剂组合物的化妆品、皮肤病学或药学上可接受的赋形剂为水相、油相、凝胶、水包蜡型乳液、水包油型乳液或油包水型乳液的形式。水相为一种或多种水溶性或分散性组分的混合物,其在室温(25℃)下可以为液体、半固体或固体。赋形剂包括或可以为在水或水-醇赋形剂中的混悬液、分散液或溶液的形式,其可以含有增稠剂或凝胶剂。本领域技术人员可以基于本领域技术人员掌握的知识选择合适的产品形式,其中包含的组分。

所述的组合物可以包括水相,该水相可以含有水或水与至少一种亲水性有机溶剂的混合物,所述的亲水性有机溶剂诸如醇,尤其是含有2-5个碳原子的直链或支链低级一元醇,如乙醇或丙醇;多元醇,如丙二醇、山梨醇、甘油、泛醇或聚乙二醇及其混合物。

当发明的组合物为乳液形式时,该组合物还可以任选包含表面活性剂。

所述的组合物还可以包含成膜聚合物,如聚氨基甲酸酯、聚丙烯酸均聚物或共聚物、聚酯、基于烃的树脂和/或硅氧烷树脂。可以将聚合物溶于或分散于化妆品可接受的赋形剂中并且任选与增塑剂合并。

本发明的组合物还可以包含油相,所述的油相含有在室温(25℃)下为液体的油溶性或油分散性组分和/或在室温下为油状或蜡状的物质,如蜡、半固体、树胶及其混合物。该油相还可以含有有机溶剂。

通常在室温下为液体,合适的油性物质包括:来源于动物的基于烃的油,如全氢化角鲨烯;基于烃的植物油,如液体的C4-10脂肪酸的甘油三 酯类,例如庚酸或辛酸甘油三酯类,或油,例如向日葵油、玉米油、大豆油、葡萄籽油、蓖麻油、鳄梨油、辛酸/癸酸甘油三酯类、霍霍巴油;矿物或合成来源的直链或支链烃类,例如液体石蜡及其衍生物、凡士林;合成酯类和醚类,特别是脂肪醇的酯类,例如肉豆蔻酸异丙酯、棕榈酸2-乙基己酯、硬脂酸2-辛基十二烷基酯、异硬脂酸异硬脂醇酯;羟基化酯类,例如乳酸异硬脂醇酯、羟基硬脂酸辛酯、羟基硬脂酸辛酯、羟基硬脂酸辛基十二烷基酯、脂肪醇的庚酸酯类、辛酸酯类和癸酸脂类;多元醇酯类,例如丙二醇二辛酸酯、新戊二醇二庚酸酯、二甘醇二异壬酸酯和季戊四醇酯类;含有C12-26的脂肪醇类,例如辛基十二烷醇、2-丁基辛醇、2-己基癸醇、2-十一烷基十五烷醇、油醇;基于部分烃的氟油和/或氟硅油,硅油,在室温下为液体或半固体的挥发性或非挥发性的直链或环状聚甲基硅氧烷,例如环状聚二甲基硅氧烷和聚二甲基硅氧烷,其任选包含苯基,例如苯基三甲基硅氧烷、硅氧烷及其混合物。

本发明的组合物可以进一步包含常用于化妆品领域中的任何组分。这些组分包括防腐剂、水相增稠剂(提取物生物聚合物、合成聚合物)和脂肪相增稠剂、芳香剂、亲水性和亲脂性活性剂及其混合物。

本发明的组合物还可以包含另外的颗粒相,所述的颗粒相可以为化妆品组合物中使用的颜料和/或珠光剂和/或填充剂。

颜料可以存在于组合物中,合适的无机颜料包括氧化钛、氧化锆和氧化铈以及氧化锌、氧化铁和铁蓝;合适的有机颜料包括钡、锶、钙和铝色淀和碳黑。

珠光剂可以存在于组合物中,合适的珠光剂包括涂覆了氧化钛、氧化铁或天然颜料的云母。

填充剂可以存在于组合物中,合适的填充剂包括滑石粉、二氧化硅、硬脂酸锌、云母、高岭土、尼龙粉末、聚乙烯粉末、特氟龙、淀粉、一氮化硼、共聚物微球,例如硅氧烷树脂微珠。

本发明组合物的油相可以包含一种或多种蜡、树胶或其混合物。蜡包 括基于烃的蜡、氟蜡和/或硅氧烷蜡,并且可以来源于植物、矿物、动物和/或合成来源。合适的蜡包括蜂蜡、巴西棕榈蜡、小烛树蜡、石蜡、微晶蜡、地蜡;合成蜡包括聚乙烯蜡、含有C16-45的硅氧烷蜡。树胶一般为聚二甲基硅氧烷或羧甲基纤维素钠或提取物类,并且半固体物质一般为基于烃的化合物,如羊毛脂及其衍生物。

可以将本发明的组合物配制成任何合适的产品形式。这类产品形式包括,但不限于气溶胶型喷雾剂、霜剂、乳液、固体、液体、分散体、泡沫、凝胶、化妆水、摩丝、软膏、粉剂、贴剂、润发油、溶液、手按泵型喷雾剂、棒状物、面膜和湿纸巾。可以将本发明的组合物通过本领域众所周知的各种方法便利地用于制备或作为化妆品、皮肤病学或药物局部施用产品。

本发明的皮肤外用剂组合物可以包括一种或多种下列成分:抗过敏剂、抗微生物剂、抗氧化剂、螯合剂、着色剂去色素剂、润肤剂、乳化剂、表皮脱落剂、成膜剂、香料、保湿剂、昆虫驱避剂、润滑剂、药物活性剂、增湿剂、耐光剂、防腐剂、护肤剂、皮肤渗透增强剂、防晒剂、稳定剂、表面活性剂、增稠剂、粘度调节剂、维生素或其任意组合。

附图说明

图1是本发明黄精果胶类多糖PSPW2的提取工艺流程图。

图2是本发明黄精果胶类多糖PSPW2的HPLC图谱。

图3是本发明黄精果胶类多糖PSPW2的红外图谱。

图4是本发明黄精果胶类多糖PSPW2的1H NMR图谱。

图5是本发明黄精果胶类多糖PSPW2的13C NMR图谱。

图6显示了本发明黄精果胶类多糖PSPW2对成纤维细胞活性的影响。

图7显示了本发明黄精果胶类多糖PSPW2保护细胞的MTT结果。

图8显示了本发明黄精果胶类多糖PSPW2及其衍生物PSPW2-Re和PSPW2-De对ARE的激活作用。

图9显示了本发明黄精果胶类多糖PSPW2及其衍生物PSPW2-Re和PSPW2-De对人成纤维细胞的保护作用。

具体实施方式

下面结合具体的实施例进一步阐述本发明。但是,应该明白,这些实施例仅用于说明本发明而不构成对本发明范围的限制。下列实施例中未注明具体条件的试验方法,通常按照常规条件,或按照制造厂商所建议的条件。除非另有说明,所有的百分比和份数按重量计。

本发明实施例中使用的仪器设备如下:

SHB-III循环水式多用真空泵:郑州长城科工贸易有限公司。

85-2型恒温磁力搅拌器:上海思乐仪器有限公司。

DHG-9070A型电热恒温鼓风干燥箱:上海一恒科技有限公司。

N-1100D-WD真空旋转蒸发仪:日本EYELA公司。

UV260可见分光光度计:日本Shimadzu。

GL-21M低温高速离心机:上海离心机研究所有限公司。

Labconco大型冷冻干燥机:美国Labconco公司。

Edwards小型冷冻干燥机:英国Edwards公司。

全波长双板多功能仪(酶标仪):美国BMG Labtech公司Novostar

细胞培养箱:美国Thermo serial II

实施例1黄精果胶类多糖的制备

(1)取黄精块茎2kg,乙醇浸泡脱脂,室温自然干燥,干燥后的黄精块茎原药材用沸水提取,按照黄精原药材与每次加水量的比例为1kg药材加水10L进行提取。共提取4次,每次4小时。

(2)将每次提取所得的提取液合并,最终浓缩至5-15L,对流动水透析三天,透析袋内液浓缩至5-10L,加入5-10L 30%(w/v)三氯乙酸溶液,脱蛋白之后用碱中和至pH为7.0至8.0,对流动水透析三天,内液浓缩,离心去沉淀,上清液加入乙醇进行沉淀,4℃静置过夜,离心后得沉淀。沉淀依次用无水乙醇,丙酮洗涤,真空干燥后得到干燥的黄精水提多糖PSP,55g。

(3)以步骤(2)中的水提粗多糖PSP 30g,适量水溶解,离心除去 不溶物,上清液通过二乙基氨乙基纤维素[DEAE纤维素(Cl-)]柱进行分离,以0.2mol/L氯化钠洗脱,苯酚-硫酸法绘制洗脱曲线,根据洗脱曲线收集合并洗脱液,浓缩至小体积,对蒸馏水透析4-6次,每次2L,透析袋内液冷冻干燥得到棕色絮状固体PSPW2N 2.6g。

(4)取PSPW2N样品,用0.2mol/L氯化钠溶解,离心,上清液上丙烯葡聚糖凝胶S-300凝胶柱,用0.2mol/L氯化钠洗脱液,苯酚-硫酸法绘制洗脱曲线,根据洗脱曲线收集合并洗脱液,浓缩至小体积,对蒸馏水透析4-6次,每次2L,透析内液冷冻干燥得棕色粉末黄精果胶类多糖PSPW2。

实施例2黄精果胶类多糖PSPW2的理化性质分析

按照多糖的常规测试方法,以分子量已知的右旋糖酐T-700,T-110,T-80,T-40,T-11为标准品(Pharmacia公司生产)进行测定。使用安捷伦S1200液相HPGPC(Ultrahydragel 500串联Ultrahydragel 2000柱)进行分析,结果如图2所示。实施例1得到的黄精果胶类多糖PSPW2为均一多糖,其平均分子量为8-15KDa。

实施例3黄精果胶类多糖PSPW2的糖组成分析

取实施例1的黄精果胶类多糖PSPW2样品3mg,110℃下用2M三氟乙酸水解2小时,水解产物冷却后于40℃减压浓缩蒸干,重复操作4-5次,以除尽未反应的三氟乙酸。然后用3ml去离子水溶解样品,加入20-30mg硼氢化钠,室温下还原3小时(间歇震荡),然后用25%乙酸中和多余的硼氢化钠,至溶液不再产生气泡,pH应在4-5之间,加甲醇多次,减压蒸干,110℃加热10分钟,除去残留的水分,加3ml醋酐,密塞,100℃反应1小时,冷却,加甲苯4-5次(每次2-3ml)共蒸除去多余醋酐,直至完全干燥。所得的乙酰化产物用10ml氯仿萃取,经等体积蒸馏水洗涤4次,氯仿层用无水硫酸钠干燥,浓缩至0.1ml后用岛津GC-14B气相色谱仪分析。结果显示,该黄精果胶类多糖PSPW2的单糖组成为鼠李糖Rha,阿拉伯糖Ara,半乳糖Gal,半乳糖醛酸GalA,其摩尔比为1:2:2:4。

实施例4黄精果胶类多糖PSPW2的化学结构光谱学鉴定

红外光谱检测:IR用Perkin-Elmer 599B红外分光广度计测定,多糖IR谱用溴化钾压片法测定。结果如图3所示。

核磁共振分析:25℃,取30mg PSPW2,用500μl重水溶解后,用核磁共振仪Brucker AM-400,获得其1H NMR(图4)以及13C NMR(图5)。

黄精果胶类多糖PSPW2的结构鉴定为,该多糖为一由RG I和HG两种典型果胶类多糖混合组成的多糖主链,并且具有60%的甲酯化。该多糖的糖醛酸含量为30~60%之间。RG I的主链结构为二糖[→4]-α-GalAp-(1→2)-α-Rhap-(1→)]的重复单元;HG的主链结构为(→4]-α-GalAp-(1→)。该多糖主链的分支位点为Rhap糖残基的O-4位,支链分别由β-1,4-半乳糖残基以及α-1,5-阿拉伯糖残基组成,而在阿拉伯糖残基的O-3位上连接了两种末端糖残基,分别为α-Arap和β-Galp。

实施例5黄精果胶类多糖PSPW2的还原

称取实施例1黄精果胶类多糖PSPW2样品20mg溶于20ml去离子水,加入N-环己基-N’-(2-N-甲基吗啉代乙基)-碳二亚胺-对甲苯磺酸盐(CMCC)200mg,磁力搅拌下滴加0.01mol/L HCl,用自动电位滴定仪使pH保持为4.75,维持3h。滴加2mol/L硼氢化钠溶液(8ml),该过程中,pH值会急剧上升,硼氢化钠溶液在45min内加完,反应中若产生大量的泡沫,可滴加异戊醇以消泡。硼氢化钠溶液加完后,在室温下继续反应2h,对去离子水透析(2L×3),内液减压浓缩至10ml,冷冻干燥得黄精果胶类多糖还原物PSPW2-Re。

实施例6黄精果胶类多糖PSPW2及黄精果胶类多糖还原物PSPW2-Re甲基化分析

分别取实施例1黄精果胶类多糖PSPW2样品和实施例5黄精果胶类多糖还原物PSPW2-Re样品各10mg于甲基化反应瓶中,加入2ml干燥二甲基亚砜(DMSO),密塞,室温搅拌15min,使样品完全溶解,加入预先 磨成粉状的氢氧化钠约20mg,继续搅拌10min,然后冰浴约5min,在冰水浴下缓慢滴加约0.3ml碘甲烷(滴加速度:12滴/min),然后在室温下继续搅拌反应30min。减压除去过量的碘甲烷,溶液对去离子水透析24h(2L×4),透析内液减压浓缩至2~3ml,冷冻干燥,重复甲基化反应3~4次后,取少量样品进行IR光谱检测,如IR谱图中在3300cm-1左右的O-H振动吸收峰消失,则表明该多糖样品已经完全甲基化,否则表明样品未甲基化完全,还需要继续进行甲基化反应1~2次。

黄精果胶类多糖PSPW2的全甲基化后的气质连用(GC-MS)图谱分析结果显示,该多糖含有T-Ara,1,5-Ara,1,3,5-Ara,1,2-Rha,1,2,4-Rha,T-Gal以及1,4-Gal。

糖醛酸还原后得到的多糖PSPW2-Re,经甲基化分析发现,1,4-Gal的比例明显升高,可推测原糖中的半乳糖醛酸GalA,为1,4-连接。

实施例7黄精果胶类多糖PSPW2的酸降解

取实施例1黄精果胶类多糖样品PSPW2100mg,置于圆底烧瓶中,加入适量0.2M三氟乙酸,密塞,100℃保温2h。减压蒸干三氟乙酸后,对蒸馏水透析,透析袋内液浓缩后冻干,得到80mg黄精果胶类多糖酸降解物PSPW2-De2。

实施例8糖醛酸含量的测定

试剂:1)取硼砂(NaB4O710H2O)0.477g,加入浓硫酸40mL,搅拌溶解(可少许加热),冷却后,用浓硫酸定溶至100mL。2)取0.25g NaOH,加适量水溶解,定溶至50mL,加入间苯基苯酚75mg,搅拌溶解。3)糖醛酸标准溶液(100g/mL):取葡萄糖醛酸10mg,溶于水中,加水定溶至100mL。4)样品溶液(100g/mL):取样品按上述标准液方法配制。

测定时取标准溶液体积分别为0ml、0.08ml、0.16ml、0.24ml、0.32ml、0.4ml,加水补足0.4ml,

加入试剂1),摇匀,100℃水浴5min,然后在冰水中冷却,加入试剂2),混合均匀,室温放置15min,测定OD520。计算:由标准液各管 OD520对GlcA含量(g)作标准曲线。根据标准曲线计算样品中糖醛酸含量。

分别配制实施例1黄精果胶类多糖样品PSPW2、实施例5黄精果胶类多糖的还原物PSPW2-Re、实施例7黄精果胶类多糖的酸降解物PSPW2-De2的浓度为100μg/ml,进行检测。结果发现,这三种多糖的糖醛酸含量分别为0%,44.4%以及76.9%。

实施例9黄精果胶类多糖PSPW2、黄精果胶类多糖还原物PSPW2-Re及黄精果胶类多糖酸降解物PSPW2-De2抗氧化活性作用

(1)黄精果胶类多糖对成纤维细胞生长活性的影响:在96孔板内加入含有人体成纤维细胞Human Fibroblast cell的培养基悬浮液2ml,细胞浓度为3000个。37℃5%CO2培养箱孵育24小时,吸出培养基,分别加入含有姜黄素以及实施例1黄精果胶类多糖样品PSPW2、实施例5黄精果胶类多糖还原物PSPW2-Re、实施例7黄精果胶类多糖酸降解物PSPW2-De2的培养基2ml,使其终浓度分别为5μM、0.01%、0.05%。培养基为含有10%胎牛血清(Gibico)、100U/ml青霉素和100U/ml链霉素的DMEM培养基。37℃5%CO2培养箱培养72小时。去除培养基,加入配置好的10%MTT的培养基,37℃5%CO2培养箱培养4小时。去除孔中的培养基和MTT,加入二甲亚砜(DMSO)150μL/孔,立即用酶标仪测定ODOD570值。

如图6所示,结果表明,实施例1黄精果胶类多糖PSPW2在浓度分别为0.01%以及0.05%的浓度下,均没有表现出细胞毒性也没有显示出促进细胞增殖的作用。同样对实施例5黄精果胶类多糖还原物PSPW2-De和实施例7黄精果胶类多糖酸降解物PSPW2-Re在0.05%的浓度下,同样对成纤维细胞生长活性的增长进行了检测,结果表明两个样品均未表现出细胞毒性及明显地促进成纤维细胞增殖作用。

(2)黄精果胶类多糖对抗氧化反应元件(ARE)激活活性检测:该实验中,采用的是一种经过人工改造的含有报告基因的293T细胞。抗氧化反应元件(ARE)在生物体内分布广泛,是抗氧化酶基因的顺式作用元件,对维持细胞氧化还原状态和防御氧化损伤有很重要的作用。方法是将编码 Luciferase荧光酶的一段谷胱甘肽转硫酶GST报告基因转染到293T细胞的ARE序列之后,当ARE激活时,其下游的报告就会表达luciferase荧光酶。在检测前,就如荧光酶底物,检测底物转化后所发出的自然光的强度(RLU值)就能体现细胞中Luciferase的表达量,从而反映出细胞内ARE的激活水平。

在96孔板内加入含有293T/pGF1-ARE细胞的培养基悬浮液0.1ml,细胞浓度为3×105/ml,37℃,5%CO2培养箱孵育过夜。加入含有实施例1黄精果胶类多糖PSPW2、实施例5黄精果胶类多糖还原物PSPW2-Re、实施例7黄精果胶类多糖酸降解物PSPW2-De2的培养基0.5ml/孔,使其终浓度为0.05%,同时设置Blank和阳性对照(咖啡酸苯乙酯CAPE),孵育16h。加入25μl/孔的Glo裂解液(1×E3971,Promega)后,将96孔放入-80℃,2h。按照Luciferase assay system kit方法进行检测,在2min内立即读取RLU,计算。

ARE激活水平的检测结果如图7所示。实验结果表明,实施例1黄精果胶类多糖PSPW2组中胞内ARE的激活水平明显高于对照组,即此细胞内抗氧蛋白的表达量对于对照组。并且实施例7黄精果胶类多糖酸降解物PSPW2-De的效果优于实施例1黄精果胶类多糖PSPW2,而实施例5黄精果胶类多糖还原物PSPW2-Re的效果弱于实施例1黄精果胶类多糖PSPW2。这说明,对于糖醛酸含量较高的实施例7黄精果胶类多糖酸降解物PSPSW2-De来说,其抗氧能力更好。

(3)黄精果胶类多糖保护细胞的MTT筛选试验:在96孔板内加入含有人体成纤维细胞Human Fibroblast cell的培养基悬浮液200μl,细胞浓度为3000个。37℃5%CO2培养箱孵育24小时,吸出培养基,分别加入含有姜黄素(国药集团,5g)以及实施例1黄精果胶类多糖PSPW2、实施例5黄精果胶类多糖还原物PSPW2-Re、实施例7黄精果胶类多糖酸降解物PSPW2-De2的培养基200μl。培养基为含有10%胎牛血清(Gibico)、100U/ml青霉素和100U/ml链霉素的DMEM培养基。37℃5%CO2培养箱培养72小时。去除培养基,加入含有终浓度为0.0035%H2O2的培养基, 37℃5%CO2培养箱培养2小时。将含有H2O2的培养基去除,加入配置好的10%MTT的培养基,37℃5%CO2培养箱培养4小时。去除孔中的培养基和MTT,加入二甲亚砜(DMSO)150μL/孔,立即用酶标仪测定ODOD570值。

如图8所示,结果表明,H2O2处理后,细胞存活率下降至38.02%,而在H2O2处理前,分别预先用0.01%以及0.05%的实施例1黄精果胶类多糖PSPW2进行孵育,可使得细胞存活率分别增加至67.18%和70.02%。

如图9所示,比较在相同浓度0.05%条件下,实施例1黄精果胶类多糖PSPW2,实施例7黄精果胶类多糖酸降解物PSPW2-De以及实施例5黄精果胶类多糖还原物PSPW2-Re,这三个样品对人体成纤维细胞的保护作用,结果表明,实施例7黄精果胶类多糖酸降解物PSPW2-De的保护作用优于实施例5黄精果胶类多糖还原物PSPW2-Re,甚至优于实施例1黄精果胶类多糖PSPW2。这也证实了上述ARE激活的结果,糖醛酸含量对多糖的抗氧化能力具有很重要的作用。

实施例10黄精果胶类多糖PSPW2、黄精果胶类多糖还原物PSPW2-Re及黄精果胶类多糖酸降解物PSPW2-De2保湿作用

测定吸湿性需在恒温恒湿环境下进行,可以采用密闭容器中放置某种饱和盐溶液,在规定温度下使之保持一定的相对湿度。本实验选用饱和硫酸铵和乙酸钾溶液置于小干燥器中,环境温度为20℃。选用5%甘油为对照,测定了黄精果胶类多糖PSPW2、黄精果胶类多糖还原物PSPW2-Re及黄精果胶类多糖酸降解物PSPW2-De2的吸湿率。将样品干燥至恒质量后称其质量,分别置于相对湿度为50%的干燥器中,放置4h、12h、24h和48h,称其质量变化。

保湿率计算公式:

保湿率(%)=1-(M1-M2)/M1×100%,

其中,M1为放置前样品质量(g);M2为放置后样品质量(g)。

取实施例1中制备的黄精果胶类多糖PSPW2,实施例5黄精果胶类多糖还原物PSPW2-Re以及实施例7黄精果胶类多糖酸降解物PSPW2-De, 加蒸馏水制成0.05mg/ml溶液备用,进行体外保湿作用评价,分别考察8h,12h,24h和48h时水分测定,计算其保湿率,结果见表1。

表1黄精果胶类多糖PSPW2,黄精果胶类多糖还原物PSPW2-Re以及黄精果胶类多糖酸降解物PSPW2-De保湿作用

由上表可见,实施例1中制备的黄精果胶类多糖PSPW2,实施例5黄精果胶类多糖还原物PSPW2-Re以及实施例7黄精果胶类多糖酸降解物PSPW2-De较阳性对照在8h-48h内,均具有保湿效果,尤其实施例7黄精果胶类多糖酸降解物PSPW2-De在48h时,保湿率仍为10.6%,具有优异的保湿作用。

取实施例1中制备的黄精果胶类多糖PSPW2,实施例5黄精果胶类多糖还原物PSPW2-Re以及实施例7黄精果胶类多糖酸降解物PSPW2-De,用于皮肤外用剂的制备。所述皮肤外用剂优选为化妆品组合物,例如化妆水、精华液、乳霜等。所述黄精果胶类多糖在皮肤外用剂中的重量百分比为0.0001%-20%(w/w)。优选的重量百分比为0.001%-10%(w/w)。更优选的重量百分比为0.001%-5%(w/w)。最优选的重量百分比为0.01%-5%(w/w)。

以下是黄精果胶类多糖在皮肤外用剂中的具体应用的实施例,及其这些剂型的配方和制备方法。以下各表中“-”表示无添加。

实施例11:面霜的制备

实施例12:乳液的制备

实施例13:啫喱的制备

实施例14:化妆水的制备

实施例15:精华液的制备

实施例16:面膜的制备

实施例17:眼霜的制备

实施例18:气雾(清洁泡)的制备

实施例19:喷雾的制备

实施例20:沐浴露的制备

实施例21:洗面奶的制备

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1