一种低密度中子屏蔽材料及其制备方法与流程

文档序号:12401745阅读:374来源:国知局

本发明涉及中子屏蔽材料技术领域,尤其涉及一种低密度中子屏蔽材料及其制备方法。



背景技术:

辐射屏蔽要面对各种射线如不同能量的中子、γ射线、二次γ射线及其它带电粒子。其中中子是一种不带电的粒子,中子穿过物质时主要会与靶物质的原子核相互作用,其本身具较电子与γ射线更强的穿透力,对人体造成的伤害比起同等吸收剂量下的电子、γ、X射线更大。

近年来,核能和核技术的应用达到了迅猛发展。传统的中子屏蔽材料已无法完全满足核动力舰船或可移动式放射源的防护要求,如铅有毒,对中子屏蔽效果差;混凝土体积大且难以移动;硼元素的热中子吸收性能会随着与中子反应而递减等。因此,为了满足由此带来的挑战,研发无毒性、密度小、屏蔽效果好、物理性能优良的新型防辐射材料已成为材料研发的重要方面。

传统的中子屏蔽材料主要分为含硼金属复合物和含硼聚合物复合物。

CN201210570726.X公开了一种铝基碳化硼中子屏蔽材料。该材料含钨B4C/铝合金复合屏蔽材料W2B5及B4C分布均匀,致密化程度高,强度和韧性良好,特别适用于中子/γ射线屏蔽领域,因为合金性质难以对异形件进行屏蔽。CN201410340565.4公开了一种基于PVC和碳化硼的中子屏蔽材料,产品冲击强度5-10MPa,氧指数35%;弯曲强度15-25MPa,拉伸强度15-35MPa;维卡耐热温度60-70℃,该文献所述含硼聚合物复合物具有柔性好的优点,广泛被用于异形件的中子屏蔽,比如中子仪器等低能量中子的屏蔽,但所述聚合物中硼含量难以进一步提高,将导致材料加工困难,同时某些场合使用需要外加保温隔热层。



技术实现要素:

针对现有技术的上述缺陷和问题,本发明的目的是针对中子屏蔽需求提供一种低密度中子屏蔽材料及其制备方法,提高了材料中含硼化合物的添加量,同时赋予材料较低的密度和优异的中子屏蔽性能。

为了达到上述目的,本发明提供如下技术方案:

一种低密度中子屏蔽材料,包括含硼化合物,通过将该含硼化合物加入到配置好的聚合物溶液或乳液中,混合均匀,冷冻干燥而成。

在一种优选的实施方案中,按重量份数计,所述聚合物溶液或乳液每100份中,加入含硼化合物10~300份。

在一种优选的实施方案中,还包括填充剂,将填充剂与含硼化合物加入到配置好的聚合物溶液或乳液中,混合均匀,冷冻干燥而成。

在一种优选的实施方式中,填充剂为黏土,按重量份数计,所述聚合物溶液或乳液每100份中,加入填充剂0.1~100份,所述黏土包括蒙脱土、累脱石、高岭土、蛭石、海泡石、水滑石、硅藻土、羟基磷灰石其中一种或几种。

在一种优选的实施方案中,所述聚合物溶液或乳液,包括聚乙烯、聚丙烯、聚乙烯醇、聚氧化乙烯、天然橡胶、果胶、藻酸盐、聚丙烯酸酯前驱体、环氧树脂前驱体、聚酰亚胺前驱体其中一种或几种配置成溶液或乳液。

在一种优选的实施方案中,所述含硼化合物包括硼酸锌、硼酸、氮化硼、碳化硼、硼化锆、硼化钛其中一种或几种。

一种低密度中子屏蔽材料的制备方法,该方法包括以下步骤:

(1)、将含硼化合物加入到配置好的聚合物溶液或乳液中,混合均匀;

(2)、将(1)中所得进行冷冻干燥,即得。

在一种优选的实施方案中,按重量份数计,所述聚合物溶液或乳液每100份中,加入含硼化合物10~300份。

在一种优选的实施方案中,还包括填充剂,将填充剂与含硼化合物加入到配置好的聚合物溶液或乳液中,混合均匀,冷冻干燥而成,填充剂为黏土,按重量份数计,所述聚合物溶液或乳液每100份中,加入填充剂0.1~100份,所述黏土包括蒙脱土、累脱石、高岭土、蛭石、海泡石、水滑石、硅藻土、羟基磷灰石其中一种或几种。

在一种优选的实施方案中,所述聚合物溶液或乳液,包括聚乙烯、聚丙烯、聚乙烯醇、聚氧化乙烯、天然橡胶、果胶、藻酸盐、聚丙烯酸酯前驱体、环氧树脂前驱体、聚酰亚胺前驱体其中一种或几种配置成溶液或乳液;所述含硼化合物包括硼酸锌、硼酸、氮化硼、碳化硼、硼化锆、硼化钛其中一种或几种。

本发明主要采用直接冷冻干燥法,是将聚合物溶液或者乳液冷冻成冰后,然后抽真空使溶剂升华,最后得到具有多孔结构的聚合物材料。因此,按体系形态不同可将直接冻干法分为溶液冷冻干燥法和乳液冷冻干燥法两种方法。因此,对于该领域的技术人员,在进行冷冻干燥法的实施过程中,可根据现有技术确定冷冻干燥过程中各项参数,包括冷冻温度、聚合物浓度、是否添加填充剂,以及表面活性剂、交联剂等对材料改性手法,对冷冻干燥后的材料形貌、密度、孔径形成影响。

为了最好的达到本发明低密度的特性,本发明成品密度控制在0.05~0.5g/cm3,远低于目前中子屏蔽材料普遍采用的B4C/铝合金复合屏蔽材料在2g/cm3左右的密度参数,使得本发明具有轻质特性,并且在优选实施例中,2cm厚度实施例成品的中子屏蔽率能达到99.1%。

本发明采用冷冻干燥法,因此具有良好的材料相容性,所述聚合物溶液或乳液每100份中,能够加入含硼化合物10~300份,在取最大极值250~300份情况下,冷冻干燥后的成品中硼含量较大,硼含量高于现有技术中大部分B4C含量在20~60wt%的材料。

本发明所述的聚合物配置成溶液或乳液,当根据聚合物采用种类配置为溶液时,是将聚合物溶液中的致孔剂——水/有机溶剂除去,从而可以得到高孔隙率的多孔材料,具有简单易操作、结构可控及材料选择空间大等特点,

当根据聚合物采用种类配置为乳液时,是利用聚合物的良溶剂和不良溶剂混合溶解聚合物,形成O/W或者W/O型乳状液,冻干可以得到孔形和孔径分布比较均匀的多孔材料。同时,能更好地调控聚合物材料的孔径大小以及体积。

注意的是,本发明的优选实施方案中,关于聚合物、含硼化合物、黏土采用种类,皆为包括但不仅限于的形式,本领域的技术人员可根据实际需求利用实施方案中未记载的聚合物、含硼化合物、黏土,但在符合本发明内容宗旨的前提下,都属于本发明的保护范围。并且,本领域技术人员能够根据冷冻干燥法的现有技术,在冷冻温度、聚合物浓度、胶体种类、溶液中水油相体积比等操作参数,及针对材料改性添加表面活性剂及交联剂等改性试剂,对材料形貌、密度、孔径进行改造,在符合本发明内容宗旨的前提下,都属于本发明的保护范围。

在优选的实施方案中,还添加了黏土类填充剂,对材料具有补强作用,降低成型收缩率,提高刚性,改善耐热度、耐磨性、耐腐蚀性。

除了实施例中的或另外明确说明的,应当认为说明书和权利要求书中使用的重量份数数值在所有情况下均可按照术语“约”进行变化。因此,除非有相反的说明,否则以下的说明书和权利要求书中所列出的数值参数均为近似值,可以按照本发明想要获得的性能而变化。起码,而不是为了限制相当于权利要求范围的这一原则的实施,每个数值参数至少应当按照有效数字来解释并运用普通的舍入法。

尽管列出本发明宽范围的数值范围和参数是近似值,但具体实施例中列出的数值记录得尽可能准确。但是,任何一个数值本来就具有一定的误差。该误差是其相应的测量方法中得出的标准偏差的必然结果。

上述技术方案中的一个技术方案具有如下有益效果:

1、综合了溶液或乳液与含硼化合物共混后冷冻干燥的技术,解决了材料相容性问题,得到的材料能够具有更高的硼含量,因此具有更好的中子屏蔽效率,同时材料具有很低的密度和保温性能,化学稳定性佳;

2、工艺操作简单,成本低,易加工,易于推广。

上述技术方案中的另一个技术方案具有如下有益效果:

1、综合了溶液或乳液与含硼化合物共混后冷冻干燥的技术,解决了材料相容性问题,得到的材料能够具有更高的硼含量,因此具有更好的中子屏蔽效率,同时材料具有很低的密度和保温性能,化学稳定性佳;

2、工艺操作简单,成本低,易加工,易于推广;

3、通过添加黏土类填充剂,因此具有优异的阻燃性能,并且具有一定的强度,易于成型,适用于异形件的中子屏蔽。

具体实施方式

下面将结合本发明的实施例,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

实施例1

先将15g硼酸锌和5g蒙脱土加入100mL聚乙烯乳液(30wt%)中,高速搅拌至均匀胶体,将所获得胶体在-196℃快速冷冻至冰晶生长完全,在室温下真空干燥至完全冻干。

实施例2

先将18g硼酸、9g碳化硼和4g羟基磷灰石加入100mL聚酰亚胺前驱体乳液(9wt%)中,高速搅拌至均匀胶体,将所获得胶体在-196℃快速冷冻至冰晶生长完全,在室温下真空干燥至完全冻干。

实施例3

先将10g氮化硼、20g累脱石和15g高岭土加入100mL聚丙烯(10wt%)和环氧树脂前驱体乳液(25wt%)中,高速搅拌至均匀胶体,将所获得胶体在-196℃快速冷冻至冰晶生长完全,在室温下真空干燥至完全冻干。

实施例4

先将0.6g硼酸锌和3.4g蛭石加入100mL聚乙烯醇(6wt%)中,高速搅拌至均匀胶体,将所获得胶体在-78℃快速冷冻至冰晶生长完全,在室温下真空干燥至完全冻干。

实施例5

先将5g碳化硼加入100mL聚氧化乙烯(10wt%)和天然橡胶(5wt%)中,高速搅拌至均匀胶体,将所获得胶体在-20℃快速冷冻至冰晶生长完全,在室温下真空干燥至完全冻干。

实施例6

先将20g硼酸、5g氮化硼和5g海泡石加入100mL聚乙烯(15wt%)、聚丙烯酸酯前驱体(15wt%)和藻酸盐乳液(10wt%)中,高速搅拌至均匀胶体,将所获得胶体在-196℃快速冷冻至冰晶生长完全,在室温下真空干燥至完全冻干。

实施例7

先将15g硼酸、15g碳化硼、10g氮化硼和15gLDH(水滑石)加入100mL天然橡胶(15wt%)和藻酸盐乳液(5wt%)中,高速搅拌至均匀胶体,将所获得胶体在-196℃快速冷冻至冰晶生长完全,在室温下真空干燥至完全冻干。

实施例8

先将25g硼酸锌、4g硼酸和6g硅藻土加入100mL聚丙烯(15wt%)和果胶乳液(10wt%)中,高速搅拌至均匀胶体,将所获得胶体在-196℃快速冷冻至冰晶生长完全,在室温下真空干燥至完全冻干。

实施例9

先将3g硼化锆和10g海泡石加入100mL聚氧化乙烯(5wt%)和聚乙烯醇(10wt%)中,高速搅拌至均匀胶体,将所获得胶体在-196℃快速冷冻至冰晶生长完全,在室温下真空干燥至完全冻干。

实施例10

先将18g硼化钛、12g硼酸和12g高岭土加入100mL聚乙烯醇(10wt%)和果胶乳液(10wt%)中,高速搅拌至均匀胶体,将所获得胶体在-196℃快速冷冻至冰晶生长完全,在室温下真空干燥至完全冻干。

上述所制得的低密度中子屏蔽材料性能见下表。值得说明的是,上述各实施例性能中,密度由材料的质量除以体积计算得到,压缩模量由Instron5565万能材料试验机测试,导热系数按照GB/T10801.1-2002测得,氧指数按照ISO4589-1984测得,峰值热释放速率由FTT锥形量热仪测得(热辐射功率50kW/m2)。

以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1