具有侧线采出次级反应器的氧化系统的制作方法

文档序号:11611063阅读:349来源:国知局
具有侧线采出次级反应器的氧化系统的制造方法与工艺

本申请是申请号为2010800660088,申请日为2010年12月9日,发明名称为“具有侧线采出次级反应器的氧化系统”的中国专利申请的分案申请。

相关申请的交叉引用

本申请要求编号如下的三项美国临时申请的优先权:编号61/299,450、2010年1月29日提交、名称为“具有侧线采出次级反应器的氧化系统”的美国临时申请;编号61/299,453、2010年1月29日提交、名称为“具有侧线采出次级反应器的氧化系统”的美国临时申请;和编号61/299,455、2010年1月29日提交、名称为“具有侧线采出次级反应器的氧化系统”的美国临时申请,在不与本文的表述相矛盾的前提下,通过引用方式将它们的公开内容全部并入本文。

本发明一般地涉及多元羧酸组合物的生产方法。本发明的一个方面涉及使二烃基芳族化合物(如对二甲苯)部分氧化以生产粗芳族二羧酸(如粗对苯二甲酸),其随后可进行提纯和分离。本发明的另一方面涉及改进的提供更有效和经济的氧化过程的反应器系统。



背景技术:

液相氧化反应应用在各种现有的工业化生产过程中。例如,液相氧化目前用于将醛氧化成酸(如丙醛至丙酸),将环己烷氧化成己二酸,以及将烷基芳烃氧化成醇、酸或二元酸。后一类(烷基芳烃氧化)中特别重要的工业氧化过程是对二甲苯到对苯二甲酸的液相催化部分氧化。对苯二甲酸是具有众多应用的重要化合物。对苯二甲酸的主要用途是作为生产聚对苯二甲酸乙二醇酯(“pet”)的原料。pet是一种公知的塑料,它在全世界大量使用用于制造产品如瓶子、纤维和包装。

在典型的液相氧化工艺中,包括对二甲苯到对苯二甲酸的部分氧化中,液相原料流和气相氧化剂流被引入到反应器中,并在反应器中形成多相反应介质。引入反应器中的液相原料流包含至少一种可氧化的有机化合物(如对二甲苯),而气相氧化剂流包含分子氧。以气体形式引入反应器中的分子氧的至少一部分溶解到反应介质的液相中,以为液相反应提供氧可得性。如果多相反应介质的液相包含的分子氧浓度不足(即,反应介质的某些部分是“氧-缺乏的”),那么不希望的副反应会产生杂质,并且/或者预想的反应在速率上会延缓。如果反应介质的液相包含太少的可氧化化合物,那么反应速率可能会不希望地缓慢。此外,如果反应介质的液相包含过高浓度的可氧化化合物,那么附加的不希望的副反应会产生杂质。

常规的液相氧化反应器装配有用于混合其内包含的多相反应介质的搅拌装置。提供反应介质的搅拌是为了促进分子氧溶解到反应介质的液相中,在反应介质的液相中维持相对均匀的溶解氧浓度、并且在反应介质的液相中维持相对均匀的可氧化有机化合物的浓度。

发生液相氧化的反应介质的搅拌通常是通过容器中的机械搅拌装置提供的,例如连续搅拌釜式反应器(“cstrs”)。虽然cstrs可提供反应介质的充分混合,但是cstrs具有许多缺陷。例如,cstrs具有比较高的造价,因为它们需要昂贵的马达、液体-密封的轴承和传动轴,和/或复杂的搅拌机构。并且,常规cstrs的旋转和/或振动机械部件需要定期维护。这种维护所关联的人工和停工时间增加了cstrs的操作费用。然而,即使定期维护,cstrs采用的机械搅拌系统也容易发生机械故障,并且在较短的时间内就需要更换。

泡罩塔反应器提供了cstrs及其它机械搅拌式氧化反应器的有吸引力的替代装置。泡罩塔反应器无需昂贵的和不可靠的机械设备即可提供反应介质的搅拌。泡罩塔反应器通常包括内部包含反应介质的长形垂直反应区。反应区内的反应介质的搅拌主要由上升通过反应介质液相的气泡的自然浮力提供。相对于机械搅拌式反应器,泡罩塔反应器中提供的这种自然浮力搅拌降低了造价和维护费用。并且,泡罩塔反应器基本上不存在移动的机械部件,因而提供了相比机械搅拌式反应器更不容易发生机械故障的氧化系统。

当在常规氧化反应器(cstr或泡罩塔)中进行对二甲苯的液相部分氧化时,从反应器排出的产物通常为包括粗对苯二甲酸(“cta”)和母液的浆料。cta包含较高水平的杂质(如4-对羧基苯甲醛、对甲苯甲酸、芴酮及其它发色体),这些杂质使得它不适合作为pet的生产原料。因此,在常规氧化反应器中生产的cta通常要经历提纯过程,该过程使cta转变为适用于制造pet的纯化的对苯二甲酸(“pta”)。

虽然在液相氧化反应领域中已经取得了进步,但是仍然需要改进。



技术实现要素:

本发明的一个实施方式涉及通过使浆料与气相氧化剂接触来生产多元羧酸的系统。该实施方式的系统包括初级氧化反应器和次级氧化反应器,初级氧化反应器包括第一浆料出口,次级氧化反应器包括浆料入口、第二浆料出口、通常下部的氧化剂入口和通常上部的氧化剂入口。在该实施方式中,浆料入口与第一浆料出口下游侧流体流连通,次级氧化反应器在其内限定了具有最大长度ls的次级反应区,通常下部的氧化剂入口距次级反应区底部小于0.5ls,且通常上部的氧化剂入口距次级反应区底部至少0.5ls。

本发明的另一实施方式涉及制造多元羧酸组合物的方法。该实施方式的方法包括(a)使包含可氧化化合物的第一多相反应介质在初级氧化反应器内限定的初级反应区中氧化,从而产生第一浆料;和(b)使第一浆料的至少一部分在次级氧化反应器内限定的次级反应区中与气相氧化剂接触,从而产生第二浆料。在该实施方式中,次级反应区具有最大长度ls,气相氧化剂的第一部分在距次级反应区底部至少0.5ls的第一氧化剂入口区域引入次级反应区内,其中气相氧化剂的第一部分占引入次级反应区的气相氧化剂总体积的约5%至约49%。

附图说明

以下参照附图对本发明的实施方式进行详细说明,其中:

图1是根据本发明一实施方式构建的氧化反应器的侧视图,特别图示了原料、氧化剂和回流物流到反应器内的进给,多相反应介质在反应器内的存在,和气体及浆料从反应器顶部和底部的分别排出;

图2是配备有外部次级氧化反应器的泡罩塔反应器的侧视图,该次级氧化反应器接收来自初级氧化反应器的侧线采出的浆料;

图3是沿图2中的3-3线截取的侧线采出反应器的放大的截面仰视图,特别图示了用于向反应器内引入至少一部分氧化剂流的上部氧化剂喷洒器的位置和构造;

图4是包含多相反应介质的泡罩塔反应器的侧视图,特别图示了为量化反应介质中的某些梯度而在理论上分割为30个等体积的水平分层的反应介质;

图5是包含多相反应介质的泡罩塔反应器的侧视图,特别图示了第一和第二分离的20%连续体积的反应介质,它们具有差别很大的氧浓度和/或耗氧率;和

图6是本发明实施方式的pta制备方法的简化工艺流程图。

具体实施方式

本发明的各种实施方式涉及可氧化化合物的液相部分氧化。这类氧化可以在包含在一个或多个搅拌式反应器内的多相反应介质的液相中进行。适合的搅拌式反应器包括,例如气泡-搅拌式反应器(如泡罩塔反应器)、机械搅拌式反应器(如连续搅拌釜式反应器)和流动搅拌式反应器(如射流反应器)。在一种或多种实施方式中,液相氧化可使用至少一个泡罩塔反应器来进行。

在本文中使用时,术语“泡罩塔反应器”表示用于促进多相反应介质中的化学反应的反应器,其中反应介质的搅拌主要是由气泡穿过反应介质的向上运动提供的。在本文中使用时,术语“搅拌”表示散逸到反应介质中引起流体流动和/或混合的操作。在本文中使用时,术语“多数”、“主要”和“大部分”表示超过50%。在本文中使用时,术语“机械搅拌”表示反应介质的搅拌是由抵靠反应介质或者位于反应介质内部的刚性或挠性元件的机械运动引起的。例如,机械搅拌可由位于反应介质中的内置搅拌器、桨叶、振动器或声学振动膜的旋转、振荡和/或振动提供。在本文中使用时,术语“流动搅拌”表示反应介质的搅拌是由一种或多种流体在反应介质中的高速喷射和/或环流引起的。例如,流动搅拌可由喷嘴、射流器和/或喷射器提供。

在各种实施方式中,氧化期间在泡罩塔反应器中由机械和/或流动搅拌提供的反应介质的搅拌部分可小于约40%,小于约20%,或者小于5%。此外,氧化期间给予多相反应介质的机械和/或流动搅拌量可小于约3千瓦每立方米反应介质,小于约2千瓦每立方米,或者小于1千瓦每立方米。

现在参见图1,泡罩塔反应器20图示为包括具有反应段24和脱离段26的容器壳体22。反应段24限定了反应区28,而脱离段26限定了脱离区30。大部分液相原料流可经由进料口32a,b,c,d引入反应区28。大部分气相氧化剂流可经由位于反应区28下部的氧化剂喷洒器34引入反应区28内。液相原料流和气相氧化剂流在反应区28内共同形成多相反应介质36。在各种实施方式中,多相反应介质36可包含液相和气相。在其它各种实施方式中,多相反应介质36可包含具有固相、液相和气相组分的三相介质。反应介质36的固相组分可作为在反应介质36的液相中进行的氧化反应的结果沉淀在反应区28内。泡罩塔反应器20包括靠近反应区28底部设置的浆料出口38,和靠近脱离区30顶部设置的气体出口40。包括反应介质36的液相和固相组分的浆料排出物可经由浆料出口38从反应区28排出,而大部分废气可经由气体出口40从脱离区30排出。

经由进料口32a,b,c,d引入泡罩塔反应器20的液相原料流可以包括可氧化化合物、溶剂和催化剂体系。

存在于液相原料流中的可氧化化合物可包含至少一个烃基。在各种实施方式中,可氧化化合物可以是芳族化合物。并且,可氧化化合物可以是具有至少一个附连的烃基或至少一个附连的取代烃基或至少一个附连的杂原子或至少一个附连的羧酸官能团(-cooh)的芳族化合物。在一种或多种实施方式中,可氧化化合物可以是具有至少一个附连的烃基或至少一个附连的取代烃基的芳族化合物,其中每一附连基团包括1至5个碳原子。此外,可氧化化合物可以是具有正好两个附连基团的芳族化合物,每一附连基团包括正好一个碳原子,并且由甲基和/或取代甲基和/或至多一个羧基组成。适合用作可氧化化合物的化合物的例子包括但不限于对二甲苯、间二甲苯、对甲苯甲醛、间甲苯甲醛、对甲苯甲酸、间甲苯甲酸和/或乙醛。在一种或多种实施方式中,可氧化化合物为对二甲苯。

本文所定义的“烃基”是仅键接到氢原子或者键接到其它碳原子的至少一个碳原子。本文所定义的“取代烃基”是键接到至少一个杂原子和至少一个氢原子的至少一个碳原子。本文所定义的“杂原子”是除碳和氢原子外的所有原子。本文所定义的芳族化合物包括芳环。这类芳族化合物可具有至少6个碳原子,并且在各种实施方式中,作为环部分可仅具有碳原子。这类芳环的适合例子包括但不局限于苯、联苯、三联苯、萘及其它碳基稠合芳环。

如果存在于液相原料流中的可氧化化合物是通常为固体的化合物(即在标准温度和压力下为固体),那么当引入反应区28内时,该可氧化化合物可充分溶解在溶剂中。所述可氧化化合物在大气压下的沸点可为至少约50°c,在约80至约400°c的范围,或在125至155°c的范围。存在于液相原料中的可氧化化合物的量可在约2至约40重量%的范围内,在约4至约20重量%的范围内,或者在6至15重量%的范围内。

在此指出,存在于液相原料中的所述可氧化化合物可包括两种或更多种不同的可氧化化学试剂的组合。这两种或更多种不同的化学材料可混在液相原料流中进料,或者可在多股原料流中分别进料。例如,包括对二甲苯、间二甲苯、对甲苯甲醛、对甲苯甲酸和乙醛的可氧化化合物可经由单个入口或者多个分开的入口进料到反应器中。

存在于液相原料流中的溶剂可包括酸组分和水组分。存在于液相原料流中的溶剂浓度可在约60至约98重量%的范围、在约80至约96重量%的范围、或者在85至94重量%的范围。所述溶剂的酸组分可主要是具有1-6个碳原子,或者2个碳原子的有机低分子量一元羧酸。在各种实施方式中,所述溶剂的酸组分可主要是乙酸。所述酸组分可占所述溶剂的至少约75重量%,所述溶剂的至少约80重量%,或者在所述溶剂的85至98重量%的范围,余量为水或者主要为水。引入泡罩塔反应器20的溶剂可包含少量杂质,诸如,例如对甲苯甲醛、对苯二甲醛、4-羧基苯甲醛(“4-cba”)、苯甲酸、对甲苯甲酸、对甲基苯甲醛、α-溴-对甲苯甲酸、间苯二甲酸、邻苯二甲酸、偏苯三酸、多环芳烃和/或悬浮颗粒。在各种实施方式中,引入泡罩塔反应器20的溶剂中的杂质总量可小于约3重量%。

存在于液相原料流中的催化剂体系可以是能促进所述可氧化化合物氧化(包括部分氧化)的均质液相催化剂体系。在各种实施方式中,所述催化剂体系可包括至少一种多价过渡金属。在一种或多种实施方式中,所述多价过渡金属可包括钴。此外,所述催化剂体系可包含钴和溴。并且,所述催化剂体系可包含钴、溴和锰。

当钴存在于催化剂体系中时,存在于液相原料流中的钴量可以是使得反应介质36液相中的钴浓度保持在约300至约6,000百万分之一重量份(“ppmw”)的范围,在约700至约4,200ppmw的范围,或者在1,200至3,000ppmw的范围。当溴存在于催化剂体系中时,存在于液相原料流中的溴量可以是使得反应介质36液相中的溴浓度保持在约300至约5,000ppmw的范围,在约600至约4,000ppmw的范围,或者在900至3,000ppmw的范围。当锰存在于催化剂体系中时,存在于液相原料流中的锰量可以是使得反应介质36液相中的锰浓度保持在约20至约1,000ppmw的范围,在约40至约500ppmw的范围,或者在50至200ppmw的范围。

以上提供的反应介质36液相中的钴、溴和/或锰的浓度,以时间-平均和体积-平均为基准表示。在本文中使用时,术语“时间-平均”表示在至少100秒的连续时段内等间隔(equally)进行的至少10次测量的平均值。在本文中使用时,术语“体积-平均”表示在遍及某一体积内以均匀的3维间距进行的至少10次测量的平均值。

在引入反应区28的催化剂体系中钴与溴的重量比(co:br)可在约0.25:1至约4:1的范围,在约0.5:1至约3:1的范围,或者在0.75:1至2:1的范围。在引入反应区28的催化剂体系中钴与锰的重量比(co:mn)可在约0.3:1至约40:1的范围,在约5:1至约30:1的范围,或者在10:1至25:1的范围。

引入泡罩塔反应器20的液相原料流可包含少量杂质,诸如,例如甲苯、乙苯、对甲苯甲醛、对苯二甲醛、4-cba、苯甲酸、对甲苯甲酸、对甲基苯甲醛、α-溴-对甲苯甲酸、间苯二甲酸、邻苯二甲酸、偏苯三酸、多环芳烃和/或悬浮颗粒。采用泡罩塔反应器20生产对苯二甲酸时,间二甲苯和邻二甲苯被视为杂质。在各种实施方式中,引入泡罩塔反应器20的液相原料流中的杂质总量可小于约3重量%。

虽然图1图示了可氧化化合物、溶剂和催化剂体系混合在一起,并作为单股原料流引入泡罩塔反应器20内的实施方式,但是在可供选择的实施方式中,可氧化化合物、溶剂和催化剂可分开引入泡罩塔反应器20内。例如,可经由与溶剂和催化剂入口分开的入口将纯的对二甲苯流进料到泡罩塔反应器20内。

经由氧化剂喷洒器34引入泡罩塔反应器20内的所述大部分气相氧化剂流包含分子氧(([3/4])。在各种实施方式中,氧化剂流包括在约5至约40摩尔%范围的分子氧,在约15至约30摩尔%范围的分子氧、或者在18至24摩尔%范围的分子氧。氧化剂流的余量可以是主要由对氧化呈惰性的气体或多种气体,如氮气,组成。在一种或多种实施方式中,氧化剂流可基本上由分子氧和氮气组成。在各种实施方式中,氧化剂流可以是包含约21摩尔%分子氧和约78至约81摩尔%氮气的干空气。在其它实施方式中,气相氧化剂可以是富集空气(enrichedair),并且可包含25摩尔%、30摩尔%、35摩尔%、40摩尔%、50摩尔%、55摩尔%、60摩尔%、70摩尔%或80摩尔%的分子氧。在其它实施方式中,氧化剂流可大体上包含纯氧。

仍参见图1,泡罩塔反应器20可装配有位于反应介质36上表面44上方的回流分配器42。回流分配器42可操作为通过本领域已知的任何液滴形成方式将大部分液相回流物流的液滴引入脱离区30内。在各种实施方式中,回流分配器42可产生导向为向下朝向反应介质36上表面44的液滴喷雾。该向下的液滴喷雾可波及(即占据和影响)脱离区30的最大水平截面面积的至少约50%、至少约75%或者至少90%。该向下的液体回流喷雾可帮助防止在反应介质36上表面44处或其上方产生泡沫,并且还可以帮助朝向气体出口40流动的上行气体中夹带的任何液体或浆料液滴的脱离。并且,液体回流可起到减少经由气体出口40从脱离区30排出的气体排出物中存在的微粒和可能沉淀的化合物(例如溶解的苯甲酸、对甲苯甲酸、4-cba、对苯二甲酸和催化剂金属盐)的作用。此外,向脱离区30内引入回流液滴可以,通过蒸馏作用,用于调整经由气体出口40排出的气体排出物的组成。

经由回流分配器42引入泡罩塔反应器20的液体回流物流可与经由进料口32a,b,c,d引入泡罩塔反应器20的液相原料流的溶剂组分具有相同或大致相同的组成。因此,液体回流物流可包括酸组分和水。回流物流的酸组分可以是具有1-6个碳原子,或者2个碳原子的低分子量的有机一元羧酸。在各种实施方式中,回流物流的酸组分可以是乙酸。并且,酸组分可占回流物流的至少约75重量%、回流物流的至少约80重量%,或者在回流物流的85至98重量%的范围,余量为水或主要为水。由于回流物流通常可具有与液相原料流中的溶剂相同或基本相同的组成,当本说明书中提及引入反应器内的“总溶剂”时,该“总溶剂”应当同时包括回流物流和原料流的溶剂部分。

在泡罩塔反应器20内的液相氧化过程中,原料、氧化剂和回流物流可基本上连续地引入反应区28内,而气体和浆料排出物流基本上连续地从反应区28中排出。在本文中使用时,术语“基本上连续地”表示对于一段至少10小时的时间中断小于10分钟。在氧化过程中,可氧化化合物(如对二甲苯)可以至少约8,000千克每小时的速率,以在约15,000至约200,000千克每小时范围,在约22,000至约150,000千克每小时范围,或者在30,000至100,000千克每小时范围的速率,基本上连续地引入反应区28内。虽然输入原料、氧化剂和回流物流的流量可以是基本上稳定的,但是在此指出,一种实施方式预期了输入原料、氧化剂和/或回流物流的脉动进料,以改善混合和传质。当输入原料、氧化剂和/或回流物流以脉动方式引入时,它们的流量可在本文所述的稳态流量的约0至约500%的范围内,在本文所述的稳态流量的约30至约200%的范围内,或者在本文所述的稳态流量的80至120%的范围内。

泡罩塔氧化反应器20内的平均空-时(space-time)反应速率(“str”)定义为每单位时间、每单位体积反应介质36给料的可氧化化合物的质量(如每立方米每小时给料的对二甲苯千克数)。在常规用法中,在计算所述str之前,通常从原料流的可氧化化合物量中减去未转化为产物的可氧化化合物的量。然而,对于许多本文提及的可氧化化合物(例如对二甲苯),转化率和收率一般较高,因此本文对该术语进行如上所述的定义是适宜的。其中,特别是出于固定投资和运转库存的原因,所述反应可以高str进行。然而,以不断增高的str进行反应可能会影响所述部分氧化的质量或收率。当可氧化化合物(如对二甲苯)的str在约25千克每立方米每小时(“kg/m3/小时”)至约400kg/m3/小时的范围,在约30kg/m3/小时至约250kg/m3/小时的范围,在约35kg/m3/小时至约150kg/m3/小时的范围,或者在40kg/m3/小时至100kg/m3/小时的范围时,泡罩塔反应器20可能是特别有用的。

泡罩塔氧化反应器20内的氧-str定义为每单位时间、每单位体积反应介质36消耗的分子氧的重量(例如每立方米每小时消耗的分子氧千克数)。其中,特别是出于固定投资和溶剂氧化消耗的原因,所述反应可以高氧-str进行。然而,以不断增高的氧-str进行反应最终会降低所述部分氧化的质量或收率。不拘泥于理论,似乎这可能涉及到分子氧由气相进入位于界面表面区域的液体内,并由此进入液体主体内的转移速率。过高的氧-str可能导致反应介质的液相主体内的溶解氧含量过低。

本文中整体-平均-氧-str定义为每单位时间全部体积的反应介质36中消耗的所有氧的重量(例如每立方米每小时消耗的分子氧千克数)。当整体-平均-氧-str在约25kg/m3/小时至约400kg/m3/小时的范围,在约30kg/m3/小时至约250kg/m3/小时的范围,在约35kg/m3/小时至约150kg/m3/小时的范围,或者在40kg/m3/小时至100kg/m3/小时的范围时,泡罩塔反应器20可能是特别有用的。

在泡罩塔反应器20内的氧化过程中,进入反应区28的总溶剂的质量流量(源于原料和回流物流两者)与可氧化化合物的质量流量的比例可保持在约2:1至约50:1的范围,在约5:1至约40:1的范围,或者在7.5:1至25:1的范围。在各种实施方式中,作为原料流的一部分引入的溶剂的质量流量与作为回流物流的一部分引入的溶剂的质量流量的比例可保持在约0.5:1至没有任何回流物流流量的情形,在约0.5:1至约4:1的范围,在约1:1至约2:1的范围,或者在1.25:1至1.5:1的范围。

在泡罩塔反应器20内的液相氧化过程中,氧化剂物流可以提供稍稍超过化学计量需氧量的分子氧的量引入泡罩塔反应器20内。对具体的可氧化化合物,取得最佳结果所需的过量分子氧的量影响到液相氧化的综合技术经济指标。在泡罩塔反应器20内的液相氧化过程中,进入反应器20的氧化剂物流的质量流量与可氧化有机化合物的质量流量(如对二甲苯)的比例可保持在约0.5:1至约20:1的范围,在约1:1至约10:1的范围,或者在2:1至6:1的范围。

仍参见图1,引入泡罩塔反应器20的原料、氧化剂和回流物流可以共同形成多相反应介质36的至少一部分。反应介质36可以是包含固相、液相和气相的三相介质。如上所述,可氧化化合物(如对二甲苯)的氧化可以主要在反应介质36的液相中进行。如此,反应介质36的液相可包含溶解氧和可氧化化合物。在泡罩塔反应器20内进行的氧化反应的放热性质可导致经由进料口32a,b,c,d引入的溶剂(如乙酸和水)的一部分沸腾/汽化。因此,反应器20内的反应介质36的气相可主要由汽化的溶剂和氧化剂物流的未溶解、未反应的部分形成。

某些现有技术的氧化反应器采用换热管/翅片来加热或冷却反应介质。然而,这类换热构件在本文所述的本发明反应器和工艺中可能是不希望的。因此,在各种实施方式中,泡罩塔反应器20可设计为基本上不包括与反应介质36接触的,并且显示出大于30,000瓦每平方米的时间-平均热通量的表面。此外,在各种实施方式中,反应介质36的小于约50%、小于约30%或者小于10%的时间-平均反应热是通过换热表面移除的。

反应介质36液相中的溶解氧浓度处于自气相的传质速率与液相内部的反应消耗速率之间的动态平衡(即它不是简单地由所供气相中的分子氧分压决定的,尽管这是溶解氧供应速率的一个因素,并且它的确影响到溶解氧的上限浓度)。溶解氧的量在局部上有差别,接近气泡界面较高。整体上,溶解氧的量取决于反应介质36不同区域内的供需平衡因子。从时间上看,溶解氧的量取决于气体和液体混合相对于化学消耗速率的均匀性。为了恰当地匹配反应介质36液相中的溶解氧供应和需求,反应介质36液相内的时间-平均和体积-平均氧浓度可保持在高于约1ppm摩尔,在约4至约1,000ppm摩尔的范围,在约8至约500ppm摩尔的范围,或者在12至120ppm摩尔的范围。

在泡罩塔反应器20中进行的液相氧化反应可以是产生固体的沉淀反应。在各种实施方式中,在泡罩塔反应器20中进行的液相氧化可致使引入反应区28内的至少约10重量%,至少约50重量%,或者至少90重量%的可氧化化合物(如对二甲苯)在反应介质36中形成固体化合物(如粗对苯二甲酸颗粒)。在一种或多种实施方式中,以时间-平均和体积-平均为基准,反应介质36中的固体总量可大于约3重量%、在约5至约40重量%的范围,在约10至约35重量%的范围,或者在15至30重量%的范围。在各种实施方式中,在泡罩塔反应器20中产生的氧化产物(如对苯二甲酸)的很大一部分可以固体形式存在于反应介质36中,与之相反,余者溶解在反应介质36的液相中。存在于反应介质36中的固相氧化产物的量可为反应介质36中的总氧化产物(固相和液相)的至少约25重量%,反应介质36中的总氧化产物的至少约75重量%,或者反应介质36中的总氧化产物的至少95重量%。以上对反应介质36中的固体量提供的数值范围,适用于泡罩塔20在基本连续的一段时间内的基本稳态操作,而非泡罩塔反应器20的启动、关闭或次优操作。反应介质36中的固体量通过重量分析法测定。在该重量分析法中,从反应介质中排出代表性部分的浆料并称重。在有效维持反应介质内存在的总体固-液分配的条件下,通过沉降或过滤从固体部分中有效地除去自由(free)液体,而不损失沉淀的固体,且小于约10%的初始液体物质残留在固体部分。有效地蒸干固体上的残留液体,而不产生固体升华。称重残留的固体部分。固体部分的重量与最初的浆料部分的重量之比为固体分数,一般表示为百分数。

在泡罩塔反应器20中进行的沉淀反应可导致在接触反应介质36的某些刚性构件的表面上形成结垢(即固体堆积)。因此,在一实施方式中,泡罩塔反应器20可设计为在反应区28内基本上不包括内部换热、搅拌或阻挡构件,因为这类构件易于结垢。如果在反应区28内存在内部构件,那么最好避免具有外表面且该外表面包括大量朝上的平坦表面面积的内部构件,因为这类朝上的平坦表面非常易于结垢。因此,如果在反应区28内存在任何内部构件,那么这类内部构件朝上的暴露外表面总面积的小于约20%由水平倾角小于约15度的基本平坦的表面形成。具有这种类型构造的内部构件在本文中称为具有“不结垢”构造。

再次参见图1,泡罩塔反应器20的物理构造有助于以极少的杂质生成为可氧化化合物(如对二甲苯)提供最佳的氧化。在各种实施方式中,容器壳体22的长形反应段24可包括基本圆筒形的主体46和下封头48。反应区28的上端由横穿圆筒形主体46顶部延伸的水平面50所限定。反应区28的下端52由下封头48最低的内表面所限定。通常,反应区28的下端52定位于紧邻用于浆料出口38的开口。因此,泡罩塔反应器20内限定的长形反应区28具有沿圆筒形主体46的伸长轴从反应区28的顶端50到底端52测得的最大长度“lp”。反应区28的长度“lp”可在约10至约100米的范围,在约20至约75米的范围,或者在25至50米的范围。反应区28具有最大直径(宽度)“dp”,它通常等于圆筒形主体46的最大内径。反应区28的最大直径dp可在约1至约12米的范围,在约2至约10米的范围,在约3.1至约9米的范围,或者在4至8米的范围。在一种或多种实施方式中,反应区28可具有在约6:1至约30:1范围,在约8:1至约20:1范围,或者在9:1至15:1范围的长径比“lp:dp”。

如以上所论述地,泡罩塔反应器20的反应区28接收多相反应介质36。反应介质36具有与反应区28的下端52重合的底端,以及位于上表面44处的顶端。沿着在反应区28内容物由气相-连续态转换为液相-连续态的垂直位置处横穿反应区28的水平面限定了反应介质36的上表面44。上表面44可定位在反应区28内容物的薄水平分层的局部时间-平均气体滞留量为0.9的垂直位置处。

反应介质36具有在其上下端之间测得的最大高度“hp”。反应介质36的最大宽度“wp”一般等于圆筒形主体46的最大直径“dp”。在泡罩塔反应器20内的液相氧化过程中,hp可保持在lp的约60%至约120%,lp的约80%至约110%,或者lp的85%至100%。在各种实施方式中,反应介质36可具有大于约3:1,在约7:1至约25:1范围,在约8:1至约20:1范围,或者在9:1至15:1范围的高宽比“hp:wp”。在本发明的一个实施方式中,lp=hp且dp=wp,从而本文对lp和dp提供的各种尺寸或比例也适用于hp和wp,反之亦然。

根据本发明实施方式提供的较高的lp:dp和hp:wp比例,能够赋予本发明系统几个重要的优点。如以下更具体论述地,已经发现更高的lp:dp和hp:wp比率,以及以下论述的某些其它特征,可促进在反应介质36内的分子氧和/或可氧化化合物(如对二甲苯)浓度中的有利的垂直梯度。传统观点更倾向具有整体相对均匀的浓度的充分混合的反应介质,与之相反,已经发现氧和/或可氧化化合物浓度的垂直分段(staging)帮助实现了更有效的和经济的氧化反应。最小化靠近反应介质36顶部的氧和可氧化化合物的浓度,可帮助避免未反应的氧和未反应的可氧化化合物通过上部气体出口40的损失。然而,如果整个反应介质36的可氧化化合物和未反应氧的浓度都低,那么氧化的速率和/或选择性就会降低。因此,在各种实施方式中,靠近反应介质36底部的分子氧和/或可氧化化合物的浓度可大大高于靠近反应介质36顶部的浓度。

此外,高lp:dp和hp:wp比可使反应介质36底部的压力远高于反应介质36顶部的压力。这种压力垂直梯度是反应介质36的高度和密度的结果。这种压力垂直梯度的一个优点是容器底部的高压带动了更高的氧溶解度和质量传递,高于在较浅的反应器中在相当的温度和塔顶(overhead)压力下取得的结果。因此,氧化反应可在与较浅容器中所需的温度相比更低的温度下进行。当泡罩塔反应器20用于使对二甲苯部分氧化为粗对苯二甲酸(cta)时,在更低反应温度下以相同或更好的氧传质速率操作的能力具有许多优点。例如,对二甲苯的低温氧化减少了反应期间烧掉的溶剂量。如以下进一步详细论述地,低温氧化也有利于形成小的、高表面积、松散结合、易于溶解的cta颗粒,与通过常规高温氧化方法产生的更大的、低表面积的、致密cta颗粒相比,它可以适用更加经济的提纯技术。

在反应器20内的氧化过程中,反应介质36的时间-平均和体积-平均温度可维持在约125至约200°c的范围,在约140至约180°c的范围,或者在150至170°c的范围。反应介质36上方的塔顶压力可维持在约1至约20巴表压(“barg”)的范围,在约2至约12barg的范围,或者在4至8barg的范围。反应介质36顶部和反应介质36底部之间的压力差可在约0.4至约5巴的范围,在约0.7至约3巴的范围,或者在1至2巴的范围。反应介质36上方的塔顶压力通常可维持在相对恒定的数值,但是一个实施方式预期了脉动的塔顶压力以在反应介质36中实现改善的混合和/或质量传递。当使塔顶压力脉动时,脉动的压力可介于本文记载的稳态塔顶压力的约60%至约140%,介于约85%至约115%,或者介于95%至105%。

反应区28的高lp:dp比的另一优点是它有助于提高反应介质36的平均表观速度。在本文中针对反应介质36使用时,术语“表观速度”和“表观气速”表示反应介质36气相在反应器内某高度处的体积流量除以该高度处反应器的水平截面积。反应区28的高lp:dp比带来的增大的表观速度可促进局部混合并提高反应介质36的气体滞留量。在反应介质36的1/4高度、1/2高度和/或3/4高度处的反应介质36的时间-平均表观速度可大于约0.3米/秒,在约0.8至约5米/秒的范围,在约0.9至约4米/秒的范围,或者在1至3米/秒的范围。

仍然参见图1,泡罩塔反应器20的脱离段26可简单地为位于紧接反应段24上方的容器壳体22的加宽部分。当气相上升到反应介质36的上表面44之上并接近气体出口40时,脱离段26降低了泡罩塔反应器20内向上流动的气相的速度。气相上升速度的这种降低有助于促进向上流动的气相中夹带的液体和/或固体的脱除,从而减少了存在于反应介质36液相中的某些组分的不希望的损失。

脱离段26可包括大致截头圆锥形的过渡壁54,大致圆筒形的宽大的侧壁56,和上封头58。过渡壁54较窄的下端连接到反应段24的圆筒形主体46的顶端。过渡壁54较宽的上端连接到宽大侧壁56的底部。过渡壁54可由其较窄的下端以在约10至约70度范围的垂直夹角,在约15至约50度范围的垂直夹角,或者在15至45度范围的垂直夹角向上和向外伸展。宽大侧壁56具有最大直径“x”,其通常大于反应段24的最大直径dp,不过当反应段24的上部具有比反应段24的整体最大直径更小的直径时,x可以实际上小于dp。在各种实施方式中,宽大侧壁56的直径与反应段24的最大直径的比值“x:dp”可在约0.8:1至约4:1的范围,或者在1.1:1至2:1的范围。上封头58连接到宽大侧壁56的顶端。上封头58可为限定有中央开口的大致椭圆形的封头部件,该开口允许气体经由气体出口40逸出脱离区30。可供选择地,上封头58可为任何形状,包括圆锥形。脱离区30具有自反应区28顶端50至脱离区30最上部测得的最大高度“y”。反应区28长度与脱离区30高度的比值“lp:y”可在约2:1至约24:1的范围,在约3:1至约20:1的范围,或者在4:1至16:1的范围。

仍然参见图1,在操作期间气相氧化剂(如空气)可经由氧化剂入口66a,b和氧化剂喷洒器34引入反应区28内。氧化剂喷洒器34可具有任何允许气相氧化剂通入反应区28内的形状或构造。例如,氧化剂喷洒器34可包括圆形或多边形(如八角形)的环状部件,其限定了多个氧化剂排出口。在各种实施方式中,一些或者所有氧化剂排出口可配置为以大致向下的方向排出气相氧化剂。不管氧化剂喷洒器34的具体构造,氧化剂喷洒器可以一定方式物理配置并操作使得与氧化剂物流通过氧化剂排出口排出并进入反应区内相关的压降最小。该压降计算为氧化剂喷洒器的氧化剂入口66a,b处的流动管路内的氧化剂物流的时间-平均静压减去反应区内特定高度处的时间-平均静压,在该高度处1/2的氧化剂物流引入到该垂直位置的上方并且1/2的氧化剂物流引入到该垂直位置的下方。在各种实施方式中,与从氧化剂喷洒器34排出氧化剂物流相关的时间-平均压降可小于约0.3兆帕(“mpa”),小于约0.2mpa,小于约0.1mpa,或小于0.05mpa。

任选地,可用液体(如乙酸、水和/或对二甲苯)为氧化剂喷洒器34提供连续或间歇冲洗,以防止氧化剂喷洒器形成固体结垢。当采用这类液体冲洗时,可使有效量的液体(即不仅仅是可能自然存在于氧化剂物流中的少量液滴)流过氧化剂喷洒器并从氧化剂开口排出,持续至少一个超过一分钟的时间段每天。当液体连续地或间歇地自氧化剂喷洒器34排出时,通过氧化剂喷洒器的液体的质量流量与通过氧化剂喷洒器的分子氧的质量流量的时间-平均比例可在约0.05:1至约30:1的范围,在约0.1:1至约2:1的范围,或者在0.2:1至1:1的范围。

在许多包含多相反应介质的常规泡罩塔反应器中,基本上所有位于氧化剂喷洒器(或其它用于将氧化剂物流引入反应区内的机构)下方的反应介质均具有非常低的气体滞留量值。如本领域已知地,“气体滞留量”只不过是处于气态的多相介质的体积分数。介质中低气体滞留量的区域也可以称为“未充气”区。在许多常规浆料泡罩塔反应器中,反应介质总体积的很大一部分位于氧化剂喷洒器(或其它用于将氧化剂物流引入反应区内的机构)下方。因此,存在于常规泡罩塔反应器底部的反应介质的很大一部分是未充气的。

已经发现,最小化泡罩塔反应器内进行氧化的反应介质中的未充气区的量,可以使某些类型的不希望的杂质生成最小。反应介质的未充气区包含相对较少的氧化剂气泡。这种低含量的氧化剂气泡减少了可供溶解到反应介质的液相内的分子氧的量。因此,反应介质的未充气区内的液相具有相对低浓度的分子氧。反应介质的这些氧-缺乏的、未充气区具有促进不希望的副反应,而非所需氧化反应的趋向。例如,当对二甲苯部分氧化形成对苯二甲酸时,反应介质液相内不足的氧可得性可导致形成不希望地大量的苯甲酸和偶联芳环,特别是包括非常不希望的称为芴酮和蒽醌的有色分子。

根据一种或多种实施方式,液相氧化可在以一定方式配置和操作的泡罩塔反应器内进行,使得具有低气体滞留量值的反应介质的体积分数最小化。这种未充气区的最小化可通过理论上将反应介质的整个体积分割为2,000个体积均一的不连续的水平分层来量化。除最高和最低的水平分层之外,各水平分层是侧面以反应器侧壁为界且顶端和底端以假想的水平面为界的不连续的体积。最高的水平分层底端以假想的水平面为界且顶端以反应介质的上表面为界。最低的水平分层顶端以假想的水平面为界且底端以容器下端为界。一旦反应介质已经在理论上分割为2,000个等体积的不连续的水平分层,则可确定各水平分层的时间-平均和体积-平均的气体滞留量。当采用这种量化未充气区量的方法时,具有小于0.1的时间-平均和体积-平均气体滞留量的水平分层的数目可小于30、小于15、小于6、小于4、或小于2。并且,具有小于0.2的气体滞留量的水平分层的数目可小于80、小于40、小于20、小于12、或小于5。此外,具有小于0.3的气体滞留量的水平分层的数目可小于120、小于80、小于40、小于20、或小于15。

仍参见图1,已经发现将氧化剂喷洒器34置于反应区28内较低处,提供了多种优点,包括反应介质36内未充气区数量的减少。给定反应介质36的高度“hp”、反应区28的长度“lp”和反应区28的最大直径“dp”,氧化剂物流的大部分可在反应区28下端52的大约0.025hp、0.022lp和/或0.25dp之内、在反应区28下端52的大约0.02hp、0.018lp和/或0.2dp之内,或者在反应区28下端52的0.015hp、0.013lp和/或0.15dp之内引入反应区28内。

除了最小化反应介质36内的未充气区(即具有低气体滞留量的区域)提供的优点之外,已经发现可通过使整个反应介质36的气体滞留量最大化来加强氧化。反应介质36可具有至少约0.4,在约0.6至约0.9范围,或者在0.65至0.85范围的时间-平均和体积-平均的气体滞留量。泡罩塔反应器20的多个物理和操作属性有助于实现上述高气量滞留量。例如,对于给定的反应器大小和氧化剂物流流量,反应区28的高lp:dp比产生了较小的直径,这增大了反应介质36内的表观速度,进而增大了气体滞留量。此外,已知即使对于给定的恒定表观速度,泡罩塔的实际直径和lp:dp比也会影响平均气体滞留量。此外,未充气区的最小化,特别是在反应区28的底部,有助于实现增大的气体滞留量值。另外,泡罩塔反应器的塔顶压力和机械构造可以影响到在本文公开的高表观速度和气体滞留量值下的操作稳定性。

仍参见图1,已经发现通过在多个垂直隔开的位置将液相原料流引入反应区28内,可在反应介质36内提供改善的可氧化化合物(如对二甲苯)分布。在各种实施方式中,液相原料流可经由至少3个进料开口或至少4个进料开口引入反应区28内。在本文中使用时,术语“进料开口”表示液相原料流排入反应区28内用于与反应介质36混合的开口。在一种或多种实施方式中,进料开口中的至少2个可彼此垂直间隔至少约0.5dp、至少约1.5dp或至少3dp。然而,最高的进料开口可垂直距离最低的氧化剂开口不超过约0.75hp、0.65lp和/或8dp;不超过约0.5hp、0.4lp和/或5dp;或者不超过0.4hp、0.35lp和/或4dp。

虽然期望在多个垂直位置引入液相原料流,但是还发现如果大部分液相原料流引入到反应介质36和/或反应区28的下半部分内,则在反应介质36内提供了改善的可氧化化合物分布。在各种实施方式中,至少约75重量%或至少90重量%的液相原料流被引入到反应介质36和/或反应区28的下半部分内。此外,至少约30重量%的液相原料流可在距氧化剂物流引入反应区28内的最低垂直位置处约1.5dp以内引入反应区28。该氧化剂物流引入反应区28内的最低垂直位置通常在氧化剂喷洒器34的底部;然而,各种实施方式中考虑了用于将氧化剂物流引入反应区28内的各种可供选择的构造。在一种或多种实施方式中,至少约50重量%的液相原料可在距氧化剂物流引入反应区28内的最低垂直位置处约2.5dp以内引入。在其它实施方式中,至少约75重量%的液相原料流可在距氧化剂物流引入反应区28内的最低垂直位置处约5dp以内引入。

各进料开口限定了原料经其排出的开口面积(openarea)。在各种实施方式中,所有进料口的总开口面积的至少约30%可位于距氧化剂物流引入反应区28内的最低垂直位置处约1.5dp以内。在其它实施方式中,所有进料口的总开口面积的至少约50%可位于距氧化剂物流引入反应区28内的最低垂直位置处约2.5dp以内。在其它实施方式中,所有进料口的总开口面积的至少约75%可位于距氧化剂物流引入反应区28内的最低垂直位置处约5dp以内。

仍参见图1,在一种或多种实施方式中,进料口32a,b,c,d可以简单地为沿着容器壳体22一侧的一系列垂直对齐的开口。这些进料开口可以具有小于约7厘米、在约0.25至约5厘米范围、或者在0.4至2厘米范围的基本近似的直径。泡罩塔反应器20可装配有用于控制自各进料开口流出的液相原料流的流量的系统。这类流量控制系统可包括用于各个进料口32a,b,c,d的独立的流量控制阀74a,b,c,d。此外,泡罩塔反应器20可装配有允许液相原料流的至少一部分以提高的入口表观速度引入反应区28内的流量控制系统,该提高的入口表观速度为至少约2米/秒、至少约5米/秒、至少约6米/秒或者在8至20米/秒的范围。在本文中使用时,术语“入口表观速度”表示自进料开口流出的原料流的时间-平均体积流量除以进料开口的面积。在各种实施方式中,至少约50重量%的原料流可以提高的入口表观速度引入反应区28内。在一种或多种实施方式中,基本上所有的原料流均以提高的入口表观速度引入反应区28内。

现在参见图2,图示了包括初级氧化反应器102和次级氧化反应器104的反应器系统100。初级氧化反应器102可以与以上参照图1描述的泡罩塔反应器20基本相同的方式配置和操作。

在一种或多种实施方式中,初级氧化反应器102和次级氧化反应器104是泡罩塔反应器。初级氧化反应器102可包括初级反应容器106和初级氧化剂喷洒器108,而次级氧化反应器104可包括次级反应容器110和下部氧化剂喷洒器112。如以下更具体论述地,次级氧化反应器104任选地还包括一个或多个上部氧化剂喷洒器。在一种或多种实施方式中,初级和次级反应容器106和110均可包括各自的具有大致圆筒形构造的垂直侧壁。次级反应容器110的垂直侧壁的最大高度与初级反应容器106的垂直侧壁的最大高度的比值可在约0.1:1至约0.9:1的范围,在约0.2:1至约0.8:1的范围,或者在0.3:1至0.7:1的范围。

初级反应容器106在其内限定了初级反应区116,而次级反应容器110在其内限定了次级反应区118。在各种实施方式中,次级反应区118与初级反应区116的最大水平截面积的比值可在约0.01:1至约0.75:1的范围,在约0.02:1至约0.5:1的范围,或者在0.04:1至0.3:1的范围。此外,初级反应区116与次级反应区118的体积比可在约1:1至约100:1的范围,在约4:1至约50:1的范围,或者在8:1至30:1的范围。此外,初级反应区116可具有在约3:1至约30:1范围,在约6:1至约20:1范围,或者在9:1至15:1范围的最大垂直高度与最大水平直径的比值。

如图2所示,次级反应区118可具有最大垂直长度ls和最大水平直径ds。在一种或多种实施方式中,次级反应区118可具有在约14:1至约28:1范围,在约16:1至约26:1范围,在约18:1至约24:1范围,在约20:1至约23:1范围,或者在21:1至22:1范围的最大垂直长度与最大水平直径的比值“ls:ds”。在各种实施方式中,次级反应区118的ds可在约0.1至约5米的范围,在约0.3至约4米的范围,或者在1至3米的范围。此外,次级反应区118的ls可在约1至约100米的范围,在约3至约50米的范围,或者在10至40米的范围。

如同以上参照图1描述的泡罩塔反应器20一样,初级反应区116具有最大垂直长度lp和最大水平直径dp。在各种实施方式中,次级反应区118的最大水平直径与初级反应区116的最大水平直径的比值“ds:dp”可在约0.05:1至约0.8:1的范围,在约0.1:1至约0.6:1的范围,或者在0.2:1至0.5:1的范围。并且,次级反应区118的最大垂直长度与初级反应区116的最大垂直长度的比值“ls:lp”可在约0.03:1至约1:1的范围,在约0.1:1至约0.9:1的范围,或者在0.3:1至0.8:1的范围。

在各种实施方式中,次级氧化反应器104可与初级氧化反应器102并排放置(即初级和次级氧化反应器102和104的至少一部分处于相同的高度)。如上所述,初级氧化反应器102的初级反应区116具有最大直径dp。在一种或多种实施方式中,次级反应区118的体积中心(volumetriccentroid)可水平距离初级反应区416的体积中心至少约0.5dp、0.75dp或l.0dp,并且小于约30dp、10dp或3dp。

本文对初级反应容器106和附属部件具体说明的任何参数(如高度、宽度、面积、体积、相对水平位置和相对垂直位置)同样理解为适用于由初级反应容器106限定的初级反应区116,反之亦然。而且,本文对次级反应容器110和附属部件具体说明的任何参数同样应理解为适用于次级反应容器110限定的次级反应区118,反之亦然。

在反应器系统100正常操作期间,反应介质120可首先在初级氧化反应器102的初级反应区116内进行氧化。然后,反应介质120a可从初级反应区116中排出,并经由管路105输送到次级反应区118。在次级反应区118中,反应介质120b的液相和/或固相可进行进一步氧化。在各种实施方式中,从初级反应区116排出的液相和/或固相的至少约50、75、95或99重量%可在次级反应区116内加工。塔顶气可从次级氧化反应器104的上部气体出口排出,并且可经由管路107输送回初级氧化反应器102。反应介质120b的浆料相可从次级氧化反应器104的下部浆料出口122排出,并且之后可以经受进一步的下游加工。

入口管路105可在任意高度处连接到初级氧化反应器102。虽然图2中未示出,但是如果需要,反应介质120可以机械泵送到次级反应区118。然而,也可采用高程水头(重力)将反应介质120由初级反应区116输送通过入口管路105,并进入次级反应区118。因此,入口管路105可在一端连接到初级反应区116总高度和/或体积的上50%、30%、20%或10%。在其它各种实施方式中,浆料出口(未示出)可距初级反应区116的通常顶端和通常底端中的每一端至少0.1lp、至少0.2lp或至少0.3lp,其中反应介质120a可经由所述浆料出口离开初级氧化反应器102进入入口管路105。

在各种实施方式中,入口管路105的另一端可流体流连通地连接到浆料入口(未示出),该浆料入口位于次级反应区118总高度和/或体积的上30%、20%、10%或5%。在可供选择的实施方式中,次级氧化反应器104中的浆料入口可为中层浆料入口,其距次级反应区118底部的距离在约0.3ls至约0.9ls的范围,在约0.4ls至约0.的范围,在约0.5ls至约0.8ls的范围,或者在0.55ls至0.6ls的范围。此外,次级氧化反应器104中的浆料入口距次级反应区底部的距离可在约9ds至约15ds的范围,在约10ds至约14ds的范围,或者在11ds至13ds的范围。在操作中,反应介质120a的至少一部分可以经由中层浆料入口引入次级反应区118内。在各种实施方式中,反应介质120a总量的至少5体积%、至少10体积%、至少20体积%、至少30体积%、至少50体积%、至少75体积%或100体积%可以经由中层浆料入口引入次级反应区118。

在各种实施方式中,入口管路105可水平、基本水平和/或倾斜向下地自初级氧化反应器102朝向次级氧化反应器104。在一种或多种实施方式中,入口管路105为水平的或基本水平的,并且可以为直线的或基本直线的。因此,在一种或多种实施方式中,自初级氧化反应器102的浆料出口(未示出)可与次级氧化反应器104的浆料入口(未示出)处于相同或基本相同的垂直高度。

在各种实施方式中,出口管路107可连接到次级氧化反应器104内的任意高度。在各种实施方式中,出口管路107可在入口管路105的连接高度的上方连接到次级氧化反应器104。而且,出口管路107可连接到次级氧化反应器104的顶部。出口管路107可在入口管路105的连接高度的上方连接到初级氧化反应器102。在各种实施方式中,出口管路107连接到初级反应区116总高度和/或体积的上30%、20%、10%或5%。出口管路107可水平和/或倾斜向上地自次级氧化反应器104朝向初级氧化反应器102。虽然未显示在图2中,但是出口管路107还可直接连接到从初级氧化反应器102顶部排出气体排出物的气体出口管路。

次级反应区116的上边界(upperextent)可高于或低于初级反应区118的上边界。在各种实施方式中,初级反应区116的上边界可比次级反应区118的上边界高10米至低50米,低2米至低40米,或者低5米至低30米。次级反应区118的下边界可在高度上高于或低于的初级反应区116的下边界。在各种实施方式中,初级反应区116的下边界在高度上可在次级反应区118下边界的上方或下方约40、20、5或2米以内。

下部浆料出口122可从次级氧化反应器104的任意高度离开。在各种实施方式中,下部浆料出口122可在入口管路105的连接高度以下连接到次级氧化反应器104。在各种实施方式中,如图2所示,下部浆料出口122连接到次级氧化反应器104的底部。

次级氧化反应器104可包括至少一个允许额外的分子氧排入次级反应区118内的氧化剂入口。在一种或多种实施方式中,次级氧化反应器104可包括至少一个通常下部的氧化剂入口和至少一个通常上部的氧化剂入口。在各种实施方式中,通常下部的氧化剂入口可距次级反应区118底部小于0.5ls、小于0.4ls、小于0.3ls或小于0.2ls。此外,通常上部的氧化剂入口可距次级反应区118底部至少0.5ls、至少0.6ls、至少0.7ls、至少0.8ls或至少0.9ls。在一种或多种实施方式中,次级氧化反应器104可包括至少2个通常上部的氧化剂入口,各自距次级反应区118底部至少0.5ls、至少0.55ls、至少0.6ls、至少0.7ls、至少0.8ls或至少0.9ls。此外,如上所述,次级氧化反应器104可包括与入口管路105流体流连通的浆料入口。在各种实施方式中,通常上部的氧化剂入口可距离次级氧化反应器104中的浆料入口小于0.4ls、小于0.3ls、小于0.2ls或小于0.1ls。在其它实施方式中,通常上部的氧化剂入口可在浆料入口上方距其小于0.4ls、小于0.3ls、小于0.2ls或小于0.1ls。

在操作期间,引入次级反应区118的气相氧化剂的第一部分可经由通常上部的氧化剂入口引入,而气相氧化剂的第二部分可经由通常下部的氧化剂入口引入。在各种实施方式中,经由通常上部的氧化剂入口引入的气相氧化剂的第一部分可占引入次级反应区118的气相氧化剂总体积的约5至约49%、约5至约35%、约10至约20%、或者10至15%。由此,通常上部的氧化剂入口和通常下部的氧化剂入口可在它们之间限定用于将气相氧化剂引入次级反应区118内的总开口面积。在一种或多种实施方式中,通常上部的氧化剂入口可限定总开口面积的约5至约49%,总开口面积的约5至约35%,总开口面积的约10至约20%,或者总开口面积的10至15%。

如图2所示,上述下部氧化剂入口可包括下部氧化剂喷洒器112。此外,上述上部氧化剂入口可包括一个或多个上部氧化剂喷洒器114a,b,c。现在参见图3,沿着3-3线显示了次级氧化反应器104的横截面,特别图示了上部氧化剂喷洒器114a。如图3所示,上部氧化剂喷洒器114a可包括多个用于将气相氧化剂引入次级反应区118内的氧化剂排出口124。虽然未示出,但是上部氧化剂喷洒器114b和114c中的每一个也都可以包括多个氧化剂排出口。类似地,下部氧化剂喷洒器112也可包括多个氧化剂排出口。在一种或多种实施方式中,上部氧化剂喷洒器114a,b,c所限定的氧化剂排出口124的至少50%、至少60%、至少70%、至少80%、至少90%、至少95%或至少99%可以取向为朝通常向下的方向排出气相氧化剂。在本文中使用时,术语“向下”表示任何在上部氧化剂喷洒器114a,b,c的通常下侧之下延伸的垂直夹角在15°以内的方向。在各种实施方式中,位于下部氧化剂喷洒器112内的氧化剂排出口的至少50%、至少60%、至少70%、至少80%、至少90%、至少95%或者至少99%可以取向为朝通常向下的方向和/或与垂直向下呈45°角或大约45°角排出气相氧化剂。

如上所述,引入次级反应区118的至少一部分气相氧化剂和反应介质120a可合并形成反应介质120b。在一种或多种实施方式中,可能期望反应介质120b具有极少的低氧浓度区。这种低氧含量区的最小化可通过理论上将反应介质120b的整个体积分割为20个体积均一的不连续的水平分层来量化。除最高和最低的水平分层之外,各水平分层是侧面以反应器侧壁为界且顶端和底端以假想的水平面为界的不连续的体积。最高的水平分层底端以假想的水平面为界,且顶端以反应介质的上表面为界,或者在满液(liquid-full)塔的情况下,以容器的上端为界。最低的水平分层顶端以假想的水平面为界且底端以容器下端为界。在各种实施方式中,当反应介质120b的整个体积在理论上分割为20个等体积的不连续的水平分层时,没有2个相邻的水平分层具有小于7、小于8、小于9或小于10ppmw的总(combined)时间-平均和体积-平均氧含量。在其它实施方式中,20个水平分层中没有一个具有小于7、小于8、小于9或小于10ppmw的时间-平均和体积-平均氧含量。

再次参见图2,通常原料、氧化剂和回流物流引入初级氧化反应器102内的方式和初级氧化反应器102的操作方式与以上参照图1的泡罩塔反应器20描述的基本相同。然而,初级氧化反应器102(图2)与泡罩塔反应器20(图1)之间的一个差别是初级氧化反应器102不包括允许反应介质120a的浆料相直接由初级反应容器106排出以供下游加工的出口。相反,初级氧化反应器102要求反应介质120a的浆料相在自反应器系统100排出之前先经过次级氧化反应器104。如上所述,在次级氧化反应器104的次级反应区118内,反应介质120b经受进一步氧化,以帮助纯化反应介质120b的液相和/或固相。

在对二甲苯进料到反应区116的方法中,离开初级反应区116并进入次级反应区118的反应介质120a的液相一般包含至少一些对甲苯甲酸。在各种实施方式中,进入次级反应区118的对甲苯甲酸的很大一部分可在次级反应区118内氧化。因此,离开次级反应区118的反应介质120b液相中的对甲苯甲酸的时间-平均浓度可小于进入次级反应区118的反应介质120a/b液相中的对甲苯甲酸的时间-平均浓度。在各种实施方式中,离开次级反应区118的反应介质120b液相中的对甲苯甲酸的时间-平均浓度可小于进入次级反应区118的反应介质120a/b液相中的对甲苯甲酸的时间-平均浓度的大约50%、10%或5%。进入次级反应区118的反应介质120a/b液相中的对甲苯甲酸的时间-平均浓度可为至少约250ppmw,在约500至约6,000ppmw的范围,或者在1,000至4,000ppmw的范围。作为对照,离开次级反应区118的反应介质120b液相中的对甲苯甲酸的时间-平均浓度可为小于约1,000、250或50ppmw。

当反应介质120b在次级氧化反应器104的次级反应区118内加工时,随着反应介质120b的浆料相向下流动通过次级反应区118,反应介质120b的气体滞留量会减少。在各种实施方式中,进入次级反应区118的反应介质120a/b与离开次级反应区118的反应介质120b的时间-平均气体滞留量的比值可为至少约2:1、10:1或25:1。此外、进入次级反应区118的反应介质120a/b的时间-平均气体滞留量可在约0.4至约0.9的范围,在约0.5至约0.8的范围,或者在0.55至0.7的范围。而且,离开次级反应区118的反应介质120b的时间-平均气体滞留量可小于约0.1、0.05或0.02。在一种或多种实施方式中,初级反应区116内的反应介质120a与次级反应区118内的反应介质120b的时间-平均气体滞留量的比值可大于约1:1,在约1.25:1至约5:1的范围,或者在1.5:1至4:1的范围,其中气体滞留量值是在初级和次级反应区116和118的任意高度,在初级和次级反应区116和118任何对应高度,在初级和/或次级反应区116和118的[1/4]高度,在初级和/或次级反应区116和118的[1/2]高度,在初级和/或次级反应区116和118的[3/4]高度测量的,和/或是初级和/或次级反应区116和118的整个高度上的平均值。在各种实施方式中,初级反应区116内的反应介质120a部分的时间-平均气体滞留量可在约0.4至约0.9的范围,在约0.5至约0.8的范围,或者在0.55至0.70的范围,其中气体滞留量是在初级反应区116的任意高度,在初级反应区116的[1/4]高度,在初级反应区116的[1/2]高度,在初级反应区116的[3/4]高度测量的,和/或是初级反应区116整个高度上的平均值。此外,次级反应区118内的反应介质120b部分的时间-平均气体滞留量可在约0.01至约0.6的范围,在约0.03至约0.3的范围,或者在0.08至0.2的范围,其中气体滞留量是在次级反应区118的任意高度,在次级反应区118的[1/4]高度,在次级反应区118的[1/2]高度,在次级反应区118的[3/4]高度测量的,和/或是次级反应区118整个高度上的平均值。

在初级和次级反应区116和118中,反应介质120的温度可以大致相同。在各种实施方式中,该温度可在约125至约200°c的范围,在约140至约180°c的范围,或者在150至170°c的范围。然而,在初级反应区116内部可形成温度差,例如以下参照图4更详细描述的那些。在各种实施方式中,同样大小(magnitude)的温度差也可存在于次级反应区118内部,并且也可存在于初级反应区116与次级反应区118之间。与初级反应区116内的温度梯度相比,这些额外的温度梯度与次级反应区118内发生的化学反应,额外氧化剂到次级反应区118的引入,和次级反应区118内现存的静压力有关。如以上公开地,在各种实施方式中,初级反应区116内的气泡滞留量可比次级反应区118内更大。因此,初级反应区116内的静压力可比次级反应区118内更大。这种压力差的大小取决于液体或浆料密度的大小,和两反应区之间在气泡滞留量上的差别。在进一步低于次级反应区118上边界的高度处,该压力差的大小增大。

如图2所示,进料到反应器系统100的总分子氧的一部分经由下部氧化剂喷洒器112,并且任选地经由一个或多个上部氧化剂喷洒器114a,b,c引入次级氧化反应器104的次级反应区118。在各种实施方式中,进料到反应器系统100的总分子氧的大部分可以引入初级反应区116,余量引入次级反应区118。在一种或多种实施方式中,进料到反应器系统100的总分子氧的至少约70、90、95或98摩尔%可引入初级反应区116。而且,引入初级反应区116的分子氧量与引入次级反应区118的分子氧量的摩尔比可为至少约2:1,在约4:1至约200:1的范围,或者在10:1至100:1的范围。虽然一些溶剂和/或可氧化化合物(如对二甲苯)可直接进料到次级反应区118,但是在各种实施方式中,进料到反应器系统100的溶剂和/或可氧化化合物总量的少于约10、5或1重量%直接进料到次级反应区118。

在各种实施方式中,初级反应容器106的初级反应区116内的反应介质120a的体积、停留时间和空时率(spacetimerate)可大幅高于次级反应容器110的次级反应区118内的反应介质120b的体积、停留时间和空时率。因此,进料到反应器系统100的可氧化化合物(如对二甲苯)的大多数可在初级反应区116内氧化。在各种实施方式中,在反应器系统100内氧化的所有可氧化化合物的至少约80、90或95重量%可以是在初级反应区116内氧化的。

在一种或多种实施方式中,初级反应区116内的反应介质120a的时间-平均表观气速可为至少约0.2、0.4、0.8或1米每秒,其中表观气速是在初级反应区116的任意高度,在初级反应区116的[1/4]高度,在初级反应区116的[1/2]高度,在初级反应区116的[3/4]高度测量的,和/或是初级反应区116整个高度上的平均值。虽然次级反应区118内的反应介质120b可具有与初级反应区116内的反应介质120a相同的表观气速,但是在各种实施方式中,次级反应区118内的反应介质120b的时间-平均表观气速可小于初级反应区116内的反应介质120a的时间-平均表观气速。由于例如次级反应区118内相比初级反应区116降低的分子氧需求,使得次级反应区118内的这种表观气速的降低成为可能。初级反应区116内的反应介质120a与次级反应区118内的反应介质120b的时间-平均表观气速的比值可为至少约1.25:1、2:1或5:1,其中表观气速是在初级和次级反应区116和118的任意高度,在初级和次级反应区116和118的任意对应高度,在初级和/或次级反应区116和118的[1/4]高度,在初级和/或次级反应区116和118的[1/2]高度,在初级和/或次级反应区116和118的[3/4]高度测量的,和/或是初级和/或次级反应区116和118整个高度的平均值。在各种实施方式中,次级反应区118内的反应介质120b的时间-平均和体积-平均表观气速可以小于约0.2、0.1或0.06米/秒,其中表观气速是在次级反应区118的任意高度,在次级反应区118的[1/4]高度,在次级反应区118的[1/2]高度,在次级反应区118的[3/4]高度测量的,和/或是次级反应区118整个高度上的平均值。借助这些更低的表观气速,可使反应介质120b的浆料相在次级反应区118内的向下流动朝柱塞流方向迁移。例如,在对二甲苯氧化形成tpa的过程中,对甲苯甲酸液相浓度的相对垂直梯度在次级反应区118内可以比在初级反应区116内大得多。就算次级反应区118是具有液体和浆料组合物的轴向混合的泡罩塔,依然如此。次级反应区118内的反应介质120b的浆料相(固体+液体)和液相的时间-平均表观速度可以小于约0.2、0.1或0.06米/秒,其中表观速度是在次级反应区118的任意高度,在次级反应区118的[1/4]高度,在次级反应区118的[1/2]高度,在次级反应区118的[3/4]高度测量的,和/或是次级反应区118整个高度上的平均值。

在各种实施方式中,位于次级反应区118内的反应介质120b的液相可以具有至少约1分钟,在约2至约60分钟范围,或者在5至30分钟范围的在次级反应区118内的质量-平均停留时间。

如上所述,上文参照图1描述的泡罩塔反应器的某些物理和操作特征为所加工的反应介质提供了压力、温度和反应物(即氧和可氧化化合物)浓度的垂直梯度。如上所述,与倾向使用充分混合的反应介质的常规氧化过程相比,该垂直梯度可提供更加有效和经济的氧化过程,其中所述充分混合的反应介质整体上具有相对均匀的压力、温度和反应物浓度。通过采用本发明实施方式的氧化系统使得可能形成氧、可氧化化合物(如对二甲苯)和温度的垂直梯度,现在对本发明实施方式作更详细地论述。

现在参见图4,为了量化泡罩塔反应器内在氧化过程中存在于反应介质内的反应物浓度梯度,可在理论上将反应介质的整个体积分割为30个具有相等体积的不连续的水平分层。图4图示了将反应介质分割为30个具有相等体积的不连续的水平分层的基本原理。除最高和最低的水平分层之外,各水平分层是顶端和底端以假想的水平面为界且侧面以反应器壁为界的不连续的体积。最高的水平分层底端以假想的水平面为界且顶端以反应介质的上表面为界。最低的水平分层顶端以假想的水平面为界且底端以容器壳体底部为界。一旦在理论上将反应介质分割为30个具有相等体积的不连续的水平分层之后,即可确定各水平分层的时间-平均和体积-平均的浓度。在所有30个水平分层中具有最高浓度的单独水平分层可标示为“c-max水平分层”。位于上述c-max水平分层上方并且在所有位于上述c-max水平分层上方的水平分层当中具有最低浓度的单独水平分层可标示为“c-min水平分层”。然后,垂直浓度梯度可计算为c-max水平分层内的浓度与c-min水平分层内的浓度的比值。

对于氧浓度梯度的量化,当反应介质在理论上分割为30个具有相等体积的不连续的水平分层时,o2-max水平分层标示为在所有30个水平分层当中具有最高的氧浓度,而o2-min水平分层标示为在所有位于上述o2-max水平分层上方的水平分层当中具有最低的氧浓度。水平分层的氧浓度在反应介质的气相中测量,且以时间-平均和体积-平均的湿基摩尔数计。在各种实施方式中,o2-max水平分层的氧浓度与o2-min水平分层的氧浓度的比值可在约2:1至约25:1的范围,在约3:1至约15:1的范围,或者在4:1至10:1的范围。

一般情况下,o2-max水平分层会位于接近反应介质底部处,而o2-min水平分层会位于接近反应介质顶部处。在一种或多种实施方式中,o2-min水平分层可以是30个不连续的水平分层中最上部的5个水平分层之一。此外,如图4所示,o2-min水平分层可以是30个不连续的水平分层中最上部的一个。在各种实施方式中,o2-max水平分层可以是30个不连续的水平分层中最下部的10个水平分层之一。此外,o2-max水平分层可以是30个不连续的水平分层中最下部的5个水平分层之一。例如,图4显示o2-max水平分层为自反应器底部起倒数第三个水平分层。在一种或多种实施方式中,o2-min和o2-max水平分层之间的垂直距离可为至少约2wp,至少约4wp、或至少6wp。此外,o2-min和o2-max水平分层之间的垂直距离可为至少约0.2hp、至少约0.4hp、或至少0.6hp。

o2-min水平分层的时间-平均和体积-平均的湿基氧浓度可在约0.1至约3摩尔%的范围,在约0.3至约2摩尔%的范围,或者在0.5至1.5摩尔%的范围。o2-max水平分层的时间-平均和体积-平均的氧浓度可在约4至约20摩尔%范围,在约5至约15摩尔%的范围,或者在6至12摩尔%的范围。经由气体出口从反应器排出的气体排出物的时间-平均的干基氧浓度可在约0.5至约9摩尔%的范围,在约1至约7摩尔%的范围,或者在1.5至5摩尔%的范围。

因为朝向反应介质顶部氧浓度下降如此显著,所以使得反应介质顶部的氧需求可以降低。接近反应介质顶部的这种氧需求的降低可通过构建可氧化化合物(如对二甲苯)浓度的垂直梯度来实现,其中可氧化化合物的最低浓度位于接近反应介质顶部处。

对于可氧化化合物(如对二甲苯)浓度梯度的量化,当反应介质在理论上分割为30个具有相等体积的不连续的水平分层时,oc-max水平分层标示为在所有30个水平分层当中具有最高的可氧化化合物浓度,而oc-min水平分层标示为在位于上述oc-max水平分层上方的水平分层当中具有最低的可氧化化合物浓度。水平分层的可氧化化合物的浓度在液相中测量,以时间-平均和体积-平均的质量分数计。在各种实施方式中,oc-max水平分层的可氧化化合物浓度与oc-min水平分层的可氧化化合物浓度的比值可为大于约5:1、大于约10:1、大于约20:1、或者在40:1至1000:1的范围。

一般情况下,oc-max水平分层会位于接近反应介质底部处,而oc-min水平分层会位于接近反应介质顶部处。在一种或多种实施方式中,oc-min水平分层可以是30个不连续的水平分层中最上部的5个水平分层之一。此外,如图4所示,oc-min水平分层可以是30个不连续的水平分层中最上部的一个。在各种实施方式中,oc-max水平分层可以是30个不连续的水平分层中最下部的10个水平分层之一。此外,oc-max水平分层可以是30个不连续的水平分层中最下部的5个水平分层之一。例如,图4显示oc-max水平分层为自反应器底部起倒数第五个水平分层。在各种实施方式中,oc-min和oc-max水平分层之间的垂直距离可为至少约2wp(其中“wp”是反应介质的最大宽度)、至少约4wp、或至少6wp。给定反应介质的高度“hp”,oc-min和oc-max水平分层之间的垂直距离可为至少约0.2hp、至少约0.4hp、或至少0.6hp。

oc-min水平分层液相中的时间-平均和体积-平均的可氧化化合物(如对二甲苯)浓度可为小于约5,000ppmw、小于约2,000ppmw、小于约400ppmw,或者在1ppmw至100ppmw的范围。oc-max水平分层液相中的时间-平均和体积-平均的可氧化化合物浓度可在约100ppmw至约10,000ppmw的范围,在约200ppmw至约5,000ppmw的范围,或者在500ppmw至3,000ppmw的范围。

虽然泡罩塔反应器可在可氧化化合物的浓度中提供垂直梯度,但是也可以使在液相中具有高于1,000ppmw的可氧化化合物浓度的反应介质的体积百分比最小。在各种实施方式中,在液相中具有高于1,000ppmw的可氧化化合物浓度的反应介质的时间-平均的体积百分比可为小于约9%、小于约6%、或小于3%。此外,在液相中具有高于2,500ppmw的可氧化化合物浓度的反应介质的时间-平均的体积百分比可为小于约1.5%、小于约1%、或小于0.5%。此外,在液相中具有高于10,000ppmw的可氧化化合物浓度的反应介质的时间-平均的体积百分比可为小于约0.3%、小于约0.1%、或小于0.03%。此外,在液相中具有高于25,000ppmw的可氧化化合物浓度的反应介质的时间-平均的体积百分比可为小于约0.03%、小于约0.015%、或小于0.007%。发明人注意到具有该较高水平的可氧化化合物的反应介质的体积并不必处于单个连续的体积内。很多时候,泡罩塔反应容器内无序的流动型态同时产生了两个或更多个自身连续但又彼此分隔开的具有该较高水平的可氧化化合物的反应介质部分。在每次计算时间平均值时,所有这类连续但又分开的大于总反应介质的0.0001体积%的体积加合在一起来确定在液相中具有该较高水平的可氧化化合物浓度的总体积。

除上述氧和可氧化化合物的浓度梯度之外,在反应介质中可以存在温度梯度。再次参见图4,温度梯度可以类似于浓度梯度的方式,通过在理论上将反应介质分割为30个具有相等体积的不连续的水平分层并测量各分层的时间-平均和体积-平均的温度来量化。最底部的15个水平分层中具有最低温度的水平分层则可以标示为t-min水平分层,而位于上述t-min水平分层上方并且在上述t-min水平分层上方的所有分层中具有最高温度的水平分层则可以标示为t-max水平分层。在各种实施方式中,t-max水平分层的温度可比t-min水平分层的温度高至少约1°c,比t-min水平分层的温度高约1.25至约12°c,或者比t-min水平分层的温度高2至8°c。t-max水平分层的温度可在约125至约200°c的范围,在约140至约180°c的范围,或者在150至170°c的范围。

一般情况下,t-max水平分层会位于接近反应介质中心处,而t-min水平分层会位于接近反应介质底部处。在各种实施方式中,t-min水平分层可为最底部的15个水平分层中最下部的10个水平分层之一,或者是最底部的15个水平分层中最下部的5个水平分层之一。例如,图4显示t-min水平分层为自反应器底部数第二个水平分层。在各种实施方式中,t-max水平分层可为30个不连续的水平分层的中间20个水平分层之一,或者30个不连续的水平分层的中间14个水平分层之一。例如,图4显示t-max水平分层为自反应器底部数第二十个水平分层(即中间10个水平分层之一)。t-min和t-max水平分层之间的垂直距离可为至少约2wp,至少约4wp、或至少6wp。t-min和t-max水平分层之间的垂直距离可为至少约0.2hp,至少约0.4hp、或至少0.6hp。

如上所述,当反应介质内存在垂直温度梯度时,在反应介质温度最高的较高位置处排出反应介质可能是有利的,尤其是在排出产物经受再下游的更高温度的加工时。因此,如图2所示,当反应介质120经由一个或多个较高的出口从反应区排出时,该较高的出口(或多个出口)可位于接近t-max水平分层处。在各种实施方式中,所述较高的出口可位于距t-max水平分层10个水平分层以内的位置,距t-max水平分层5个水平分层以内的位置,或者距t-max水平分层2个水平分层以内的位置。

现在指出本文所述的许多发明特征可应用在多氧化反应器系统中,而非仅限于采用单个氧化反应器的系统。此外,本文描述的某些发明特征可应用在机械-搅拌和/或流动-搅拌式氧化反应器中,而非仅限于气泡-搅拌式反应器(即泡罩塔反应器)。例如,发明人已经发现了与整个反应介质内分段的/变化的氧浓度和/或耗氧率相关的某些优点。无论反应介质的总体积是容纳在单个容器内还是容纳在多个容器内,通过反应介质内的氧浓度/消耗的分段所实现的优点均可实现。并且,无论所述反应容器(或多个反应容器)是否是机械-搅拌、流动-搅拌和/或气泡-搅拌的,通过反应介质内的氧浓度/消耗的分段所实现的优点均可实现。

量化反应介质内的氧浓度和/或耗氧率的分段程度的一种方法是比较两个或更多个不同的20%连续体积的反应介质。这些20%连续体积不必限定为任何具体的形状。然而,各20%连续体积都必须由连续体积的反应介质形成(即各体积为“连续的”),且所述20%连续体积不能相互重叠(即所述多个体积是“不同的”)。这些不同的20%连续体积可位于同一反应器内或者多个反应器内。现在参见图5,泡罩塔反应器显示为容纳反应介质,该反应介质包括第一不同的20%连续体积37和第二不同的20%连续体积39。

反应介质内氧可得性的分段可通过利用在气相中具有最充裕的氧摩尔分数的20%连续体积的反应介质,和利用在气相中具有最贫瘠的氧摩尔分数的20%连续体积的反应介质来量化。在包含最高氧浓度的不同的20%连续体积的反应介质的气相中,时间-平均和体积-平均的湿基氧浓度可在约3至约18摩尔%的范围,在约3.5至约14摩尔%的范围,或者在4至10摩尔%的范围。在包含最低氧浓度的不同的20%连续体积的反应介质的气相中,时间-平均和体积-平均的湿基氧浓度可在约0.3至约5摩尔%的范围,在约0.6至约4摩尔%的范围,或者在0.9至3摩尔%的范围。并且,最充裕的20%连续体积的反应介质与最贫瘠的20%连续体积的反应介质中的时间-平均和体积-平均的湿基氧浓度的比值可在约1.5:1至约20:1的范围,在约2:1至约12:1的范围,或者在3:1至9:1的范围。

反应介质内耗氧率的分段可依据上文开始时描述的氧-str来量化。氧-str在前文中是从整体角度(即从整个反应介质的平均氧-str的角度)描述的;然而,氧-str也可以从局部角度(即一部分反应介质)考虑,以量化整个反应介质内的耗氧率的分段。

发明人发现使整个反应介质内的氧-str变化与本文公开的涉及反应介质内的压力和反应介质气相内的分子氧摩尔分数的所需梯度大体一致可能是有用的。因此,在各种实施方式中,第一不同的20%连续体积的反应介质的氧-str与第二不同的20%连续体积的反应介质的氧-str的比值可在约1.5:1至约20:1的范围,在约2:1至约12:1的范围,或者在3:1至9:1的范围。在一种实施方式中,相比“第二不同的20%连续体积”,“第一不同的20%连续体积”可位于更靠近分子氧最初引入反应介质内的位置处。当部分氧化反应介质容纳在泡罩塔氧化反应器中或者容纳在任何其它类型的反应容器中,其中在反应介质的气相中构建了分子氧的压力和/或摩尔分数的梯度时(例如,在具有通过使用多个具有强烈径向流的叶轮实现的多个垂直布置的搅拌区的机械搅拌式容器内,其中该径向流可能通过大致水平的挡板部件加强,其中氧化剂流从接近反应容器下部的进料大致向上上升,尽管在各垂直布置的搅拌区内部可能发生相当大的氧化剂流返混并且一些氧化剂流的返混可能发生在相邻的垂直布置的搅拌区之间)氧-str的这些大梯度可能是有利的。换而言之,当反应介质的气相中存在分子氧的压力和/或摩尔分数的梯度时,发明人发现构建类似的对溶解氧的化学需求的梯度可能是有利的。

根据本文公开的其它内容,引起局部氧-str变化的一种方法是通过控制可氧化化合物的进料位置和通过控制反应介质的液相的混合来控制可氧化化合物的浓度梯度。引起局部氧-str变化的其它可用手段包括通过引起局部温度变化和通过改变催化剂与溶剂组分的局部混合物来引起反应活性的变化(例如,通过引入额外的气体在反应介质的特定部分引起蒸发冷却和/或通过添加包含较高水量的溶剂物流来降低反应介质的特定部分内的活性)。

现在参见图6,图示了采用氧化反应器系统200生产纯化对苯二甲酸(“pta”)的工艺,氧化反应器系统200包括初级氧化反应器200a和次级氧化反应器200b。在图6所示的构造中,初始浆料可由初级氧化反应器200a产生,并且随后可在纯化系统202中进行提纯,而次级氧化反应器200b是纯化系统202的一部分。从初级氧化反应器200a排出的初始浆料可包含固体粗对苯二甲酸(“cta”)颗粒和液体母液。一般情况下,初始浆料可包含约10至约50重量%的固体cta颗粒,余量为液体母液。存在于从初级氧化反应器200a排出的初始浆料中的固体cta颗粒可包含至少约400ppmw的4-羧基苯甲醛(“4-cba”),至少约800ppmw的4-cba,或者在1,000至15,000ppmw范围的4-cba。

纯化系统202接收从初级氧化反应器200a排出的初始浆料,并降低存在于cta中的4-cba和其它杂质的浓度。纯化系统202可产生更纯的/纯化的浆料,并且该浆料可在分离系统204中进行分离和干燥,从而产生更纯的固体对苯二甲酸颗粒,其包含低于约400ppmw的4-cba,低于约250ppmw的4-cba,或者在10至200ppmw范围的4-cba。

纯化系统202包括次级氧化反应器200b、煮解器(digester)206和单个结晶器208。在次级氧化反应器200b中,初始浆料在一定条件下经受氧化,所述条件例如以上针对图2中的次级氧化反应器104所述的条件。离开次级氧化反应器200b的浆料被引入煮解器206。在煮解器206中,可在稍高于初级氧化反应器200a中所用温度的温度下进行进一步的氧化反应。

初级氧化反应器200a中产生的cta颗粒的高表面积、小粒度和低密度可以使得陷在cta颗粒中的某些杂质变得可供在煮解器206中氧化,而无需cta颗粒在煮解器206中完全溶解。因此,煮解器206中的温度可低于许多类似的现有技术的工艺。在煮解器206中进行的进一步氧化可使cta中的4-cba浓度降低至少200ppmw、至少约400ppmw、或者600至6,000ppmw。煮解器206内的煮解温度可比反应器200a内的初级氧化温度高至少约10°c,比反应器200a内的初级氧化温度高至少约20至约80°c,或者比反应器200a内的初级氧化温度高至少30至50°c。煮解温度可在约160至约240°c的范围、在约180至约220°c的范围、或者在190至210°c的范围。在各种实施方式中,来自煮解器206的精制产品在于分离系统204内分离之前只需要在结晶器208内的单个结晶步骤即可。在美国专利7,132,566中更详细地论述了适合的次级氧化/煮解技术,其全部公开内容通过引用方式明确地并入本文。

通过图6所示系统生产的对苯二甲酸(如pta)可形成为具有至少约40微米(μm),在约50至约2,000μm范围,或者在60至200μm范围的平均粒度的pta颗粒。所述pta颗粒可具有低于约0.25m2/g,在约0.005至约0.2m2/g范围,或者在0.01至0.18m2/g范围的平均bet表面积。通过图6所示系统生产的pta适合用作制造pet的原料。一般情况下,pet经由对苯二甲酸与乙二醇的酯化反应,随后经由缩聚反应制造。在各种实施方式中,通过本发明实施方式生产的对苯二甲酸可用作美国专利6,861,494中描述的管式反应器pet工艺的进料,其全部公开内容通过引用方式并入本文。

具有本文公开的形态的cta颗粒可能特别适用于上述用于降低4-cba含量的氧化煮解过程。此外,这些cta颗粒可以在涉及所述颗粒的溶解和/或化学反应的各种其它后续工艺中提供多种优点。这些附加的后续工艺包括,但不限于,与至少一种含羟基化合物形成酯化合物的反应,特别是cta与甲醇形成对苯二甲酸二甲酯和杂质酯的反应;与至少一种二醇形成酯单体和/或聚合物的反应,特别是cta与乙二醇形成聚对苯二甲酸乙二醇酯(pet)的反应;和在包括但不限于水、乙酸和n-甲基-2-吡咯烷酮的溶剂中的完全或部分溶解,它可以包括进一步加工,包括但不限于更纯的对苯二甲酸的再析出和/或除羧基外的羰基基团的选择性化学还原。特别包括的是cta在包含水的溶剂中的基本溶解联合部分氢化,该工艺使醛,特别是4-cba、芴酮、苯基酮和/或蒽醌的量降低。

定义

应当理解以下不意在表示排他性的所限定术语的列表。其它定义可以在以上描述中提供,例如伴随所限定术语在上下文中的使用提供。

在本文中使用时,术语“一”、“一种”和“该”表示一种或多种。

在本文中使用时,术语“和/或”用在两个或更多个项目的列表中时,表示所列举的项目中任何一个均可单独使用或者可以使用所列举项目中的两个或更多个的任意组合。例如,如果组合物描述为包含组分a、b和/或c,那么该组合物可以包含单独a;单独b;单独c;a和b的组合;a和c的组合、b和c的组合;或者a、b和c的组合。

在本文中使用时,术语“包括”、“包括有”、和“含有”是开放式的过渡术语,用于由记载在该术语之前的主题过渡到记载在该术语之后的一个或多个要素,其中所述过渡术语之后列举的所述要素或多个要素不必是构成所述主题的全部要素。

在本文中使用时,术语“具有”、“具”和“有”具有与上述“包括”、“包括有”和“含有”相同的开放式的含义。

在本文中使用时,术语“包含”、“包含有”和“含”具有与上述“包括”、“包括有”和“含有”相同的开放式的含义。

数值范围

本说明书使用数值范围来量化某些与本发明有关的参数。应当理解当提供了数值范围时,该范围应当解释为给仅记载了该范围的下限值的权利要求限定以及仅记载了该范围的上限值的权利要求限定提供了字面上的支持。例如,公开的10至100的数值范围给表述为“大于10”(不带上限)和表述为“小于100”(不带下限)的权利要求提供了字面上的支持。

本说明书采用具体的数值来量化某些与本发明有关的参数,其中该具体数值未明确表示为数值范围的一部分。应当理解,本文提供的每一具体数值均应解释为给宽范围、中间范围和窄范围提供了字面上的支持。每一具体数值所关联的宽范围是该数值加减其自身的60%得到的范围,四舍五入到两位有效数字。每一具体数值所关联的中间范围是该数值加减其自身的30%得到的范围,四舍五入到两位有效数字。每一具体数值所关联的窄范围是该数值加减其自身的15%得到的范围,四舍五入到两位有效数字。例如,如果说明书记载了62°f的具体温度,那么该记载为25°f至99°f(62°f+/-37°f)的宽数值范围,43°f至81°f(62°f+/-19°f)的中间数值范围,和53°f至71°f(62°f+/-9°f)的窄数值范围提供了字面上的支持。这些宽数值范围、中间数值范围和窄数值范围不仅应当适用于具体数值,而且也应当适用于这些具体数值之间的差值。因此,如果说明书记载了110psia的第一压力和48psia的第二压力(差值为62psi),那么对于这两股物流之间的压力差的宽范围、中间范围和窄范围分别是25至99psi、43至81psi、和53至71psi。

权利要求不限于所公开的实施方式

以上描述的本发明的各种形式仅用作举例说明的目的,并且不应当以限制性的方式用于解释本发明的范围。本领域技术人员可以在不偏离本发明精髓的前提下很容易地对以上给出的示例性的实施方式作出各种变更。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1