聚二乙氧甲基丙撑二氧噻吩蓝紫色‑透明电致变色材料及制备方法、组件与应用与流程

文档序号:13606801阅读:618来源:国知局
聚二乙氧甲基丙撑二氧噻吩蓝紫色‑透明电致变色材料及制备方法、组件与应用与流程

本发明涉及电致变色材料的合成和成膜方法,具体为聚二乙氧甲基丙撑二氧噻吩蓝紫色-透明电致变色材料及制备方法、组件与应用。



背景技术:

材料在交替的高低或正负外电场作用下通过注入或抽取电荷发生氧化还原反应,从而在低透过率的着色态和高透过率的消色态之间发生可逆变化的特殊现象称为电致变色,外观上表现为颜色及透明度的可逆变化,在电致变色窗、电致变色显示等领域有广阔的应用前景。

电致变色材料具有双稳态的性能,用电致变色材料做成的电致变色显示器件不仅不需要背光灯,而且显示静态图像后,只要显示内容不变化,就不会耗电,达到节能的目的。电致变色显示器与其它显示器相比具有无视盲角、对比度高、制造成本低、工作温度范围宽、驱动电压低、色彩丰富等优点,在仪表显示、户外广告、静态显示等领域具有很大的应用前景。

无机电致变色材料主要以wo3、moo3、nio等过渡金属氧化物为代表,其光吸收变化是因为离子和电子的双注入和双抽取而引起的。有机电致变色材料则以有机小分子紫精和π-共轭聚合物如聚苯胺、聚吡咯、聚噻吩等为代表,其光吸收变化来自氧化还原反应,这类材料色彩丰富,容易进行分子设计,因而更加受到研究者的青睐。特别是3,4-二氧基噻吩(如3,4-乙撑二氧噻吩pedot),由于电子给体的二氧基在高p-掺杂水平下能够稳定封闭壳双极化子结构,因而为聚(3,4-亚烷基二氧基噻吩)提供了高导电性和透明氧化态,电致变色材料无论是应用于智能窗还是显示,都需要材料具有透明态(可接近完全褪色),因而这一发现促进了3,4-二氧基噻吩聚合物的广泛应用。

聚合物主链刚性及分子链间π-π堆积作用使得π-共轭聚合物具有不熔不溶的特性,因此在利用π-共轭聚合物制备电致变色器件时研究者们通常采用电化学聚合的方法使得到的聚合物直接沉积于电极表面形成聚合物薄膜。电聚合是利用外加电压使单体在阳极发生电化学氧化反应,通过自由基间逐步偶合形成共轭聚合物。

相对于以三氯化铁为氧化剂的化学氧化聚合以及以钯络合物为催化剂的偶联聚合反应,电聚合方法合成共轭聚合物具有以下优点:

(1)电聚合可以在适宜电压下通过阳极氧化反应直接得到聚合物,而不需要另外添加氧化剂或催化剂,减少共轭聚合物的合成成本;

(2)电聚合过程中掺杂入共轭聚合物的电解质可以方便地通过施加负电压去掺杂(还原)反应去除,使得到的聚合物更加纯净;

(3)电聚合得到的共轭聚合物可以直接沉积在导电基底上,而不需要对聚合物做进一步成膜加工,降低了共轭聚合物薄膜在应用于有机光电子学器件时的加工费用和难度。

聚二氧基噻吩由于其具有低驱动电压、快速响应、高透过率差的优点而受到电致变色材料开发研究的广泛青睐。通过聚合物主链或者侧基的化学改性来提升聚合物电致变色性能是最为经常使用的手段。二氧基噻吩及其衍生物的电聚合成为有机光电子学材料领域的研究者获得新颖的电致变色材料最常采用的合成方法。



技术实现要素:

本发明旨在提供一种新型的蓝紫色噻吩类聚合物电致变色材料,其颜色可以在蓝紫色和透明之间转化,具有驱动电压低,光学对比度高、着色效率高等特点,为了达到上述目的,本发明采用的技术方案如下:

聚二乙氧甲基丙撑二氧噻吩蓝紫色-透明电致变色材料,其特征在于,其结构式如下:

其中n表示聚合度,为自然数。

所述的聚二乙氧甲基丙撑二氧噻吩蓝紫色-透明电致变色材料的合成路线如下:

具体步骤如下:

步骤1、将二溴甲基丙撑二氧噻吩、乙醇钠和n,n-二甲基甲酰胺加入上方连接回流冷凝管的烧瓶中,将混合物加热至90-120℃,反应4-10h,然后冷却至室温,加水150-300ml,乙醚萃取,有机相用无水硫酸钠干燥,旋转蒸发除去溶剂,粗产物经柱层析得到无色油状液体,得二乙氧甲基丙撑二氧噻吩;

步骤2、将二乙氧甲基丙撑二氧噻吩、liclo4溶解于乙腈,置于三电极电解池中,采用循环伏安法进行电化学聚合,得到聚二乙氧甲基丙撑二氧噻吩。

所述步骤1中二溴甲基丙撑二氧噻吩、乙醇钠、n,n-二甲基甲酰胺的用量比为(20-40)mmol:(60-120)mmol:(50-200)ml。

所述步骤2的乙腈体系中二乙氧甲基丙撑二氧噻吩的浓度为0.005-0.1mol/l,liclo4的浓度为0.05-0.5mol/l。

所述步骤2中电化学聚合是以ito导电玻璃为工作电极,pt丝为对电极,ag丝为参比电极,使用chi600e电化学分析仪通过在氮气保护下0-1.7v连续循环伏安扫描4-10次。

本发明还保护所述的聚二乙氧甲基丙撑二氧噻吩蓝紫色-透明电致变色材料在制造电致变色器件中的应用。

本发明还保护所述的聚二乙氧甲基丙撑二氧噻吩蓝紫色-透明电致变色材料的组件。

所述的组件为电致变色薄膜。

所述的电致变色薄膜的成膜方法为将聚二乙氧甲基丙撑二氧噻吩电聚合薄膜直接电镀在ito玻璃表面。

本发明为一种新型蓝紫色-透明电致变色聚合物材料,可以通过电化学聚合在ito玻璃表面成膜,其特点为驱动电压低,着色效率高、光学对比度高,适合应用于智能窗、显示器等电致变色器件。

附图说明

图1为二乙氧甲基丙撑二氧噻吩的核磁氢谱。

图2为电聚合实验连续循环伏安曲线。

图3为聚合物薄膜氧化过程中色坐标变化。

图4为聚合物-聚二乙氧甲基丙撑二氧噻吩薄膜循环伏安曲线。

图5为聚合物薄膜在不同外加电压下的光谱电化学谱图。

图6为聚合物薄膜电压阶跃计时吸光度图。

图7为聚合物薄膜电压阶跃计时电量/计时吸光度图。

图8聚合物薄膜长期循环伏安稳定性实验曲线,包括第2圈和第200圈循环伏安曲线。

具体实施方式

实施例1聚二乙氧甲基丙撑二氧噻吩蓝紫色-透明电致变色薄膜

一种聚二乙氧甲基丙撑二氧噻吩蓝紫色-透明电致变色薄膜的制备步骤如下:

步骤1、将30mmol二溴甲基丙撑二氧噻吩、90mmol乙醇钠和100mln,n-二甲基甲酰胺加入上方连接回流冷凝管的烧瓶中,将混合物加热至110℃,反应6h,然后冷却至室温,加水200ml,乙醚萃取,有机相用无水硫酸钠干燥,旋转蒸发除去溶剂,粗产物经柱层析得到无色油状液体,得二乙氧甲基丙撑二氧噻吩,产率30%;

步骤2、将二乙氧甲基丙撑二氧噻吩、liclo4溶解于10ml乙腈,其中二乙氧甲基丙撑二氧噻吩浓度为0.01mol/l,liclo4浓度为0.1mol/l;采用氮气保护三电极电解池,pt丝为对电极,ag丝为参比电极,ito导电玻璃为工作电极,电压扫描范围0-1.7v,扫描5次循环,得到聚二乙氧甲基丙撑二氧噻吩薄膜。

合成的二乙氧甲基丙撑二氧噻吩核磁氢谱见图1,图中纵坐标代表峰强度,横坐标代表化学位移δ。δ=6.47(s,2h)峰对应噻吩环2-、5-位氢原子,δ=4.04(s,4h)峰对应丙撑二氧桥氢原子,δ=3.52(s,4h)、δ=3.50(d,4h)、δ=1.19(t,6h)峰对应二乙氧甲基氢原子,说明单体化学结构的正确性。

电聚合实验连续循环伏安曲线见图2,说明电聚合得到的聚合物薄膜不断沉积于ito工作电极表面使氧化电流和还原电流随扫描段数增加而增加。

制备的聚合物薄膜氧化过程中色坐标变化见图3,图中横坐标为a*(红绿平衡值),纵坐标为b*(黄蓝平衡值)。说明聚合物中性态色坐标为a*=18.58,b*=-36.03,为蓝紫色态;聚合物完全氧化态色坐标为a*=1.58,b*=-20.42,为透明态,聚合物为蓝紫色-透明电致变色材料。

实施例2聚二乙氧甲基丙撑二氧噻吩薄膜循环伏安曲线测试

支持电解液配置:0.1mol/l高氯酸锂(liclo4)溶于10ml碳酸丙烯酯(pc)。循环伏安实验条件:采用三电极电解池,pt丝为对电极,ag丝为参比电极,镀有实施例1聚合物薄膜(2cm×0.7cm)ito导电玻璃为工作电极,扫描电压范围-0.1v-0.7v,扫描速率分别为50mv/s,100mv/s,150mv/s,200mv/s。测试结果见图4,说明扫描速率为50mv/s时聚合物氧化峰电位为0.6v,还原峰电位为0.05v,在扫描电压范围-0.1v-0.7v内聚合物可完成氧化还原过程。

实施例3聚二乙氧甲基丙撑二氧噻吩薄膜在不同外加电压下的光谱电化学性能测试

支持电解液配置:0.1mol/l高氯酸锂(liclo4)溶于10ml碳酸丙烯酯(pc)。采用三电极电解池,pt丝为对电极,ag丝为参比电极,镀有实施例1聚合物薄膜(2cm×0.7cm)ito导电玻璃为工作电极,测试结果见图5,说明中性态聚合物薄膜(-0.1v)为蓝紫色,最大吸收波长为575nm,聚合物完全氧化态(0.7v)为透明态,在可见光区基本无吸收。

实施例4聚二乙氧甲基丙撑二氧噻吩薄膜电压阶跃计时吸光度测试

阶跃电压为-0.1v和0.7v,电压驻留时间分别为30s,20s,15s,10s。支持电解液配置:0.1mol/l高氯酸锂(liclo4)溶于10ml碳酸丙烯酯(pc)。采用三电极电解池,pt丝为对电极,ag丝为参比电极,镀有实施例1制备的聚合物薄膜(2cm×0.7cm)ito导电玻璃为工作电极。测试结果见图6,说明聚合物的氧化还原过程可逆,在575nm处的透过率差δtmax=35.2%,其氧化过程达到95%透过率差响应时间t95=9.5s。

实施例5聚二乙氧甲基丙撑二氧噻吩薄膜电压阶跃计时电量/计时吸光度测试

阶跃电压为-0.1v和0.7v,电压驻留时间分别为20s。支持电解液配置:0.1mol/l高氯酸锂(liclo4)溶于10ml碳酸丙烯酯(pc)。采用三电极电解池,pt丝为对电极,ag丝为参比电极,镀有实施例1制备的聚合物薄膜(2cm×0.7cm)ito导电玻璃为工作电极。测试结果见图7,说明聚合物薄膜氧化过程在575nm处达到95%透过率差时的着色效率为106.6cm2/c(计算公式为ce=δod/(q/a)=lg(tb/tc)/(q/a))。

实施例6聚二乙氧甲基丙撑二氧噻吩薄膜长期循环伏安稳定性实验

支持电解液配置:0.1mol/l高氯酸锂(liclo4)溶于10ml碳酸丙烯酯(pc)。循环伏安实验条件:采用三电极电解池,pt丝为对电极,ag丝为参比电极,镀有实施例1制备的聚合物薄膜(2cm×0.7cm)ito导电玻璃为工作电极,扫描电压范围-0.1v-0.7v,扫描速率分别为100mv/s。测试结果见图8,说明经过200次氧化还原循环,电流密度没有明显衰减,聚合物具有良好的长期氧化还原循环稳定性。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1