一种纳米复合水凝胶及其制备方法和应用与流程

文档序号:14191955阅读:782来源:国知局
一种纳米复合水凝胶及其制备方法和应用与流程

本发明涉及水凝胶领域,具体涉及一种纳米复合水凝胶及其制备方法和应用。



背景技术:

天然水凝胶是三维的生物聚合网络,能吸收和维持大量的水分,又由于其具有生物降解性,生物相容性和可再生性,所以在食品,化妆品和生物医学领域具有潜在的应用价值。

水凝胶在应用时需要有高强度和灵活性,以及可逆的形变特性。然而,普通化学交联的聚合物水凝胶在一定压力下易碎。以下方法已经试图去增强水凝胶的机械性能,包括交联水凝胶,双网络水凝胶和纳米复合水凝胶。在这些方法中,纳米复合水凝胶制备方法简单,因而备受关注。

将纳米颗粒与水凝胶简单混合,以增强水凝胶的机械特性已经被研究。但由于高浓度的纳米颗粒在水凝胶中不易均匀分散,使得纳米复合水凝胶的机械性能没有得到较好的改善。

明胶是一种纤维蛋白,由动物结缔组织中的胶原部分降解得到。由于明胶的生物相容性和生物降解性,明胶水凝胶被广泛应用在食品工业中,比如在甜点,果冻等。然而由于明胶差的机械性能限制了其应用。



技术实现要素:

本发明的目的在于提供一种机械性能良好的纳米复合水凝胶及其制备方法。

本发明提供了一种纳米复合水凝胶的制备方法,包括如下步骤:

(1)将短直链淀粉糊化;

(2)将所述糊化后的短直链淀粉与质量浓度为8%-14%的明胶水溶液混合,冷却,得到纳米复合水凝胶。

优选的,所述短直链淀粉相对于明胶水溶液的添加量为0.01-0.1g/ml。

优选的,所述混合温度为40-60℃。

优选的,所述冷却的温度为4-14℃,冷却的时间为10-24h。

优选的,所述短直链淀粉的制备方法包括如下步骤:

①将蜡质玉米淀粉溶液与磷酸氢二钠-柠檬酸缓冲溶液混合,沸水浴糊化,得到糊化产物;

②按照酶用量3~5u/g,将所述糊化产物与普鲁兰酶混合,在50~60℃条件下酶解6-10h;

③将所述步骤②得到的酶解产物灭酶;

④将所述步骤③灭酶后的液料与2-6倍体积的无水乙醇混合,得固体沉淀,将固体沉淀分离出来,冻干,得到短直链淀粉。

优选的,步骤①所述蜡质玉米淀粉溶液的质量浓度为1-30%。

优选的,步骤①所述磷酸氢二钠-柠檬酸缓冲溶液与所述蜡质玉米淀粉溶液混合后,混合液的ph值为4~5。

优选的,步骤④所述冻干的温度为-90~-80℃;时间为36~72h。

本发明提供了上述制备方法制得的纳米复合水凝胶,其特征在于,所述纳米复合水凝胶的纳米颗粒粒径为200~600nm;纳米复合水凝胶的孔径比纯明胶水凝胶降低;储能模量和损耗模量分别增加300-1000pa和10-70pa,硬度增加10-90g,断裂应力增加0.03-0.015mpa。与纯明胶水凝胶相比,添加5%的短直链的明胶纳米复合水凝胶的压缩应力增加2-3倍。

本发明还提供了上述制备方法制得的纳米复合水凝胶在食品、医药或化妆品中的应用。

有益效果:

本发明提供了一种纳米复合水凝胶及其制备方法。所述纳米复合水凝胶是由糊化的短直链淀粉与质量浓度为8%-14%的明胶水溶液混合,冷却后制得。

糊化的短直链淀粉可通过自主装的方式原位形成纳米颗粒,短直链淀粉自组装形成的纳米颗粒,粒径小,分布均匀,能够与明胶基质相互作用,使制得的纳米复合水凝胶在粘弹性、硬度、压缩应力等方面表现出良好的机械性能。而且,本发明提供的制备方法简单高效、绿色环保,可广泛应用于食品、化妆品和医药领域。

本发明选取蜡质玉米淀粉,糊化,酶解,灭酶,用无水乙醇沉淀,冻干后得到短直链淀粉,其制备方法简单,来源丰富,价格低廉,且短直链淀粉具有较好的生物相容性。

附图说明

图1为本发明实施例所述纳米复合水凝胶的制备流程图;

图2为明胶水凝胶和本发明所述纳米复合水凝胶的表面扫描图;其中,a:10%明胶;b:10%明胶+1%短直链;c:10%明胶+3%短直链;d:10%明胶+5%短直链;

图3为明胶水凝胶和本发明所述纳米复合水凝胶的截面扫描图;其中,a:10%明胶;b:10%明胶+1%短直链;c:10%明胶+3%短直链;d:10%明胶+5%短直链;a、b、c、d分别是a、b、c、d的放大图;

图4为明胶和本发明所述短直链淀粉自组装形成的纳米颗粒的透射图和粒径分布图;其中,a:明胶的透射图;b:短直链淀粉自组装形成的纳米颗粒的透射图;c是b的放大图;d是短直链淀粉自组装形成的纳米颗粒的粒径分布图;

图5为本发明所述纳米复合水凝胶的红外光谱图;

图6为本发明所述纳米复合水凝胶的频率扫描图;

图7为本发明所述纳米复合水凝胶的压缩应力应变曲线。

具体实施方式

本发明提供了一种纳米复合水凝胶的制备方法,包括如下步骤:

(1)将短直链淀粉糊化;

(2)将糊化后的短直链淀粉与质量浓度为8%-14%的明胶水溶液混合,冷却,得纳米复合水凝胶。

本发明对短直链淀粉的来源没有特殊限定,常规市售或自行制备均可。若采用自行制备的方式,所述短直链淀粉的制备方法优选包括以下步骤:

①将蜡质玉米淀粉溶液与磷酸氢二钠-柠檬酸缓冲溶液混合,沸水浴糊化,得到糊化产物;

②按照酶用量3~5u/g,将所述糊化产物与普鲁兰酶混合,在50~60℃条件下酶解6-10h;

③将所述步骤②得到的酶解产物灭酶;

④将所述步骤③灭酶后的液料与2-6倍体积的无水乙醇混合,得固体沉淀,将固体沉淀分离出来,冻干,得到短直链淀粉。

在本发明中,步骤①所述蜡质玉米淀粉溶液的质量浓度优选为1-30%,更优选为10%;所述磷酸氢二钠-柠檬酸缓冲溶液的ph为4~5,更优选为4.6;所述磷酸氢二钠-柠檬酸缓冲液与蜡质玉米淀粉溶液的混合比例为8~15:1,优选为10:1。

将得到的混合液进行糊化。本发明中,所述糊化时间优选为20~40min,更优选为30min。在所述糊化条件下,蜡质玉米淀粉可稳定糊化,使淀粉颗粒内的分子向各方向伸展扩散。

将糊化后的产物进行酶解。在本发明中,酶解所用的酶选用普鲁兰酶,酶用量为3~5u/g,优选为4u/g。酶解温度为50~60℃,优选为58摄氏度;酶解时间为6-10h,优选为8h。

对酶解产物进行灭酶,得灭酶后的酶解液。本发明对步骤③所述的灭酶方式没有特殊限定,优选为沸水浴灭酶。沸水浴灭酶的灭酶时间优选为10-20min,更优选为15min。在所述灭酶时间下,即可保证酶的活性丧失,也可避免短直链淀粉结构被破坏。

将灭酶后的酶解液与无水乙醇混合,得固体沉淀。然后将固体沉淀分离出来,冻干,得到短直链淀粉。本发明中,所述无水乙醇的添加量为酶解液体积的4~6倍,优选为5倍。在所述操作下,短直链淀粉可从水中大量析出分离。所述冻干的温度优选为-90~-80℃,更优选为-86℃;冻干的时间优选为36~72h。冻干后短直链中的水分含量为7%,冻干后,得到短直链淀粉。

制得短直链淀粉后,需要对短直链淀粉进行糊化。本发明对短直链淀粉的糊化条件没有特殊限定,只要能够使短直链淀粉糊化,即可满足制备纳米复合水凝胶的要求。优选的,糊化时的温度为150℃,时间为10min。

将糊化后的短直链淀粉与质量浓度为8%-14%的明胶水溶液混合,冷却,得纳米复合水凝胶。

在本发明中,所述明胶水溶液的质量浓度为8%-14%,优选为9-12%,更优选为10%。所述明胶水溶液为短直链淀粉提供自组装环境;同时也为纳米复合水凝胶提供凝胶结构。本发明对所述明胶的来源没有特殊限定,常规市售均可。

得到糊化的短直链淀粉和明胶水溶液后,本发明将所述糊化后的短直链淀粉与质量浓度为8%-14%的明胶水溶液混合。

本发明对混合顺序没有特殊限定。如将糊化的短直链淀粉加入到明胶水溶液中,或将明胶水溶液倒入糊化的短直链淀粉中均可。在本发明中,所述短直链淀粉相对于明胶水溶液的添加量优选为0.01-0.1g/ml,更优选为0.03-0.08g/ml,进一步为0.05g/ml(即5.0%w/v)。所述短直链淀粉可通过自组装形成纳米颗粒以提升纳米复合水凝胶的机械性能。

本发明将所述糊化后的短直链淀粉与质量浓度为8%-14%的明胶水溶液混合。混合后的溶液的温度优选为40-60℃,更优选为45℃。在所述混合温度下,短直链淀粉可在明胶水溶液中逐步发生原位自组装,形成互相连接的纳米颗粒网结构;所述明胶水溶液可处于稳定的完全溶解状态。

所述混合得到混合液后,本发明将所述混合液冷却,得到原位自组装的纳米复合水凝胶。在本发明中,所述冷却温度优选为4-14℃,更优选为10℃。冷却时间为10-24h,优选为12h。冷却的目的在于促进明胶的凝结和短直链淀粉的自组装进行。在所述冷却温度和冷却时间下,得到纳米复合水凝胶。形成的纳米淀粉水凝胶具有较强的粘弹性、硬度和压缩应力。

图2-3说明,纳米复合水凝胶的表面出现200-600nm的球形颗粒,随着短直链添加量的增加,表面球形颗粒的数量增加,表明在冷却过程中,短直链在明胶基质中自组装形成纳米颗粒。从截面图可以看出,纳米复合水凝胶具有多孔的微结构,表明在运维形成过程能维持原有的网络结构,并且随着短直链含量的增加,纳米颗粒的粒径减小,数量增多。

图4说明,复合水凝胶中分离出的纳米颗粒粒径为200-600nm,也存在较小粒径的颗粒,通过粒径分布图也证明了颗粒的大小。这也证明了短直链在明胶基质中自组装形成了纳米颗粒。

图5说明,通过原位形成的纳米复合水凝胶比明胶水凝胶的粘弹性显著增强,当短直链的添加量为5%时,纳米复合水凝胶的储能模量是明胶水凝胶的2倍。表明明胶与短直链纳米颗粒形成稳定的复合基质。

图6说明,随着短直链浓度的增加,纳米复合水凝胶的压缩应力逐渐增大,当添加量为5%时,纳米复合水凝胶的压缩应力是明胶水凝胶的3倍。表明在明胶中形成的短直链纳米颗粒复合水凝胶具有较强机械性能。

图7说明,随着短直链浓度的增加,明胶中的酰胺a键向低频率移动,表明明胶中的短直链纳米颗粒与明胶分子之间存在氢键相互作用。

本发明提供了上述制备方法制得的纳米复合水凝胶。所述纳米复合水凝胶的纳米颗粒粒径为200~600nm;所述纳米复合水凝胶产生60%应变时对应的压强为0.014~0.025mpa;纳米复合水凝胶的孔径比纯明胶水凝胶降低;储能模量和损耗模量分别增加300-1000pa和10-70pa,硬度增加10-90g,断裂应力增加0.03-0.015mpa。与纯明胶水凝胶相比,添加5%的短直链的明胶纳米复合水凝胶的压缩应力增加2-3倍。

所述纳米复合水凝胶在粘弹性、硬度、压缩应力等方面表现出良好的机械性能,详见表1:

表1:纳米复合水凝胶的质构特性

注:表中的数字是平均值±标准差(n=3),同一列中的字母表示显著性差异(p<0.05)。

表1说明,短直链纳米复合水凝胶相比较明胶水凝胶,随着短直链浓度的增加,其硬度显著增加,当添加量为5%时,纳米复合水凝胶是明胶水凝胶的2倍,并且黏性和咀嚼性也显著增加。

本发明还提供了上述制备方法制得的纳米复合水凝胶在食品、医药或化妆品中的应用:以上述制备方法制得的纳米复合水凝胶为载体,配合其他营养成分、药用活性成分或化妆品成分,制得终端产品。所述纳米复合水凝胶在应用时的用量优选为短直链的添加量为5%,明胶的浓度为10%。

下面结合实施例对本发明提供的纳米复合水凝胶及其制备方法和应用进行详细说明,但是不能把它们理解为对本发明保护范围的限定。

实施例1:

(1)短直链淀粉的制备方法,包括如下步骤:

①称取6g蜡质玉米淀粉,加入100ml磷酸氢二钠-柠檬酸缓冲溶液蒸馏水,配制6%浓度的淀粉溶液;

②用磷酸氢二钠-柠檬酸缓冲液调节淀粉溶液ph为4.6后,于沸水浴条件下水浴加热30min;

③加入普鲁兰酶,在58℃恒温水浴条件下反应8h;

④沸水浴灭酶15min;

⑤加入4倍体积的无水乙醇,用离心机离心去除上清液,得固体沉淀;然后水洗2-3次,冷干机冷冻干燥,冷冻干燥的条件参数为:温度-86℃,压强20pa,时间48h;冷冻干燥后得到短直链淀粉。

(2)纳米复合水凝胶的制备方法,包括如下步骤:

a、配置质量浓度为10%的明胶水溶液,备用;

b、在100℃条件下,将短直链淀粉完全糊化,降温至45℃,备用;

c、在45℃条件下,将糊化状态的短直链淀粉与明胶水溶液混合;所述短直链淀粉相对于明胶水溶液的添加量为0.05g/ml;

d、在10℃条件下冷却12h,制得原位自组装的明胶-短直链纳米颗粒复合水凝胶。

实施例2:

(1)短直链淀粉的制备方法,包括如下步骤:

①称取6g蜡质玉米淀粉,加入100ml磷酸氢二钠-柠檬酸缓冲溶液蒸馏水,配制6%浓度的淀粉溶液;

②用磷酸氢二钠-柠檬酸缓冲液调节淀粉溶液ph为4.6后,于沸水浴条件下水浴加热30min;

③加入普鲁兰酶,在58℃恒温水浴条件下反应8h;

④沸水浴灭酶15min;

⑤加入4倍体积的无水乙醇,用离心机离心去除上清液,得固体沉淀;然后水洗2-3次,冷干机冷冻干燥,冷冻干燥的条件参数为:温度-86℃,压强20pa,时间48h;冷冻干燥后得到短直链淀粉。

(2)纳米复合水凝胶的制备方法,包括如下步骤:

a、配置质量浓度为10%的明胶水溶液,备用;

b、在100℃条件下,将短直链淀粉完全糊化,降温至45℃,备用;

c、在45℃条件下,将糊化状态的短直链淀粉与明胶水溶液混合,短直链的添加量相对于明胶水溶液为0.01g/ml;

d、在10℃条件下冷却12h,制得原位自组装的明胶-短直链纳米颗粒复合水凝胶。

实施例3:

(1)短直链淀粉的制备方法,包括如下步骤:

①称取6g蜡质玉米淀粉,加入100ml磷酸氢二钠-柠檬酸缓冲溶液蒸馏水,配制6%浓度的淀粉溶液;

②用磷酸氢二钠-柠檬酸缓冲液调节淀粉溶液ph为4.6后,于沸水浴条件下水浴加热30min;

③加入普鲁兰酶,在58℃恒温水浴条件下反应8h;

④沸水浴灭酶15min;

⑤加入4倍体积的无水乙醇,用离心机离心去除上清液,得固体沉淀;然后水洗2-3次,冷干机冷冻干燥,冷冻干燥的条件参数为:温度-86℃,压强20pa,时间48h;冷冻干燥后得到短直链淀粉。

(2)纳米复合水凝胶的制备方法,包括如下步骤:

a、配置质量浓度为10%的明胶水溶液,备用;

b、在100℃条件下,将短直链淀粉完全糊化,降温至45℃,备用;

c、在45℃条件下,将糊化状态的短直链淀粉与明胶水溶液混合,短直链的添加量相对于明胶水溶液为0.03g/ml;

d、在10℃条件下冷却12h,制得原位自组装的明胶-短直链纳米颗粒复合水凝胶。

实施例4:

(1)短直链淀粉的制备方法,包括如下步骤:

①称取20g蜡质玉米淀粉,加入100ml磷酸氢二钠-柠檬酸缓冲溶液蒸馏水,配制20%浓度的淀粉溶液;

②用磷酸氢二钠-柠檬酸缓冲液调节淀粉溶液ph为4.6后,于沸水浴条件下水浴加热40min;

③加入普鲁兰酶,在59℃恒温水浴条件下反应8h;

④沸水浴灭酶20min;

⑤加入4倍体积的无水乙醇,用离心机离心去除上清液,得固体沉淀;然后水洗2-3次,冷干机冷冻干燥,冷冻干燥的条件参数为:温度-86℃,压强20pa,时间48h;冷冻干燥后得到短直链淀粉,

(2)纳米复合水凝胶的制备方法,包括如下步骤:

a、配置质量浓度为10%的明胶水溶液,备用;

b、在100℃条件下,将短直链淀粉完全糊化,降温至45℃,备用;

c、在45℃条件下,将糊化状态的短直链淀粉与明胶水溶液混合,短直链的添加量相对于明胶水溶液为0.1g/ml;

d、在10℃条件下冷却12h,制得原位自组装的明胶-短直链纳米颗粒复合水凝胶。

实施例5:

(1)短直链淀粉的制备方法,包括如下步骤:

①称取15g蜡质玉米淀粉,加入100ml磷酸氢二钠-柠檬酸缓冲溶液蒸馏水,配制15%浓度的淀粉溶液;

②用磷酸氢二钠-柠檬酸缓冲液调节淀粉溶液ph为4.6后,于沸水浴条件下水浴加热25min;

③加入普鲁兰酶,在58℃恒温水浴条件下反应7h;

④沸水浴灭酶18min;

⑤加入6倍体积的无水乙醇,用离心机离心去除上清液,得固体沉淀;然后水洗2-3次,冷干机冷冻干燥,冷冻干燥的条件参数为:温度-80℃,压强300pa,时间50h;冷冻干燥后得到短直链淀粉。

(2)纳米复合水凝胶的制备方法,包括如下步骤:

a、配置质量浓度为8%的明胶水溶液,备用;

b、在80℃条件下,将短直链淀粉完全糊化,降温至40℃,备用;

c、在40℃条件下,将糊化状态的短直链淀粉与明胶水溶液混合,短直链的添加量相对于明胶水溶液为0.05g/ml;

d、在4℃条件下冷却12h,制得原位自组装的明胶-短直链纳米颗粒复合水凝胶。

实施例6:

(1)短直链淀粉的制备方法,包括如下步骤:

①称取10g蜡质玉米淀粉,加入100ml磷酸氢二钠-柠檬酸缓冲溶液蒸馏水,配制10%浓度的淀粉溶液;

②用磷酸氢二钠-柠檬酸缓冲液调节淀粉溶液ph为4.6后,于沸水浴条件下水浴加热35min;

③加入普鲁兰酶,在59℃恒温水浴条件下反应9h;

④沸水浴灭酶20min;

⑤加入5倍体积的无水乙醇,用离心机离心去除上清液,得固体沉淀;然后水洗2-3次,冷干机冷冻干燥,冷冻干燥的条件参数为:温度-90℃,压强15pa,时间40h;冷冻干燥后得到短直链淀粉,

(2)纳米复合水凝胶的制备方法,包括如下步骤:

a、配置质量浓度为14%的明胶水溶液,备用;

b、在100℃条件下,将短直链淀粉完全糊化,降温至60℃,备用;

c、在60℃条件下,将糊化状态的短直链淀粉与明胶水溶液混合,短直链的添加量相对于明胶水溶液为0.05g/ml;

d、在14℃条件下冷却24h,制得原位自组装的明胶-短直链纳米颗粒复合水凝胶。

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1