一种双药骨架聚合物及其制备方法和应用与流程

文档序号:22916183发布日期:2020-11-13 15:57阅读:555来源:国知局
一种双药骨架聚合物及其制备方法和应用与流程

本发明涉及一种双药骨架聚合物及其制备方法和应用。



背景技术:

化疗是化学药物治疗的简称,是利用化学药物阻止癌细胞的增殖、浸润、转移,直至最终杀灭癌细胞的一种治疗方式,其与手术和放疗一起并称为癌症的3大治疗手段。然而,由于肿瘤的多药耐药,以及药物本身的毒副作用强,使用单一化疗药进行治疗会存在相当大的局限性。联合化疗是提高治疗效果、克服多药耐药的常用手段。研究发现,将具有不同作用机理的药物联合使用可以产生协同作用,进而可以提高靶标选择性并阻止肿瘤耐药性的发生,而使用具有不重叠毒性的药物进行联合化疗也可以提升最大耐受剂量,以获得所需的最大治疗效果。

药物的给药比是影响联合化疗协同效果的重要因素。然而,目前的多药载体很少能在复杂的体循环中维持恒定的药物比,这是由于不同药物的亲疏水性不同,在包载、给药、体循环、直至到达靶点的过程中具有不同的药物代谢动力学特征,最终会导致作用于靶点的药物比难以掌控,成为了联合化疗发展的一大限制因素。

因此,有必要开发一种能实现精确释药比的双药骨架聚合物。



技术实现要素:

本发明的目的在于提供一种双药骨架聚合物及其制备方法和应用。

本发明所采取的技术方案是:

一种双药骨架聚合物,结构式为:

其中,m为8~12的自然数,n为40~50的自然数,x取0.33~0.45。

上述双药骨架聚合物的制备方法,包括以下步骤:

1)进行米托蒽醌和二碳酸二叔丁酯的反应,得到叔丁氧羰基保护的米托蒽醌;

2)进行2,2'-二硫二乙醇和三光气的反应,得到

3)进行叔丁氧羰基保护的米托蒽醌、和姜黄素的聚合反应,得到缩聚产物;

4)将甲氧基聚乙二醇接枝到缩聚产物上,得到接枝产物;

5)将接枝产物分子链上的氨基保护基团叔丁氧羰基去除掉,得到双药骨架聚合物。

优选的,上述双药骨架聚合物的制备方法,包括以下步骤:

1)将米托蒽醌和三乙胺分散在甲醇中,再加入二碳酸二叔丁酯的四氢呋喃溶液,进行反应,再对产物进行分离纯化,得到叔丁氧羰基保护的米托蒽醌;

2)将2,2'-二硫二乙醇和4-二甲氨基吡啶分散在二氯甲烷中,再加入三光气的二氯甲烷溶液,进行反应,得到

3)将叔丁氧羰基保护的米托蒽醌和姜黄素分散在二氯甲烷中,再加入到步骤2)含的反应液中,进行聚合反应,再对产物进行分离纯化,得到缩聚产物;

4)将缩聚产物、二环己基碳二亚胺和4-二甲氨基吡啶分散在二氯甲烷中,再加入甲氧基聚乙二醇的二氯甲烷溶液,进行接枝反应,得到接枝产物;

5)将三氟乙酸加入到步骤4)的反应液中,进行反应,再对产物进行分离纯化,得到双药骨架聚合物。

优选的,步骤1)所述米托蒽醌、二碳酸二叔丁酯的质量比为1:(1.8~2.2)。

优选的,步骤1)所述反应的时间为10~16h。

优选的,步骤1)所述分离纯化的具体操作为:旋转蒸发去除甲醇,再用乙酸乙酯重新溶解旋转蒸发得到的固体并转入分液漏斗,用饱和碳酸钾溶液洗涤有机相,再用硅胶色谱法进行纯化。

优选的,步骤2)所述2,2'-二硫二乙醇、三光气的摩尔比为1:(0.33~0.50)。

优选的,步骤2)所述反应的时间为0.5~2h。

优选的,步骤3)所述叔丁氧羰基保护的米托蒽醌、姜黄素、的摩尔比为1:(1.3~1.4):(2.5~2.7)。

优选的,步骤3)所述聚合反应的时间为48~72h。

优选的,步骤3)所述分离纯化的具体操作为:先对反应液进行浓缩,再边搅拌边加入冰乙醚,静置沉淀,离心,用甲醇洗涤离心得到的沉淀,再用四氢呋喃溶解沉淀,过滤,将滤液通入凝胶柱,收集前段组分进行真空干燥。

优选的,步骤4)所述缩聚产物、甲氧基聚乙二醇的质量比为1:(0.4~0.6)。

优选的,步骤4)所述甲氧基聚乙二醇的数均分子量1800~2200g/mol。

优选的,步骤4)所述接枝反应的时间为24~48h。

优选的,步骤5)所述反应的时间为15~30min。

优选的,步骤5)所述分离纯化的具体操作为:加入过量三乙胺中和三氟乙酸,再真空干燥除二氯甲烷和过量的三乙胺,再用二甲亚砜溶解真空干燥得到的固体,再转入3.5kda透析袋用水透析40~60h除盐和未反应的甲氧基聚乙二醇。

本发明的有益效果是:本发明的双药骨架聚合物可以在水相中自组装形成纳米胶束并用作双药运输载体,可以对肿瘤组织的还原性微环境实现特异性响应释药,且能够以稳定、精确的比例释放两种药物。

附图说明

图1为本发明的双药骨架聚合物的合成路线图。

图2为实施例中的peg-p(2bocmto-ss-3cur)的核磁共振氢谱图。

图3为对比例1中的peg-p(bocmto-ss)的核磁共振氢谱图。

图4为对比例2中的peg-p(cur-ss)的核磁共振氢谱图。

图5为实施例中的peg-p(2mto-ss-3cur)的紫外吸收光谱图。

图6为反应前peg-p(2mto-ss-3cur)的分子量分布图。

图7为反应后peg-p(2mto-ss-3cur)的分子量分布图。

图8为sdnp、ssnp/mto和ssnp/cur的粒径及稳定性测试结果图。

图9为sdnp的还原响应荧光恢复性质测试结果图。

图10为sdnp和enp的体外释放效果测试结果图。

图11为游离药物协同作用验证结果图。

图12为sdnp的双药协同作用验证结果图。

图13为胞内药物释放测试结果图。

图14为sdnp在胞内的药物释放与荧光恢复测试结果图。

图15为sdnp降低p-pg蛋白的表达水平测试结果图。

图16为sdnp的体内分布荧光成像图。

具体实施方式

下面结合具体实施例对本发明作进一步的解释和说明。

实施例:

一种双药骨架聚合物,其制备方法包括以下步骤(合成路线如图1所示):

1)将0.5g的米托蒽醌(mto)和5ml的三乙胺分散在100ml的甲醇中,再将1.0g的二碳酸二叔丁酯分散在10ml的四氢呋喃后滴加进反应体系,滴加完后25℃反应16h,旋转蒸发去除甲醇,用200ml的乙酸乙酯重新溶解旋转蒸发得到的固体并转入分液漏斗,再用饱和碳酸钾溶液洗涤有机相3次,再用硅胶色谱法纯化(流动相由正己烷、乙酸乙酯和甲醇按照体积比10:5:1组成)后真空干燥,得到叔丁氧羰基保护的米托蒽醌((boc)2-mto);

2)将100mg(0.65mmol)的2,2'-二硫二乙醇和282mg(2.3mmol)的4-二甲氨基吡啶分散在10ml的无水二氯甲烷中,冰浴、氮气保护下滴加2ml的三光气的二氯甲烷溶液(含69mg(0.23mmol)的三光气),加完后搅拌反应2h,得到

3)将168mg(0.26mmol)的叔丁氧羰基保护的米托蒽醌和130mg(0.35mmol)的姜黄素(cur)分散在5ml的无水二氯甲烷中,氮气保护下将得到的溶液滴加到步骤2)的反应液中,滴加完后反应48h,浓缩反应液至5ml,再边搅拌边滴加100ml的冰乙醚,加完后静置沉淀2h,离心,用40ml的甲醇洗涤离心得到的沉淀,再用10ml的四氢呋喃溶解沉淀,过滤,将滤液通入凝胶柱,收集前段组分进行真空干燥,得到缩聚产物(p(2bocmto-ss-3cur));

4)将100mg的缩聚产物、50mg的二环己基碳二亚胺和5mg的4-二甲氨基吡啶分散在15ml的无水二氯甲烷中,再滴加5ml的甲氧基聚乙二醇的二氯甲烷溶液(含50mg的peg2k-cooh),滴加完后反应24h,得到接枝产物(peg-p(2bocmto-ss-3cur));

5)将0.5ml的三氟乙酸加入到步骤4)的反应液中,搅拌反应0.5h,再加入2ml的三乙胺中和三氟乙酸,再真空干燥除二氯甲烷和过量的三乙胺,再用二甲亚砜溶解真空干燥得到的固体,再转入3.5kda透析袋用水透析48h除盐和未反应的甲氧基聚乙二醇,得到双药骨架聚合物(peg-p(2mto-ss-3cur))。

对比例1:

一种单药骨架聚合物,其制备方法包括以下步骤:

1)将0.5g的米托蒽醌和5ml的三乙胺分散在100ml的甲醇中,再将1.0g的二碳酸二叔丁酯分散在10ml的四氢呋喃后滴加进反应体系,滴加完后35℃反应10h,旋转蒸发去除甲醇,用200ml的乙酸乙酯重新溶解旋转蒸发得到的固体并转入分液漏斗,再用饱和碳酸钾溶液洗涤有机相3次,再用硅胶色谱法纯化(流动相由正己烷、乙酸乙酯和甲醇按照体积比10:5:1组成)后真空干燥,得到叔丁氧羰基保护的米托蒽醌((boc)2-mto);

2)将100mg(0.65mmol)的2,2'-二硫二乙醇和282mg(2.3mmol)的4-二甲氨基吡啶分散在10ml的无水二氯甲烷中,冰浴、氮气保护下滴加2ml的三光气的二氯甲烷溶液(含69mg(0.23mmol)的三光气),滴加完后搅拌反应2h,得到

3)将419mg(0.65mmol)的叔丁氧羰基保护的米托蒽醌分散在5ml的无水二氯甲烷中,氮气保护下将得到的溶液滴加到步骤2)的反应液中,滴加完后反应48h,浓缩反应液至5ml,边搅拌边滴加100ml的冰乙醚,加完后静置沉淀2h,离心,用40ml的甲醇洗涤离心得到的沉淀,再用10ml的四氢呋喃溶解沉淀,过滤,将滤液通入凝胶柱,收集前段组分进行真空干燥,得到缩聚产物(p(boc-mto-ss));

4)将100mg的缩聚产物、50mg的二环己基碳二亚胺和5mg的4-二甲氨基吡啶分散在15ml的无水二氯甲烷中,再滴加10ml的甲氧基聚乙二醇的二氯甲烷溶液(含50mg的peg2k-cooh),滴加完后反应24h,得到接枝产物(peg-p(bocmto-ss));

5)将0.5ml的三氟乙酸加入到步骤4)的反应液中,搅拌反应0.5h,再加入2ml的三乙胺中和三氟乙酸,再真空干燥除二氯甲烷和过量的三乙胺,再用二甲亚砜溶解真空干燥得到的固体,再转入3.5kda透析袋用水透析48h除盐和未反应的甲氧基聚乙二醇,得到单药骨架聚合物(peg-p(mto-ss))。

对比例2:

一种单药骨架聚合物,其制备方法包括以下步骤:

1)将100mg(0.65mmol)的2,2'-二硫二乙醇和282mg(2.3mmol)的4-二甲氨基吡啶分散在10ml的无水二氯甲烷中,冰浴、氮气保护下滴加2ml的三光气的二氯甲烷溶液(含69mg(0.23mmol)的三光气),加完后搅拌反应2h,得到

2)将240mg(0.65mmol)的姜黄素分散在5ml的无水二氯甲烷中,氮气保护下将得到的溶液滴加到步骤1)的反应液中,滴加完后反应48h,浓缩反应液至5ml,边搅拌边滴加100ml的冰乙醚,滴加完后静置沉淀2h,离心,用40ml的甲醇洗涤离心得到的沉淀,再用10ml的四氢呋喃溶解沉淀,过滤,将滤液通入凝胶柱,收集前段组分进行真空干燥,得到缩聚产物(p(cur-ss));

3)将100mg的缩聚产物、50mg的二环己基碳二亚胺和5mg的4-二甲氨基吡啶分散在15ml的无水二氯甲烷中,再滴加15ml的甲氧基聚乙二醇的二氯甲烷溶液(含50mg的peg2k-cooh),滴加完后反应24h,得到接枝产物,再转入3.5kda透析袋用水透析48h除盐和未反应的甲氧基聚乙二醇,得到双药骨架聚合物(peg-p(cur-ss))。

性能测试:

1)双药骨架聚合物的表征:

1、实施例中的peg-p(2bocmto-ss-3cur)的核磁共振氢谱图(1hnmr)如图2所示,对比例1中的peg-p(bocmto-ss)的核磁共振氢谱图如图3所示,对比例2中的peg-p(cur-ss)的核磁共振氢谱图如图4所示。

由图2~4可知:peg亚甲基特征峰出现在3.6ppm、cur甲氧基特征峰出现在3.8~4.0ppm、bocmto的叔丁基特征峰出现在1.5~1.6ppm,通过三者积分面积的比例可以直接得出对应聚合物前药的载药量(w/w):

peg-p(2bocmto-ss-3cur):bocmto=68.6%、cur=33.4%;

peg-p(bocmto-ss):bocmto=21.9%;

peg-p(cur-ss):cur=35.5%。

peg-p(2bocmto-ss-3cur)、peg-p(bocmto-ss)经过脱boc保护基团后,载药量可根据计算得到:

peg-p(2mto-ss-3cur):mto=31.8%、cur=38.8%;

peg-p(mto-ss):mto=16.2%。

注:

先根据peg-p(2bocmto-ss-3cur)、peg-p(bocmto-ss)的peg亚甲基、boc叔丁基甲基、cur甲氧基(以上特征峰明显)的核磁积分比例,确认分子组成,根据分子组成可以直接得出bocmto、cur的载药量;脱boc保护基团后,因为聚合物结构复杂,加上mto没有明显特征峰,直接的核磁图谱难以确认分子组成和载药量,所以需要根据上面的数据计算得到mto、cur的载药量。

2、实施例中的peg-p(2mto-ss-3cur)的紫外吸收光谱图如图5所示(配制浓度0.1mg/ml的peg-p(2mto-ss-3cur)的dmso溶液进行测试)。

由图5可知:350~450nm和600~700nm处有特征吸收峰,表明peg-p(2mto-ss-3cur)中含有cur和mto两种药物。

3、配制浓度5mg/ml的peg-p(2mto-ss-3cur)的dmf溶液,加入二硫苏糖醇(dtt)至20mm,室温反应8h,gpc表征反应前后的peg-p(2mto-ss-3cur)的dmf溶液的分子量分布(聚甲氧基丙烯酰胺作为标准对照),反应前的分子量分布如图6所示,反应后的分子量分布如图7所示。

由图6和图7可知:反应前聚合物分子量估计为8500g/mol,反应后主峰后移至38min,为peg2k的特征峰位置,说明peg-p(2mto-ss-3cur)具有还原响应降解的性质。

载药纳米颗粒的制备:

将20mg的peg-p(2mto-ss-3cur)分散在1ml的二甲基亚砜中,再边搅拌边滴加10ml的超纯水,滴加完后继续搅拌2h,将得到的颗粒溶液转移到透析袋(mwco3500)中,在超纯水中透析24h除去二甲基亚砜,再用0.22μm的过滤器过滤除去大颗粒,得到的纳米颗粒标记为sdnp。参照上述操作,将peg-p(2mto-ss-3cur)替换成peg-p(mto-ss),得到的纳米颗粒标记为ssnp/mto,将peg-p(2mto-ss-3cur)替换成peg-p(cur-ss),得到的纳米颗粒标记为ssnp/cur。

载药对照颗粒的制备:

将40mg的peg-plga、2mg的cur和1.8mg的mto分散在2ml的二甲基亚砜中,再边搅拌边滴加10ml的超纯水,滴加完后继续搅拌2h,将得到的颗粒溶液转移到透析袋(mwco3500)中,在超纯水中透析24h除去二甲基亚砜,再用0.22μm的过滤器过滤除去未被包埋的cur与mto,得到的纳米颗粒标记为enp。

利用高效液相色谱(hplc)检测enp颗粒溶液中cur与mto的浓度及比例。hplc分析用watershplc系统进行,包括waters1525泵、waters2487紫外检测器、1500色谱柱加热器与相应的c18反相色谱分离柱。hplc流动相选择乙腈/5%乙酸水溶液(75/25,v/v)混合溶剂,检测时,柱温和检测器的温度为35℃,流速为1ml/min,紫外检测器设定吸收波长为420nm与660nm。

2)药物骨架纳米颗粒的特性:

1、颗粒稳定性:采用动态光散射仪(dls)检测药物骨架纳米颗粒sdnp、ssnp/mto和ssnp/cur的颗粒粒径,并将三种纳米颗粒放入含10%胎牛血清的1×pbs(ph=7.4)溶液中放置7d,测试三种纳米颗粒的粒径变化,测试结果如图8所示。

由图8可知:sdnp、ssnp/mto和ssnp/cur的粒径150nm左右,且具有较好的稳定性,在含10%胎牛血清的1×pbs(ph=7.4)溶液中放置7d三种纳米颗粒粒径均无明显变化。原因在于:peg能够为颗粒提供一个惰性的表面,从而提高颗粒的稳定性。

2、双药骨架颗粒还原响应荧光恢复性质:双药骨架纳米颗粒sdnp由于存在fret效应,在颗粒状态时用420nm激发光照照射,mto会吸收cur的发射光,从而导致cur的荧光掩蔽,当颗粒还原响应降解后,mto与cur分开,fret减弱从而cur荧光恢复。

为验证sdnp的fret荧光掩蔽及还原响应荧光恢复性质进行下列实验步骤:

制备sdnp、ssnp/cur的颗粒溶液,并将cur药物浓度调至相同的10μg/ml后,以420nm激发光测定荧光光谱;双药颗粒sdnp加入还原型谷胱甘肽(gsh)至10mm浓度后,每隔一定时间以相同参数测荧光光谱,测试结果如图9所示。

由图9可知:双药颗粒sdnp具有明显的荧光掩蔽现象,还原响应降解后cur荧光恢复。

3、体外药物释放实验:为验证sdnp能在体外还原响应释放两种药物,并且相对于包埋法载药颗粒(enp),能保持精确且恒定的预设比例(mto:cur=2:3),进行如下实验:

由纳米沉淀法制备sdnp、enp的颗粒溶液,将药物浓度调至相同[(mto+cur)=200μg/ml],取1ml颗粒溶液装入透析袋(mwco3500),将透析袋装入50ml离心管,再在离心管中加入25ml含有gsh(0、1、10mm)、吐温-100(0.05%,v/v)的pbs溶液作为透析外液,置于37℃恒温震荡水槽,每隔特定时间取样0.5ml透析外液于ep管,并补充相同体积新鲜的透析外液,所取样液冷冻干燥,加入0.2ml的dmso超声溶解冻干样品,离心5min,取上清液0.1ml于96孔板,多功能微孔检测仪检测420nm、660nm吸光度,并通过外标法绘制标准曲线,计算药物释放含量、对应时间的累积释放率及药物释放比例,每组实验设置3个平行,测试结果如图10所示。

由图10可知:sdnp能响应gsh提供的还原环境释放两种药物,gsh浓度越高响应程度越大,当gsh浓度为10mm,释放时间60h时,药物累积释放率在80%以上;sdnp两种药物的累积释放速率基本同步,从而保持稳定且精确的预设比例(mto:cur=2:3),而包埋法载药对照组(enp),则表现mto的累积释放速率明显大于cur,这是由于,enp是由非共价的疏水作用力结合药物的,而cur具有较强的疏水性,导致cur与胶束疏水核结合较为紧密,更难释放到水环境,最终使得两种药的累积释放速率不同步,释药比例与载药比例不一致。

3)细胞实验:

1、游离药物协同作用验证:为验证游离药物mto与cur具有协同作用,且存在最佳的协同作用比例,进行了细胞毒性检测实验,具体操作如下:

a)细胞铺板:96孔板每孔接种5000细胞数量,37℃、5%的co2条件下,用含10%胎牛血清(fbs)的dmem培养基培养24h;

b)加药:配制cur、mto的dmso母液(10mm),将药物母液混合成不同比例(mto:cur=0:10、1:9、2:8、3:7、4:6、5:5、6:4、7:3、8:2、9:1、10:0),用无血清的dmem培养基稀释药物混合母液至1mm后,继续用无血清的dmem培养基对半稀释至一系列浓度,将96孔板的原培养基替换为含药物的培养基,37℃、5%的co2条件下,药物孵育48h或72h;每组设4个复孔,并设置不加药组作为空白对照;

c)mtt检测:将噻唑蓝(mtt)试剂溶解在pbs中至浓度0.5mg/ml,将96孔板中含药培养基替换为含mtt的pbs溶液,37℃、5%的co2条件下,孵育4h,吸去含mtt试剂的pbs,每孔加入0.1ml的dmso溶解甲臜结晶,震荡30min,微孔检测仪检测570nm吸收值;

d)计算:实验组与不加药对照组的吸收值比值为实验组的细胞活性,根据细胞活性计算不同药物比例,在各个药效水平(del)下的协同系数(ci),测试结果如图11所示。

协同系数(ci)的计算公式:

d1为药物1在和药物2联用条件下的浓度;

d2为药物2在和药物1联用条件下的浓度;

dm1为药物1单独使用条件下,达到相同药效水平时,需要的浓度;

dm1为药物2单独使用条件下,达到相同药效水平时,需要的浓度;

由图11可知:当mto:cur=2:3时,协同系数(ci)最小,即具有最大的协同作用,故选用该比例作为合成实验组聚合物前药的投料比。

2、sdnp的双药协同作用验证:为验证sdnp具有双药协同作用,以ssnp作为对照组进行mtt细胞毒性实验,具体操作如下:

a)细胞铺板:96孔板每孔接种5000细胞数量,37℃、5%的co2条件下,用含10%fbs的dmem培养基培养24h;

b)加药:用无血清的dmem培养基稀释颗粒溶液sdnp、ssnp/cur、ssnp/mto至药物浓度(mto+cur)为1mm后,继续用无血清的dmem培养基对半稀释至一系列浓度,将96孔板的原培养基替换为含药物的培养基,37℃、5%的co2条件下,药物孵育48h或72h;每组设4个复孔,并设置不加药组作为空白对照;

3c)mtt检测:将mtt试剂溶解在pbs中至浓度0.5mg/ml,将96孔板中含药培养基替换为含mtt的pbs溶液,37℃、5%的co2条件下,孵育4h,吸走含mtt试剂的pbs,每孔加入0.1ml的dmso溶解甲臜结晶,震荡30min,微孔检测仪检测570nm吸收值;

d)计算:实验组与不加药对照组的吸收值比值为实验组的细胞活性,根据细胞活性计算不同药物比例的协同系数(ci),测试结果如图12所示。

由图12可知:sdnp的ci值在不同药效水平都小于1,所以sdnp具有双药协同作用。

3、胞内药物释放:为验证sdnp在细胞水平也能保持精确且稳定的药物释放比,以enp作为对照进行实验,具体操作如下:

a)细胞铺板:24孔板每孔接种5×104细胞数量,37℃、5%的co2条件下,用含10%fbs的dmem培养基培养24h;

b)加药:用无血清的dmem培养基稀释颗粒溶液sdnp、enp至药物浓度(mto+cur)为10μm后,将24孔板的原培养基替换为含药物的培养基,37℃、5%的co2条件下,药物孵育特定时间(4、8、12、24h);

c)胞内药物提取:消化收集细胞于1.5mlep管,离心重悬法pbs洗涤两遍后,加入含0.1%吐温-100的纯水0.5ml作为裂解液,超声裂解30min,离心2h分离未降解的纳米颗粒,取上清0.4ml于新的ep管;

d)hplc检测游离药物含量:hplc分析用watershplc系统进行,包括waters1525泵、waters2487紫外检测器、1500色谱柱加热器与相应的c18反相色谱分离柱。hplc流动相选择乙腈/5%乙酸水溶液(75/25,v/v)混合溶剂,检测时柱温和检测器的温度为35℃,流速为1.0ml/min,紫外检测器设定吸收波长为420nm与660nm。

由图13可知:相比enp对照组,sdnp在细胞水平也能保持精确且稳定的药物释放比。

4、sdnp在胞内的药物释放与荧光恢复:为了研究sdnp对肿瘤细胞内的还原微环境的响应,采用共聚焦激光扫描显微镜(clsm)和流式细胞仪(facs)对mcf-7/mdr细胞内药物的释放进行了研究,测试结果如图14所示。

由图14可知:将sdnp与mcf-7/mdr细胞共孵育2h后,由于颗粒双药骨架的降解,mto与cur分子距离增大,fret效应丧失,cur的荧光逐渐增强。

结果表明,mcf-7/mdr细胞成功地将sdnp摄取,并在胞内还原环境下释放药物。

5、免疫荧光标记观察sdnp降低p-pg蛋白的表达水平:进一步研究sdnp中的cur成分能否下调mcf-7/mdr细胞p糖蛋白(p-gp)的表达。用ssnpcur、ssnpmto和sdnp孵育mcf-7/mdr肿瘤细胞24h后,免疫荧光标记细胞膜上表达的p-gp,共聚焦显微镜观察,测试结果如图15所示。

由图15可知:与pbs或snpmto相比,与sdnp和ssnpcur孵育的mcf-7/mdr细胞中免疫荧光(绿色)相对弱,说明p-gp的表达水平显著降低,即说明sdnp能在细胞内释放cur,下调p-gp的表达,从而有助于mto克服多药耐药。

4)动物实验:

sdnp的体内分布荧光成像:准备四只植有mcf-7/mdr肿瘤的裸鼠,将sdnp通过尾静脉注射进三只小鼠体内(注射量:25mg/kg),剩余一只小鼠注射相同体积的pbs溶液作为空白对照,实验组于注射药物后的0.5、1、2、4、6、8、12、24、48h,使用in-vivoxtremespectrum成像系统拍照荧光分布图(激发光670nm,发射光750nm),测试结果如图16所示。

由图16可知:图中a表明sdnp经静脉注射4h后开始于肿瘤组织聚集,且注射48h后仍保持较高的富集状态;图中b是三只平行试验的小鼠,注射药物48h后的药物体内荧光分布图,表明图a的结果具有重复性;图中c表明小鼠在肿瘤组织处显示出较强的荧光强度;图中d是各个器官的荧光定量数据图,从定量数据表明,肿瘤的药物富集程度大于各个器官。由此可见,sdnp可通过epr效应在肿瘤部位有效积聚,有利于提高疗效。

上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1