一种石墨烯-无序碳夹层结构的聚合物基介电复合材料的制作方法

文档序号:23052527发布日期:2020-11-25 17:28阅读:193来源:国知局
一种石墨烯-无序碳夹层结构的聚合物基介电复合材料的制作方法

本发明属于介电电容器技术领域,具体涉及一种基于石墨烯-无序碳三明治式夹层结构的聚偏氟乙烯基复合介电薄片的制备方法。



背景技术:

自导电聚合物被发现以来,聚合物材料在电工电子行业的应用越来越广泛,例如环氧树脂、聚酰亚胺(pi)、聚苯胺(pani)、聚吡咯(ppy)等。纯聚合物的介电性质来源于聚合单体的极性基团,从而纯聚合物介电常数仅有2-8,难以满足更高标准的电容储能要求。目前主要通过在聚合物基体中引入微、纳级的填料提升整体介电储能性能,一般可引入高介电常数的陶瓷相或者高电导率的金属相。然而引入陶瓷相面临着填充量大(30vol%-50vol%)的问题,大大降低材料的机械强度和机械韧性,限制了其大规模应用。

近几年,石墨烯、碳纳米管等纳米碳材料由于良好的电导特性,在电介质材料的研究崭露头角,以其为填充质的导电聚合物基复合材料越来越受到关注。同时,以聚偏氟乙烯为基体的无机-有机复合介电材料,因其柔韧性和抗拉强度优异、绝缘电阻和抗击穿强度高、频率和温度特性好,满足了微电子行业对于柔性介电材料的需求,备受科研人员和工程人员的青睐。然而,石墨烯因其较大的表面能极易在聚合物基体中发生团聚,严重影响了石墨烯/聚偏氟乙烯复合材料的介电性能。此外,石墨烯与聚偏氟乙烯的相容性差,随着石墨烯掺杂量的增加,团聚在聚合物基体中的石墨烯会构成导电网络,进而明显增加复合材料的介电损耗。因此,如何避免石墨烯的团聚及其与基体的相容性问题,是提高石墨烯/聚偏氟乙烯复合材料的介电性能的关键问题。

为提升石墨烯的分散性能,我们以葡萄糖为碳源,采用水热方法在导电性良好的石墨烯表面构建无序相碳层,一方面阻断石墨烯层间的较高范德华力,减少石墨烯团聚现象;另一方面形成的绝缘层有效抑制电介质体相的泄露电流,降低介电损耗。同时对核壳结构的碳材料羧基官能团化,提升在聚合物体相中的相容性,形成更均匀分散相,稳定介电性能。该复合材料原料亲和无污染,制备方法简单,稳定性高,可大规模制备,对高介电储能器件的开发具有指导意义。



技术实现要素:

本发明提供了一种夹层石墨烯-无序碳二维纳米填料的制备方法,并与聚偏氟乙烯基复合,经过高压处理制备成可用于高介电常数静电电容器的介电薄膜。

制备夹层石墨烯-非晶碳纳米填料及石墨烯-羧基化无序碳纳米填料的详细过程如下:

(1)称取一定量的多层石墨烯纳米片,分散在去离子水中,添加少量表面活性剂曲拉通×100,超声分散3小时,得到均匀的石墨烯分散液。

(2)向步骤(1)得到的分散液中添加一定量葡萄糖粉末,继续超声分散0.5小时,使多层石墨烯纳米片与葡萄糖进一步混合均匀。

(3)将步骤(2)得到的混合溶液倒入以聚四氟乙烯为衬底的不锈钢反应釜中,确认完全密封后,在均相反应器中以180℃的高温环境下充分反应,反应釜保持5r/min的均匀转速。反应结束后,自然冷却至室温。

(4)将反应产物在高速离心机中离心清洗,单次离心时间为10分钟,离心过程中分别用去离子水和乙醇各洗约三次。离心清洗结束后,取出离心后的沉淀物,放置在干燥箱中以60℃烘干。

(5)将(4)所得粉末,在氮气氛围下,进行固化处理。升温时间为1h,维持温度设为300℃,持续2小时,最终得到石墨烯-无序碳夹层结构(记为gns@ac)。

(6)将步骤五中所得的石墨烯-无序碳使用混酸(硝酸:硫酸=3:1)处理两小时,从而获得石墨烯-羧基化无序碳夹层结构(记为gns@s-ac)。

(7)称取定量的石墨烯-无序碳粉末,混入20ml无水乙醇,然后称取500mg的聚偏氟乙烯粉末加入到上述混合液中,超声2小时以均匀混合。将所得溶液倒入表面皿中,60℃下干燥4小时。

(8)将干燥后的产物在玛瑙研钵充分研磨约15分钟,得到细微的粉末。取适量倒入压片机模具,在粉末压片机中以20mpa压力维持10分钟,将其压成厚度为1-1.5mm的薄片。将绝缘片在空气氛围下200℃保温3小时,得到石墨烯-无序碳/聚偏氟乙烯复合介电薄片。将薄片表面抛光,涂覆一层导电银浆,以便进行后续的介电性能测量。

由上述过程所制夹层石墨烯-无序碳/聚偏氟乙烯介电复合材料,介电性能相较于纯聚合物介电体显著提升,均可达到105数量级(1khz条件下)。而经过材料的表面羧基官能团修饰之后,碳基填充料与聚合物体相的整体兼容得到进一步提升,从而让材料的填充阈值下降,即所需碳基填充物的量更少,更快地达到超高介电常数水平。经过测试,石墨烯-羧基化无序碳/聚偏氟乙烯的介电常数达到了6980,介电损耗低于2。

本发明提出的石墨烯-无序碳夹层结构,以低表面能的无序碳阻隔了石墨烯的层间相互作用,防止石墨烯堆叠团聚,同时以更低电导率的无序碳抑制了石墨烯面间静电接触,减少复合介电材料的泄漏电流,降低介电损耗。通过进一步的表面羧基官能团化,使填料的表面基团与聚合物基相的高分子链更好地相容,降低填充阈值,得到性能更为优异的复合介电材料。

附图说明

图1为本征石墨烯和本发明的层状石墨烯-无序碳结构的tem图像及石墨烯/聚偏氟乙烯和石墨烯-无序碳/聚偏氟乙烯介电薄片的断面sem图像。

图2为不同掺杂量的石墨烯-无序碳/聚偏氟乙烯和石墨烯-羧基化无序碳/聚偏氟乙烯介电复合材料的介电常数随频率变化曲线。

图3为室温下、1khz频率条件下石墨烯-无序碳/聚偏氟乙烯和石墨烯-羧基化无序碳/聚偏氟乙烯介电复合材料的介电常数和介电损耗值随填充分数的变化曲线。

具体实施方式

下面结合附图和实施例来详细描述本发明。

称取60mg的多层石墨烯纳米片,分散在60ml去离子水中,在100w功率超声分散2小时;然后移取60μl乳化剂——曲拉通x100至分散液中,再次超声分散3小时,得到均匀的石墨烯分散液。称取1.5g葡萄糖粉末,添加至上述得到的石墨烯分散液中,继续超声分散0.5小时,使多层石墨烯纳米片与葡萄糖进一步混合均匀。然后将得到的混合溶液倒入100毫升的以聚四氟乙烯为衬底的不锈钢反应釜中,确认完全密封后,将反应釜放置到均相反应器中,在180℃的高温环境下以5r/min的均匀转速下反应12小时。反应结束后,自然冷却至室温。反应后的产物在高速离心机中以9000r/min的转速进行离心清洗,单次离心时间为10分钟,离心过程中分别用去离子水和乙醇各洗约三次。离心清洗结束后,取出离心后的沉淀物,放置在60℃干燥箱中烘干。将所得的干燥固体捣碎并摊开在专用瓷舟内,放入管式炉内,在氮气氛围下,进行固化处理。升温时间为1h,维持温度设为300℃,持续2小时,得到石墨烯-无序碳夹层结构。之后量取10ml浓硝酸和30ml浓硫酸配制混酸溶液,将上述制得的石墨烯-无序碳粉末,在混酸溶液中以70℃水浴回流2小时。回流结束后,将酸溶液注入200ml冷蒸馏水中,低压抽滤并用去离子水充分洗涤,去除残留的酸液,最后在60℃下真空干燥8小时,最终得到石墨烯-羧基化无序碳粉末。包覆无序碳层前后的多层石墨烯透射电子显微镜如图1所示,对比图1(a)和图1(b),可以观察到多层石墨烯呈层层堆叠状态,表面存在褶皱,而石墨烯-无序碳有着明显的类三明治式的夹层结构,表面夹层的尺度在二十纳米左右,表面褶皱消失,分散度更高。

介电薄片制作方法:取等规格的薄壁烧杯,称取定量的石墨烯-无序碳和石墨烯-羧基化无序碳粉末,分散在20ml无水乙醇中,并在100w功率超声分散3小时。称取500mg的聚偏氟乙烯粉末加入到上述分散液中,继续超声2小时,使聚偏氟乙烯粉末与碳材料充分混合。将所得浊液倒入表面皿中,在60℃下干燥4小时,去除溶剂。将干燥后的粉末在玛瑙研钵充分研磨约15分钟,得到细微的粉末。取适量粉末倒入压片机模具,在粉末压片机中以20兆帕压力维持10分钟,将其压成厚度为1-1.5mm的薄片。之后将绝缘片在空气氛围下200℃热处理3小时,得到石墨烯-无序碳/聚合物介电复合薄片。将薄片表面抛光,并涂覆一层导电银浆,在常温下干燥半小时,作为表面电极,并采用阻抗分析仪测量其介电性能。图1(c)和图1(d)分别展示了本征石墨烯和石墨烯-无序碳在聚偏氟乙烯体相中的分散情况,明显经长时间分散和碳层包覆后,填充物的片径更小,分散度大幅提升,也呈现出更加优异的兼容性。经混酸处理后,材料出现了羟基基团和羧基基团,并且在亲水基团的作用下,大大提升其分散性能。

为探究不同材料的介电性能和电损耗性能,分别测量了石墨烯-无序碳/聚偏氟乙烯和石墨烯-羧基化无序碳/聚偏氟乙烯介电薄片在不同填充分数,频率在1khz下的介电常数和介电损耗值。如图2所示,两种介电薄片的介电常数均可达到105数量级以上(1khz条件下),而图3显示石墨烯-羧基化无序碳/聚偏氟乙烯更快地达到阈值,说明经羧基官能团修饰后,石墨烯-无序碳的分散性和体相兼容性得到了提升,进而获得了更优异的介电性能。在不超过2的介电损耗前提下,石墨烯-羧基化无序碳/聚偏氟乙烯介电常数高达6980,远超本征pvdf的8.2。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1