基于吡唑并[2,3-F][1,10]菲啰啉-2,3-二腈的有机电致发光材料及应用

文档序号:26719300发布日期:2021-09-22 20:22阅读:70来源:国知局
基于吡唑并[2,3-F][1,10]菲啰啉-2,3-二腈的有机电致发光材料及应用
基于吡唑并[2,3

f][1,10]菲啰啉

2,3

二腈的有机电致发光材料及应用
技术领域
[0001]
本发明属于有机光电材料技术领域,特别涉及一类基于吡唑并[2,3

f][1,10] 菲啰啉

2,3

二腈的有机电致发光材料及其在制备oled中的应用。


背景技术:

[0002]
有机电致发光器件又称有机发光二极管(oled),是指有机半导体和发光材料在电场驱动下,载流子从两极注入并在发光层复合导致发光,是一类基于有机发光材料、将电能转换为光能的器件。使用传统荧光材料制备的oled器件,其激子利用率仅能达到25%,剩余75%的三线态激子会以非辐射衰减形式回到基态而不发光,故其器件效率很低;基于磷光材料的oled能够实现100%的激子利用率,但其含有贵金属、稳定性差、制备成本高等缺点限制了其在电致发光器件中的实际应用。2012年,九州大学adachi教授课题组所研发的第三代有机发光材料

纯有机热激活延迟荧光(tadf)材料,这类材料同样能充分利用电激发产生的单线态和三线态激子,实现100%的激子利用率,同时也能实现很高的器件效率,但现有的纯有机深红光至近红外的tadf材料种类单一,同时这些tadf材料还受到能隙定律的影响,导致其固态发光效率不高。
[0003]
根据公式η
ext
=η
int
η
p
=γη
r
η
pl
η
p
,oled器件的外部量子效率η
ext
取决于载流子传输平衡效率γ,激子的光子转化率η
r
,荧光量子效率η
pl
和光输出耦合常数η
p
。自tadf机制被提出以来,材料的三线态激子得到充分利用,对于η
r
具有本质性的提升。然而,由于能隙定律,相比tadf蓝绿光oled器件,使用红光/近红外tadf材料制备的η
pl
和η
p
仍有待提升。
[0004]
因此,如何提供一种固态发光效率高、高电激发激子利用率的有机电致发光材料是本领域技术人员亟待解决的技术问题。


技术实现要素:

[0005]
为了克服上述现有技术的缺点与不足,本发明的首要目的在于提供一类基于吡唑并[2,3

f][1,10]菲啰啉

2,3

二腈的有机电致发光材料,该材料同时具有热激活延迟荧光(tadf)和近红外发射的特性。
[0006]
本发明另一目的在于提供上述基于吡唑并[2,3

f][1,10]菲啰啉

2,3

二腈的有机电致发光材料在有机电致发光领域中的应用。
[0007]
本发明的目的通过下述方案实现:
[0008]
一类基于吡唑并[2,3

f][1,10]菲啰啉

2,3

二腈的有机电致发光材料,具有如下所示结构:
[0009][0010]
其中,ar分别选自下述式a~x所示结构中的其中一种:
[0011][0012]
优选的,上述基于吡唑并[2,3

f][1,10]菲啰啉

2,3

二腈的有机电致发光材料结构式如下:
[0013][0014]
上述基于吡唑并[2,3

f][1,10]菲啰啉

2,3

二腈的有机电致发光材料在制备 oled中的应用。
[0015]
本发明的技术原理是以吡唑并[2,3

f][1,10]菲啰啉

2,3

二腈为核心,在两边接上相同的给电子基团,电子给体苯环上的氢原子与电子受体上电负性强的氮原子形成氢键,使分子更加平面化,进一步增强辐射速率,在分散态及聚集态下均实现强烈的发光。此外,得益于精确调控的给电子(d)

吸电子(a)分子结构,实现了最高占据轨道(homo)和最低未占据轨道(lumo)有效分离,使分子具有较小的单线态

三线态能级差(δe
st
),通过反向系间窜越(risc) 过程实现三线态激子的充分利用,从而在理论上获得100%的内部量子效率 (iqe),所得材料能够同时具有高荧光量子效率和tadf特性;因此本发明材料具有高效固态
发光、高电激发激子利用率的特征。基于此类材料可制备出高效率、低效率滚降的非掺杂有机电致发光器件,在有机电致发光领域具有广泛的应用前景,有望在平板显示和生物成像等领域广泛应用。
[0016]
本发明相对于现有技术,具有如下的优点及有益效果:
[0017]
(1)本发明合成得到了新的基于吡唑并[2,3

f][1,10]菲啰啉

2,3

二腈的有机电致发光材料,这类材料同时具有近红外发射和tadf的特性。
[0018]
(2)本发明的基于吡唑并[2,3

f][1,10]菲啰啉

2,3

二腈的有机电致发光材料合成方法简单、原料易得、产率较高,得到的材料结构稳定,存放简单。
[0019]
(3)本发明的基于吡唑并[2,3

f][1,10]菲啰啉

2,3

二腈的有机电致发光材料,电致发光性能优异,可以广泛应用于有机电致发光等领域。
附图说明
[0020]
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
[0021]
图1为基于实施例3所得基于吡唑并[2,3

f][1,10]菲啰啉

2,3

二腈的有机电致发光材料的表征结果,(a)为该有机电致发光材料制备得到的非掺杂oled 器件的电致发光光谱;(b)为该有机电致发光材料制备得到的非掺杂oled器件的l

v

j曲线图;(c)为该有机电致发光材料制备得到的非掺杂oled器件的效率随亮度变化的曲线图。
[0022]
图2为基于实施例3所得基于吡唑并[2,3

f][1,10]菲啰啉

2,3

二腈的有机电致发光材料的表征结果,(a)为该有机电致发光材料制备得到的掺杂oled器件的电致发光光谱;(b)为该有机电致发光材料制备得到的掺杂oled器件的 l

v

j曲线图;(c)为该有机电致发光材料制备得到的掺杂oled器件的效率随亮度变化的曲线图。
[0023]
图3为基于实施例3所得基于吡唑并[2,3

f][1,10]菲啰啉

2,3

二腈的有机电致发光材料的表征结果,(a)为该有机电致发光材料制备得到的掺杂oled器件的电致发光光谱;(b)为该有机电致发光材料制备得到的掺杂oled器件的 l

v

j曲线图;(c)为该有机电致发光材料制备得到的掺杂oled器件的效率随亮度变化的曲线图。
[0024]
图4为基于实施例3所得基于吡唑并[2,3

f][1,10]菲啰啉

2,3

二腈的有机电致发光材料的表征结果,(a)为该有机电致发光材料制备得到的掺杂oled器件的电致发光光谱;(b)为该有机电致发光材料制备得到的掺杂oled器件的 l

v

j曲线图;(c)为该有机电致发光材料制备得到的掺杂oled器件的效率随亮度变化的曲线图。
[0025]
图5为基于实施例4所得基于吡唑并[2,3

f][1,10]菲啰啉

2,3

二腈的有机电致发光材料的表征结果,(a)为该有机电致发光材料制备得到的非掺杂oled 器件的电致发光光谱;(b)为该有机电致发光材料制备得到的非掺杂oled器件的l

v

j曲线图;(c)为该有机电致发光材料制备得到的非掺杂oled器件的效率随亮度变化的曲线图。
[0026]
图6为基于实施例5所得基于吡唑并[2,3

f][1,10]菲啰啉

2,3

二腈的有机电致发光材料的表征结果,(a)为该有机电致发光材料制备得到的非掺杂oled 器件的电致发光光谱;(b)为该有机电致发光材料制备得到的非掺杂oled器件的l

v

j曲线图;(c)为该有机
电致发光材料制备得到的非掺杂oled器件的效率随亮度变化的曲线图。
[0027]
图7为基于实施例6所得基于吡唑并[2,3

f][1,10]菲啰啉

2,3

二腈的有机电致发光材料的表征结果,(a)为该有机电致发光材料制备得到的非掺杂oled 器件的电致发光光谱;(b)为该有机电致发光材料制备得到的非掺杂oled器件的l

v

j曲线图;(c)为该有机电致发光材料制备得到的非掺杂oled器件的效率随亮度变化的曲线图。
具体实施方式
[0028]
本发明提供了一类基于吡唑并[2,3

f][1,10]菲啰啉

2,3

二腈的有机电致发光材料,该材料同时具有热激活延迟荧光(tadf)和近红外发射的特性。
[0029]
本发明还提供了上述基于吡唑并[2,3

f][1,10]菲啰啉

2,3

二腈的有机电致发光材料在有机电致发光领域中的应用。
[0030]
本发明的目的通过下述方案实现:
[0031]
一类基于吡唑并[2,3

f][1,10]菲啰啉

2,3

二腈的有机电致发光材料,具有如下所示结构:
[0032][0033]
其中,ar分别选自下述式a~x所示结构中的其中一种:
[0034][0035]
优选的,上述基于吡唑并[2,3

f][1,10]菲啰啉

2,3

二腈的有机电致发光材料结构式如下:
[0036][0037]
上述基于吡唑并[2,3

f][1,10]菲啰啉

2,3

二腈的有机电致发光材料在制备oled中的应用。
[0038]
下面将对本技术实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本技术一部分实施例,而不是全部的实施例。基于本技术中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本技术保护的范围。
[0039]
实施例1:基于吡唑并[2,3

f][1,10]菲啰啉

2,3

二腈的有机电致发光材料 (dcppr

pxz)的制备:
[0040][0041]
合成路线如下:
[0042][0043]
(1)将2,9

二溴

1,10

菲罗啉

5,6

二酮(0.7317g,2mmol)、10

[4,4,5,5

(四甲基

1,3,2

二氧硼烷
‑2‑
基)苯基]

10氢

吩噁嗪(1.7333g,4.5mmol)、碳酸铯(2.6 g,5mmol)和四(三苯基膦)钯(0.924g,0.8mmol)加入至反应瓶中,抽换气三次,在氮气保护下加入50ml甲苯,水和乙醇的混合溶剂,加热回流,在此温度下反应8个小时。经二氯甲烷和水萃取,浓缩后做粉过柱,得到中间体2,产率65%;
[0044]
(2)将2(0.3621g,0.5mmol)、2,3

二氨基
‑2‑
丁烯二腈(0.0648g,0.6mmol) 加入至反应瓶中,抽换气三次,在氮气保护下加入20ml冰醋酸,加热回流,在此温度下反应16个小时;经二氯甲烷和水萃取,浓缩后做粉过柱,得到终产物dcppr

pxz,产率60%。
[0045]
hrms(c
58
h
40
n8):m/z[m+h
+
]calcd 796.2335,found 796.2305.
[0046]
实施例2:基于吡唑并[2,3

f][1,10]菲啰啉

2,3

二腈的有机电致发光材料 (dcppr

dmac)的制备:
[0047][0048]
合成路线如下:
[0049][0050]
(1)将2,9

二溴

1,10

菲罗啉

5,6

二酮(0.7317g,2mmol)、9,9

二甲基

10

[4, 4,5,5

(四甲基

1,3,2

二氧硼烷
‑2‑
基)苯基]

9,10二氢吖啶(1.8506g,4.5mmol)、碳酸铯(2.6g,5mmol)和四(三苯基膦)钯(0.924g,0.8mmol)加入至反应瓶中,抽换气三次,在氮气保护下加入加入50ml甲苯,水和乙醇的混合溶剂,加热回流,在此温度下反应8个小时。经二氯甲烷和水萃取,浓缩后做粉过柱,得到中间体2,产率62%;
[0051]
(2)将2(0.3882g,0.5mmol)、2,3

二氨基
‑2‑
丁烯二腈(0.0648g,0.6mmol) 加入至反应瓶中,抽换气三次,在氮气保护下加入20ml冰醋酸,加热回流,在此温度下反应16个小时;经二氯甲烷和水萃取,浓缩后做粉过柱,得到终产物dcppr

dmac,产率70%。
[0052]
hrms(c
58
h
40
n8):m/z[m+h
+
]calcd 849.3456,found 849.3446.
[0053]
实施例3:基于吡唑并[2,3

f][1,10]菲啰啉

2,3

二腈的有机电致发光材料 (dcppr

α

npa)的制备:
[0054][0055]
合成路线如下:
[0056][0057]
(1)将2,9

二溴

1,10

菲罗啉

5,6

二酮(0.7317g,2mmol)、(4

(萘
‑1‑
基(苯基) 氨基)苯基)硼酸频呢醇酯(1.8955g,4.5mmol)、碳酸铯(2.6g,5mmol)和四 (三苯基膦)钯(0.924g,0.8mmol)加入至反应瓶中,抽换气三次,在氮气保护下加入50ml甲苯,水和乙醇的混合溶剂,加热回流,在此温度下反应8个小时。经二氯甲烷和水萃取,浓缩后做粉过柱,得到中间体2,产率61%;
[0058]
(2)将2(0.3981g,0.5mmol)、2,3

二氨基
‑2‑
丁烯二腈(0.0648g,0.6mmol) 加入至反应瓶中,抽换气三次,在氮气保护下加入加入20ml冰醋酸,加热回流,在此温度下反应16个小时;经二氯甲烷和水萃取,浓缩后做粉过柱,得到终产物dcppr

α

npa,产率72%。
[0059]1h nmr(500mhz,cd2cl2)δ(tms,ppm):9.06(d,j=8.7hz,2h),8.07

7.86 (m,12h),
7.57

7.25(m,16h),7.12

7.02(m,6h).
13
c nmr(125mhz,cd2cl2)δ(tms,ppm):160.34,151.54,148.93,147.58,143.04,141.86,135.83,134.97,131.58, 130.35,129.80,129.22,128.96,128.09,127.62,127.09,126.88,126.77,124.26, 123.91,123.10,120.64,120.16,114.39.hrms(c
60
h
36
n8):m/z[m+h
+
]calcd 869.3136,found 869.3137.
[0060]
实施例4:基于吡唑并[2,3

f][1,10]菲啰啉

2,3

二腈的有机电致发光材料(dcppr

β

npa)的制备:
[0061][0062]
合成路线如下:
[0063][0064]
(1)将2,9

二溴

1,10

菲罗啉

5,6

二酮(0.7317g,2mmol)、(4

(萘
‑2‑
基(苯基) 氨基)苯基)硼酸频呢醇酯(1.8955g,4.5mmol)、碳酸铯(2.6g,5mmol)和四(三苯基膦)钯(0.924g,0.8mmol)加入至反应瓶中,抽换气三次,在氮气保护下加入50ml甲苯,水和乙醇的混合溶剂,加热回流,在此温度下反应8个小时。经二氯甲烷和水萃取,浓缩后做粉过柱,得到中间体2,产率65%;
[0065]
(2)将2(0.3981g,0.5mmol)、2,3

二氨基
‑2‑
丁烯二腈(0.0648g,0.6mmol) 加入至反应瓶中,抽换气三次,在氮气保护下加入加入20ml冰醋酸,加热回流,在此温度下反应16个小时;经二氯甲烷和水萃取,浓缩后做粉过柱,得到终产物dcppr

β

npa,产率76%。
[0066]1h nmr(500mhz,cd2cl2)δ(tms,ppm):9.21(d,j=8.6hz,2h),8.22(d, j=8.7hz,4h),8.13(d,j=8.7hz,2h),7.74

7.67(m,4h),7.60

7.53(m,2h), 7.51

7.47(m,2h),7.37

7.10(m,18h),7.08

7.03(m,2h).
13
c nmr(125mhz, c2d2cl4)δ(tms,ppm):160.37,150.24,148.57,146.61,144.35,141.31,134.10, 130.70,130.33,129.81,129.53,129.20,129.00,127.60,127.16,126.45,125.41, 125.06,124.94,124.15,122.64,122.50,121.82,120.75,113.82.hrms(c
60
h
36
n8): m/z[m+h
+
]calcd 868.3139,found 869.3136.
[0067]
实施例5:基于吡唑并[2,3

f][1,10]菲啰啉

2,3

二腈的有机电致发光材料 (dcppr

tpa)的制备:
[0068][0069]
合成路线如下:
[0070][0071]
(1)将2,9

二溴

1,10

菲罗啉

5,6

二酮(0.7317g,2mmol)、4

(二苯基氨基)苯硼酸频那醇酯(1.6704g,4.5mmol)、碳酸铯(2.6g,5mmol)和四(三苯基膦) 钯(0.924g,0.8mmol)加入至反应瓶中,抽换气三次,在氮气保护下加入50ml 甲苯,水和乙醇的混合溶剂,加热回流,在此温度下反应8个小时。经二氯甲烷和水萃取,浓缩后做粉过柱,得到中间体2,产率59%;
[0072]
(2)将2(0.3481g,0.5mmol)、2,3

二氨基
‑2‑
丁烯二腈(0.0648g,0.6mmol) 加入至反应瓶中,抽换气三次,在氮气保护下加入加入20ml冰醋酸,加热回流,在此温度下反应16个小时。经二氯甲烷和水萃取,浓缩后做粉过柱,得到终产物dcppr

tpa,产率79%。
[0073]1h nmr(500mhz,cd2cl2)δ(tms,ppm):9.14(d,j=8.6hz,2h),8.18(d,j= 8.7hz,4h),8.07(d,j=8.6hz,2h),7.40

7.31(m,8h),7.29

7.21(m,8h), 7.21

7.12(m,8h).
13
c nmr(125mhz,cd2cl2)δ(tms,ppm):160.25,150.95, 149.20,147.39,141.84,134.90,130.66,130.34,129.95,129.09,126.17,124.60, 123.24,121.89,120.54,114.37.hrms(c
52
h
32
n8):m/z[m+h
+
]calcd 769.2823, found 769.2840.
[0074]
实施例6:基于吡唑并[2,3

f][1,10]菲啰啉

2,3

二腈的有机电致发光材料 (dcppr

ppa)的制备:
[0075]
[0076]
合成路线如下:
[0077][0078]
(1)将2,9

二溴

1,10

菲罗啉

5,6

二酮(0.7317g,2mmol)、双(联苯
‑4‑ꢀ
基)[4

(4,4,5,5

四甲基

[1,3,2]二氧杂环戊硼烷
‑2‑
基)苯基]胺(1.6704g,4.5mmol)、碳酸铯(2.6g,5mmol)和四(三苯基膦)钯(0.924g,0.8mmol)加入至反应瓶中,抽换气三次,在氮气保护下加入50ml甲苯,水和乙醇的混合溶剂,加热回流,在此温度下反应8个小时。经二氯甲烷和水萃取,浓缩后做粉过柱,得到中间体2,产率55%;
[0079]
(2)将2(0.5002g,0.5mmol)、2,3

二氨基
‑2‑
丁烯二腈(0.0648g,0.6mmol) 加入至反应瓶中,抽换气三次,在氮气保护下加入加入20ml冰醋酸,加热回流,在此温度下反应16个小时;经二氯甲烷和水萃取,浓缩后做粉过柱,得到终产物dcppr

ppa,产率67%。
[0080]1h nmr(500mhz,c2d2cl4)δ(tms,ppm):9.38(d,j=7.5hz,2h),8.40(d,j =7.7hz,4h),8.28(d,j=8.3hz,2h),7.62

7.52(m,16h),7.46

7.32(m,18h), 7.30

7.26(m,6h).
13
c nmr(125mhz,c2d2cl4)δ(tms,ppm):160.54,150.00, 148.74,145.90,141.38,139.89,135.97,134.95,131.12,129.86,129.17,128.80, 127.83,127.11,126.50,125.13,123.04,122.81,120.84,113.84.hrms(c
76
h
48
n8): m/z[m+h
+
]calcd 1073.4075,found 1073.4093.
[0081]
实施例7:基于吡唑并[2,3

f][1,10]菲啰啉

2,3

二腈的有机电致发光材料 (dcppr

spac)的制备:
[0082][0083]
合成路线如下:
[0084]
[0085]
(1)将2,9

二溴

1,10

菲罗啉

5,6

二酮(0.7317g,2mmol)、10

苯基

2'

频哪醇酯

10h

螺[吖啶

9,9'

芴](2.3996g,4.5mmol)、碳酸铯(2.6g,5mmol)和四(三苯基膦)钯(0.924g,0.8mmol)加入至反应瓶中,抽换气三次,在氮气保护下加入50ml甲苯,水和乙醇的混合溶剂,加热回流,在此温度下反应8个小时;经二氯甲烷和水萃取,浓缩后做粉过柱,得到中间体2,产率52%;
[0086]
(2)将2(0.5102g,0.5mmol)、2,3

二氨基
‑2‑
丁烯二腈(0.0648g,0.6mmol) 加入至反应瓶中,抽换气三次,在氮气保护下加入加入20ml冰醋酸,加热回流,在此温度下反应16个小时;经二氯甲烷和水萃取,浓缩后做粉过柱,得到终产物dcppr

spac,产率69%。
[0087]
hrms(c
78
h
44
n8):m/z[m+h
+
]calcd 1092.3689,found 1092.3698.
[0088]
实施例8:基于吡唑并[2,3

f][1,10]菲啰啉

2,3

二腈的有机电致发光材料 (dcppr

spax)的制备:
[0089][0090]
合成路线如下:
[0091][0092]
(1)将2,9

二溴

1,10

菲罗啉

5,6

二酮(0.7317g,2mmol)、10

苯基

2'

频哪醇酯

10h

螺[吖啶

9,9'

氧杂蒽](2.4716g,4.5mmol)、碳酸铯(2.6g,5mmol) 和四(三苯基膦)钯(0.924g,0.8mmol)加入至反应瓶中,抽换气三次,在氮气保护下加入50ml甲苯,水和乙醇的混合溶剂,加热回流,在此温度下反应8 个小时;经二氯甲烷和水萃取,浓缩后做粉过柱,得到中间体2,产率51%;
[0093]
(2)将2(0.5262g,0.5mmol)、2,3

二氨基
‑2‑
丁烯二腈(0.0648g,0.6mmol) 加入至反应瓶中,抽换气三次,在氮气保护下加入加入20ml冰醋酸,加热回流,在此温度下反应16个小时;经二氯甲烷和水萃取,浓缩后做粉过柱,得到终产物dcppr

spax,产率60%。
[0094]
hrms(c
78
h
44
n8o2):m/z[m+h
+
]calcd 1124.3587,found 1124.3561.
[0095]
实施例9:基于吡唑并[2,3

f][1,10]菲啰啉

2,3

二腈的有机电致发光材料的 oled器件性能
[0096]
利用实例3制备得到的基于吡唑并[2,3

f][1,10]菲啰啉

2,3

二腈的有机电致发
光材料dcppr

α

npa作为发光材料制备得到的非掺杂器件,并对其器件性能进行测试表征结果见图1。
[0097]
器件结构:ito/hatcn(5nm)/tapc(50nm)/tcta(5nm)/dcppr

α

npa(20 nm)/tmpypb(40nm)/lif(1nm)/al(非掺杂结构)。
[0098]
图1(a)为基于实施例3所得材料的oled器件的电致发光光谱,从图中可以看出,基于dcppr

α

npa的非掺杂器件的最大发射峰在716nm,属于近红外区域。图1(b)为基于实施例3所得材料的oled器件的l

v

j曲线图,从图中可以看出,基于dcppr

α

npa的非掺杂器件的最大亮度高并且启动电压低,为638cd/m2和3.5v。图1(c)为基于实施例3所得材料的非掺杂器件的效率随亮度变化的曲线图,从图中可以看出,基于dcppr

α

npa的非掺杂器件其最大电流效率和功率分别为0.25cd/a和0.22lm/w,基于dcppr

α

npa的非掺杂器件其最大外量子效率1.9%。
[0099]
实施例10:基于吡唑并[2,3

f][1,10]菲啰啉

2,3

二腈的有机电致发光材料的 oled器件性能
[0100]
利用实例3制备得到的基于吡唑并[2,3

f][1,10]菲啰啉

2,3

二腈的有机电致发光材料dcppr

α

npa作为发光材料制备得到的掺杂器件,并对其器件性能进行测试表征结果见图2。
[0101]
器件结构:ito/hatcn(5nm)/tapc(50nm)/tcta(5nm)/cbp(5nm)/3 wt%dcppr

α

npa:cbp:po

t2t(20nm)/po

t2t(40nm)/lif(1nm)/al(掺杂结构)。
[0102]
图2(a)为基于实施例3所得材料的oled器件的电致发光光谱,从图中可以看出,基于dcppr

α

npa的掺杂器件的最大发射峰在612nm。图2(b) 为基于实施例3所得材料的oled器件的l

v

j曲线图,从图中可以看出,基于dcppr

α

npa的掺杂器件的最大亮度高并且启动电压低,为14880cd/m2和 2.3v。图2(c)为基于实施例3所得材料的掺杂器件的效率随亮度变化的曲线图,从图中可以看出,基于dcppr

α

npa的掺杂器件其最大电流效率和功率分别为34.0cd/a和44.5lm/w,基于dcppr

α

npa的掺杂器件其最大外量子效率 18.0%。
[0103]
实施例11:基于吡唑并[2,3

f][1,10]菲啰啉

2,3

二腈的有机电致发光材料的 oled器件性能
[0104]
利用实例3制备得到的基于吡唑并[2,3

f][1,10]菲啰啉

2,3

二腈的有机电致发光材料dcppr

α

npa作为发光材料制备得到的掺杂器件,并对其器件性能进行测试表征结果见图3。
[0105]
器件结构:ito/hatcn(5nm)/tapc(50nm)/tcta(5nm)/3wt% dcppr

α

npa:tcta:bepp2(1:1)(20nm)/bepp2(40nm)/lif(1nm)/al(掺杂结构)。
[0106]
图3(a)为基于实施例3所得材料的oled器件的电致发光光谱,从图中可以看出,基于dcppr

α

npa的掺杂器件的最大发射峰在622nm。图3(b) 为基于实施例3所得材料的oled器件的l

v

j曲线图,从图中可以看出,基于dcppr

α

npa的掺杂器件的最大亮度高并且启动电压低,为4101cd/m2和2.8 v。图3(c)为基于实施例3所得材料的掺杂器件的效率随亮度变化的曲线图,从图中可以看出,基于dcppr

α

npa的掺杂器件其最大电流效率和功率分别为 3.9cd/a和4.3lm/w,基于dcppr

α

npa的掺杂器件其最大外量子效率3.2%。
[0107]
实施例12:基于吡唑并[2,3

f][1,10]菲啰啉

2,3

二腈的有机电致发光材料的 oled器件性能
[0108]
利用实例3制备得到的基于吡唑并[2,3

f][1,10]菲啰啉

2,3

二腈的有机电致发光材料dcppr

α

npa作为发光材料制备得到的掺杂器件,并对其器件性能进行测试表征结果见图4。
[0109]
器件结构:ito/hatcn(5nm)/tapc(50nm)/tcta(5nm)/3wt% dcppr

α

npa:tcta:bepp2(1:1)(20nm)/tmpypb(40nm)/lif(1nm)/al(掺杂结构)。
[0110]
图4(a)为基于实施例3所得材料的oled器件的电致发光光谱,从图中可以看出,基于dcppr

α

npa的掺杂器件的最大发射峰在638nm。图4(b) 为基于实施例3所得材料的oled器件的l

v

j曲线图,从图中可以看出,基于dcppr

α

npa的掺杂器件的最大亮度高并且启动电压低,为4000cd/m2和3.0 v。图4(c)为基于实施例3所得材料的掺杂器件的效率随亮度变化的曲线图,从图中可以看出,基于dcppr

α

npa的掺杂器件其最大电流效率和功率分别为 4.3cd/a和4.5lm/w,基于dcppr

α

npa的掺杂器件其最大外量子效率3.5%。
[0111]
实施例13:基于吡唑并[2,3

f][1,10]菲啰啉

2,3

二腈的有机电致发光材料的 oled器件性能
[0112]
利用实例4制备得到的基于吡唑并[2,3

f][1,10]菲啰啉

2,3

二腈的有机电致发光材料dcppr

β

npa作为发光材料制备得到的非掺杂器件,并对其器件性能进行测试表征结果见图5。
[0113]
器件结构:ito/hatcn(5nm)/tapc(50nm)/tcta(5nm)/dcppr

β

npa(20 nm)/tmpypb(40nm)/lif(1nm)/al(非掺杂结构)。
[0114]
图5(a)为基于实施例4所得材料的oled器件的电致发光光谱,从图中可以看出,基于dcppr

β

npa的非掺杂器件的最大发射峰在748nm,属于近红外区域。图5(b)为基于实施例1所得材料的oled器件的l

v

j曲线图,从图中可以看出,基于dcppr

β

npa的非掺杂器件的最大亮度高并且启动电压低,为203cd/m2和3.5v。图5(c)为基于实施例4所得材料的非掺杂器件的效率随亮度变化的曲线图,从图中可以看出,基于dcppr

β

npa的非掺杂器件其最大电流效率和功率分别为0.07cd/a和0.06lm/w,基于dcppr

β

npa的非掺杂器件其最大外量子效率1.4%。
[0115]
实施例14:基于吡唑并[2,3

f][1,10]菲啰啉

2,3

二腈的有机电致发光材料的 oled器件性能
[0116]
利用实例5制备得到的基于吡唑并[2,3

f][1,10]菲啰啉

2,3

二腈的有机电致发光材料dcppr

tpa作为发光材料制备得到的非掺杂器件,并对其器件性能进行测试表征结果见图6。
[0117]
器件结构:ito/hatcn(5nm)/tapc(50nm)/tcta(5nm)/dcppr

tpa(20 nm)/tmpypb(40nm)/lif(1nm)/al(非掺杂结构)。
[0118]
图6(a)为基于实施例5所得材料的oled器件的电致发光光谱,从图中可以看出,基于dcppr

tpa的非掺杂器件的最大发射峰在734nm,属于近红外区域。图6(b)为基于实施例5所得材料的oled器件的l

v

j曲线图,从图中可以看出,基于dcppr

tpa的非掺杂器件的最大亮度高并且启动电压低,为 203cd/m2和3.5v。图6(c)为基于实施例5所得材料的非掺杂器件的效率随亮度变化的曲线图,从图中可以看出,基于dcppr

tpa的非掺杂器件其最大电流效率和功率分别为0.11cd/a和0.11lm/w,基于dcppr

tpa的非掺杂器件其最大外量子效率1.4%。
[0119]
实施例15:基于吡唑并[2,3

f][1,10]菲啰啉

2,3

二腈的有机电致发光材料的 oled器件性能
[0120]
利用实例6制备得到的基于吡唑并[2,3

f][1,10]菲啰啉

2,3

二腈的有机电致发光材料dcppr

ppa作为发光材料制备得到的非掺杂器件,并对其器件性能进行测试表征结果见图7。
[0121]
器件结构:ito/hatcn(5nm)/tapc(50nm)/tcta(5nm)/dcppr

ppa(20 nm)/tmpypb(40nm)/lif(1nm)/al(非掺杂结构)。
[0122]
图7(a)为基于实施例6所得材料的oled器件的电致发光光谱,从图中可以看出,基于dcppr

ppa的非掺杂器件的最大发射峰在748nm,属于近红外区域。图7(b)为基于实施例6所得材料的oled器件的l

v

j曲线图,从图中可以看出,基于dcppr

ppa的非掺杂器件的最大亮度高并且启动电压低,为 123cd/m2和3.3v。图7(c)为基于实施例5所得材料的非掺杂器件的效率随亮度变化的曲线图,从图中可以看出,基于dcppr

ppa的非掺杂器件其最大电流效率和功率分别为0.04cd/a和0.04lm/w,基于dcppr

ppa的非掺杂器件其最大外量子效率1.0%。
[0123]
上述数据表明,本发明以吡唑并[2,3

f][1,10]菲啰啉

2,3

二腈为核心,在两边接上相同的给电子基团,可将近红外发射和tadf特性有机的结合在一个分子中,将这类材料作为发光层制备出的非掺杂近红外oled器件效率高;基于这类材料制备出的结构简单的非掺杂oled器件,具有更低的启动电压,较高的效率。总之,这类材料在有机电致发光领域有很广阔的应用前景。
[0124]
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1