可挤压的管状容器及其制造方法

文档序号:3702442阅读:199来源:国知局
专利名称:可挤压的管状容器及其制造方法
本申请涉及可挤压的管状容器及其制造方法。尤其是涉及由聚乙烯和乙烯/α烯烃共聚物的组合物组成的可挤压的管状容器及其制造方法,并且该容器可在高温下消毒,或者可热密封或者可超声密封。
随着包装容器的材料改进,已经提出使所述的容器具有在高温下承受相当长时间的消毒处理如蒸馏处理的特性。在这些容器中,实际使用的一种容器的原材料是聚烯烃的叠层材料,这种材料的组成是将聚丙烯层或高密度聚乙烯层置于隔氧树脂层的各表面。隔氧树脂的中间层由热塑性树脂,如高耐热的聚丙烯,或高密度的聚乙烯,或乙烯-乙酸乙烯酯的共聚物的皂化产品,或尼龙构成。
然而,由于上述原材料具有高的弹性模量,因此,毫无疑问这种材料适合于制作柔性的可挤压的管状容器。低密度聚乙烯具有优异的柔韧性,但具有高的收缩因素,并且其缺点在于当其置于高温下消毒时而收缩。因此,低密度聚乙烯不适合作为能蒸馏消毒的可挤压的管状容器的原材料。
在另一方面,众所周知,聚乙烯类型的聚烯烃由例如电子束照射而进行交联反应,可以改善其耐热性;抗化学性及机械强度。例如,这种聚烯烃在实际中已用于电缆和可热收缩的薄膜。在耐热性等方面的改进,即应归功于由交联反应而引起的分子的三维网状结构。然而,由于三维网状结构的聚乙烯通常不易熔化,甚至在比其熔点更高的高温下都不易熔化,因此,当进行热密封或超声密封时,其可熔性差,并且密封部分随时间增长或随高温消毒处理的次数增加易于剥落。因此聚乙烯不适合用作可借助于诸如热密封或超声密封这样的密封方式将内装物牢固地封装于可挤压的管形容器的原材料。
因此,本发明目的之一是提供一种在高温消毒处理如在121℃下消毒约30分钟时几乎不存在热收缩的可挤压的管状容器。并且,这种容器具有优异的柔韧性。
本发明的另一个目的是提供一种几乎不存在热收缩,并且具有优异的柔韧性的可挤压的管状容器,并且其还具有优异的隔氧性。
本发明的又一个目的是提供一种具有优异的耐热性的和抗化学性的可挤压管状容器。并且,可以热密封或可超声密封。
本发明更进一步的目的是提供可较好地制造上述本发明的可挤压的管状容器的方法。
本发明的其它目的和优点在下文中进行描述。
根据本发明,上述本发明的目的和优点首先可由挤压的管状容器(以下有时称第一容器)来实现(a)该容器由含密度0.900至0.975g/cm3的聚乙烯和密度小于0.900g/cm3的乙烯/α烯烃共聚物的混合物形成;
(b)该容器具有由电子束照射引起的交联结构;
(c)该容器在高温下是可消毒的。
上述混合物(a)包括聚乙烯和乙烯/α烯烃共聚物。
聚乙烯的密度是0.900至0.975g/cm3,最好是0.930至0.940g/cm3。
聚乙烯的熔化流动率(MFRASTMD1238,190℃)较好是0.01至10g/10分钟,最好是0.1至5g/10分钟。
作为乙烯/α烯烃共聚物,其最好是一种具有低结晶能力(较好的40%或更小,更好的是10%或更小)的乙烯-α烯烃共聚物。其密度小于0.900g/cm3,较好是0.850至0.900g/cm3,更好的是0.860至0.895g/cm3。与乙烯共聚的α烯烃最好是选择如丙烯,丁烯-1,戊烯-1及4甲基戊烯-1。
在乙烯-α烯烃共聚物中,乙烯与α烯烃的克分子比最好是95/5至70/30,更好是90/10至75/25。
此外,乙烯-α烯烃共聚物的熔化流动率较好是0.1至10g/10分钟,最好是0.2至5g/10分钟。
在组合物(a)中,以聚乙烯和乙烯-α-烯烃共聚物的总量为基础的乙烯-α烯烃共聚物的重量较好是5至50%,更好是10至40%。组合物(a)可含有公知的添加剂,比如填充剂、稳定剂、润滑剂、抗静电剂、阻燃剂及起泡剂。这些添加剂的用量以不防碍本发明目的为准。
本发明的第一容器的特征在于其由上述组合物构成,在电子束照射下,引起交联反应,并且可在高温下消毒。
根据本发明,本发明的上述第一容器较好的是按下列方法制成,即其包括用电子束照射壁厚为0.3至1mm,较好是0.5至0.8mm的管状容器,该容器由一含密度0.900至0.975g/cm3的聚乙烯和密度小于0.900g/cm3的乙烯-α烯烃共聚物的的组合物构成,用电子束照射引起该管状容器产生交联结构,因此可以使该容器在高温下消毒。
上述管状容器可以用螺杆挤压机或类似装置和公知方法,从上述含聚乙烯和乙烯-α烯烃共聚物的混合物中制备。该管状容器由电子束照射。在用电子束照射时,借助于公知的电子束照射装置对管状容器进行照射,电子束照射的用量处于50至500KGY的范围,较好是100至300KGY的范围。在电子照射下,上述混合物的聚乙烯和乙烯-α烯烃共聚物进行交联反应,并且,例如凝胶体的百分含量增加至40%或更多。因此,抗热水收缩因素(在高压锅中以121℃将样品加热处理30分钟后而测得)能减小到3%或更小,并且能制造耐高温消毒的可挤压的管状容器,而不会影响上述混合物内在的柔性。
以一定用量的电子束照射容器,构成上述混合物的聚乙烯和乙烯-α烯烃共聚物进行交联,由形成的三维网状结构将其变成凝胶状。有时,该混合物很难熔化,甚至在高于其熔点温度也难熔,因此该混合物之热封性受影响。因此,将管状容器的密封部分罩住后进行照射处理,就可获得具有良好热稳定性的耐高温消毒的可挤压管状容器,它同样具有上述混合物内在的柔性。
上述第一容器在高温蒸馏消毒时影响收缩的因素极有限,并且能方便地挤出其中包装的物质。
此外,上述第一容器能用热封或超声密封。
这就是说,根据本发明,其次是提供一种容器(以后有时称为第二容器)(a)该容器是由含密度0.900至0.975g/cm3的聚乙烯和密度小于0.900g/cm3的乙烯/α烯烃共聚物的混合物形成的;
(b)该容器之厚度方向以这样的电子束用量照射,即当相当用量的电子束在表面上为100时,其穿透能力在厚度的中点为60至80,并且在另一面上为40或更小,并且至少在其表面上具有交联结构;
(c)对该容器可进行热密式超声密封,并且可以高温消毒。
上述聚乙烯和乙烯/α烯烃共聚物从相关第一容器所述的那些混合物中选取。第二容器所用聚乙烯的密度较好是0.920至0.950g/cm3。应该懂得对第一容器的说明能用于第二容器,除非有特殊说明。
按照本发明的第二容器能由这样的方法较好地制造,即该方法包括用这种用量的电子束在厚度方向照射由含密度为0.900至0.975g/cm3的聚乙烯和密度小于0.900g/cm3的乙烯/α烯烃共聚物的混合物构成的管状容器,即当在表面上的相应电子束用量为100时,其穿透能力在厚度的中点为60至80,并且在另一表面为40或更小,从而将该管状容器的密封部分罩住后,使管状容器生产交联结构,因此使该容器是可热密封或可超声密封的。
上述方法最突出的技术特征在于由任意一种公知的模塑方法,如注射成型方法或挤压成型方法制成容器,用特定的有穿透能力的电子束照射由含上述聚乙烯和上述乙烯/α烯烃共聚物的混合物构成的这种容器。
在本发明所述的方法中,重要的是设定电子束的加速电压或照射孔与被照射物件之间的距离,因此当物件表面上的电子速剂量为100%时,电子束的穿透能力在物件厚度方向的中点是60%至80%,并且在物件的另一表面为40%或更小。物件表面的吸收量是50至500KGY,较好是100至300KGY。
当用上述特定的电子束照射时,可获得这样的混合物构成的物件,即该混合物的交联程度变化从而在被照射物中形成若干层。
上述经过交联反应的混合物构成容器后,该容器的熔化性相当于未经电子束照射过的聚乙烯的熔化性,并且与电子束均匀地通过其厚度方向照射的物件相比较,该容器具有耐热性。
上述第二容器是可热密封或可超声密封的,并且能用作需要由熔融而牢牢密封的容器,如可挤压的管状容器或杯状容器。
该容器可以由上述混合物单独形成,或者由至少有两层的多层结构材料构成。在所述多层结构材料中,由上述作为可熔层的混合物形成的层状材料与由具有隔气性能的树脂例如尼龙或乙烯-乙烯基乙酯(ethylene-vinylacetate)共聚物的皂化物形成的层状材料相结合。在后者的情况中,为了改善混合物与具有隔气性的树脂的粘结性,该聚乙烯可首先由一不饱和羧酸或其酸酐进行改性处理,或者使该混合物经受粘性改进处理,例如采用电晕放电装置。
具有层状结构的容器将在下文中详述。
这就是说,按本发明,再次提供一种容器(下文有时称之为第三容器)(a)该容器是由这样的混合物的内层和外层构成,即该混合物含有密度为0.900-0.975g/cm3并经不饱和羧酸或其衍生物接枝改性的聚乙烯和密度小于0.900g/cm3的乙烯/α烯轻共聚物,该容器还具有一带隔氧性能的树脂中间层;
(b)该容器由电子束照射,并且至少在外层具有交联结构;
(c)该容器可高温消毒。
本发明第三容器的最突出的技术特点在于该种可挤压的多层材料的容器由电子束照射,该可挤压的多层材料的容器是由三层结构材料构成,即由含经不饱和羧酸或其衍生物接枝改性的密度为0.900至0.975g/cm3的聚乙烯和密度为小于0.900g/cm3的乙烯/α烯烃共聚物的混合物形成内层和外层,以及由具有隔氧性的树脂形成中间层。
经不饱和羧酸或其衍生物接枝改性的密度为0.900至0.975g/cm3的聚乙烯的量(A)与密度小于0.900g/cm3的乙烯/α烯烃共聚物的量(B)之比(A/B),按重量计最好是50至95%/50至5%,更好是60至90%/40至10%。
本发明所用的聚乙烯的密度是0.900至0.975g/cm3,较好是0.920至0.975g/cm3,最好是0.935至0.970g/cm3,上述聚乙烯的熔化流动率(MFRASTM D1238,190℃)较好是0.01至10g/10分钟,更好是0.1至5g/10分钟。上述聚乙烯包括乙烯均聚物及乙烯和少量的其它的α烯烃如丙烯或1-丁烯的共聚物。
不饱和羧酸或其衍生物包括丙烯酸、甲基丙烯酸、α-乙基丙烯酸、顺丁烯二酸、反丁烯二酸、亚甲基丁二酸、甲基顺丁烯二酸、四氢邻苯二甲酸、甲基四氢邻苯二甲酸、内-外型-顺式二环[2.2.1]庚-5-烯-2、3-二羧酸(纳荻克酸)和它们的衍生物,诸如酸式卤化物、酰胺族、酰亚胺族、酸酐及脂。在这些物质中,较好的是不饱和的二羧酸及其酸酐,尤其是马来酸、纳荻克(Naclic)酸及其酸酐。
不饱和羧酸及其衍生物可由公知各种方法接枝在密度为0.900至0.975g/cm3的聚乙烯上。例如,乙烯均聚物或共聚物及接枝单体可在具有溶剂或不具有溶剂条件下与自由基引发剂一起或没有自由基引发剂时加热至高温。在该反应中,可以有其它乙烯基单体,如丙烯基。
上述接枝单体接枝在聚乙烯上的量(接枝比)较好是0.001至10%(重量计),尤其好是0.01至1%(重量计)。本发明用的聚乙烯是一种其部分或整体经接枝改性的聚乙烯。从工业的观点出发,为了调节聚乙烯中接枝单体的浓度,较好的是事先制备好具接枝比为大约0.1至10%(重量计)的改性聚乙烯,然后将这些改性的聚乙烯结合至未改性处理的聚乙烯中。在这种情况下,所获得的聚乙烯是一种接枝改性聚乙烯与未改性聚乙烯的混合物,因此,部分聚乙烯是接枝改性的。
乙烯-α烯烃共聚物可从有关上述第一容器中说明的那些物质中选取。
具有隔氧性的树脂构成了本发明的可挤压管状容器的中间层,其包括如尼龙及乙烯-乙烯基乙酸脂共聚物的皂化物。对于尼龙,用具有再熟化酰胺族作为聚合物链的整个部分的长链合成聚酰胺,如尼龙6,尼龙6-6,尼龙6-10,尼龙11及尼龙12。
对于乙烯-乙烯基乙脂共聚物的皂化物,所用的是这样的皂化物,即其由公知的方法将乙烯含量26至65mol%的乙烯-乙烯基乙脂共聚物进行皂化而获得,并且皂化度至少96%,较好的是至少为99%。具有上述范围内的乙烯含量和皂化度的乙烯-乙烯基乙脂共聚物不仅具有优异的隔氧性,而且还具有优异的机械性能,抗油性、抗水性,因此它适合于本发明的目的。
本发明的第三容器能较好地由这样的方法制造,即该方法包括用电子不照射管状的层状材料构成的容器,该容器由三层结构材料形成,即含经不饱和羧酸或其衍生物接枝改性的密度为0.900至0.975g/cm3的聚乙烯和密度小于0.900g/cm3的乙烯/α烯烃共聚物的混合物形成的内层和外层(下文有时统称为层(A)),及具有隔氧性的树脂形成的中间层(下文有时称为层(B)),从而至少使外层材料形成交联结构。因此使上述管状的多层材料构成的容器可在高温下消毒。
该含经不饱和羧酸或其衍生物接枝改性的密度为0.900至0.975g/cm3的乙烯/α烯烃共聚物的混合物形成的内层和外层及具隔氧性树脂形成的中间层能由如螺纹挤压机按公知的压模法共同挤压或挤压覆盖层而制得。
本发明的管状容器可由上述挤压方法获得的管状切割成适当的长度,并将所切得的管状物的一端部热密封,而制成容器,并借助熔融,将分离的模压开口部分连接到另一端部上。
在制造本发明的第三管状容器时,重要的是(A)层和(B)层相互邻接。此外,该第三管状容器还具有含未接枝的密度为0.900至0.975g/cm3的聚乙烯和乙烯/α烯烃共聚物的混合物形成的最外层(C)。此外,该第三管状容器只要其具有(A)/(B)/(C)层的结构形式,它就还可具有含未接枝的密度为0.900至0.975g/cm3的聚乙烯和乙烯/α烯烃共聚物的混合物形成的最内层(D)。
该第三管状容器的层结构包括,例如(A)/(B)/(C),(C)/(A)/(B)/(A),(C)/(A)/(B)/(A)/(C)/,(A)/(B)/(A)/(D),(C)/(A)/(B)/(A)/(D)及(C)/(A)/(B)/(A)/(C)/(D)。
考虑到第三管状容器每层的厚,较好是外层是50至300μm,中层是5至150μm,内层为50至300μm,尤其是外层为100至200μm,中层为30至75μm,内层为200至300μm。第三管状容器的壁的总厚度最好是380至500μm。
在本发明中,用电子束照射上述结构的第三管状容器是一个区别特征。
在用电子束照射时,该第三管状容器借助于公知的电子束照射装置以处于范围50至500KGY,较好是100至300KGY用量的电子束照射。在电子束照射下,构成上述混合物的聚乙烯及乙烯/α烯烃聚物进行交联,并且凝胶百分数增加到40%或更多。因此,抗热水收缩因子(将一样品置于121℃的高压蒸锅中热处理30分钟而测得)可减少到3%或更小,从而能提供耐高温消毒的可挤压的管状容器,而不会影响上述混合物内在的柔性。
使用某一用量的电子束时,使构成上述混合物的聚乙烯和乙烯-α烯烃共聚物产生交联结构,并借助于形成三维网结构而变成所谓的凝胶状态。并且,该混合物有时很难熔化,甚至在高于其熔点之温度下也难于熔化,因此该混合物之热封性受到影响,从而当该第三管状容器的密封部分被罩住后,再用电子束进行照射。最终,能获得可高温消毒的、可挤压的管状容器。该容器具有优异的隔氧性,并且有上述混合物内在的柔性。
另外,应该懂得有关第一和第二容器的说明可以应用到本发明的第三容器中,这些说明被省略。
本发明将根据参考实例作出更详细的说明,但本发明并不受这些实例的限制。
在实例中获得的容器是按下列方法确定的(a)抵抗力是用于确定柔性的指标,其对应于测得的应力,即当管状容器由一重物(压缩率为100mm/分钟)从管状部的上方向管状部分的表面施加压力,将其压缩成直径短10mm的鼓起状态时而测得之应力。具有抵抗力为1.5kgf或更小的容器被确定为其具有理想的柔性。
(b)抗热水收缩因子对应于测得的样品的收缩百分数,其是当样品在121℃高压蒸锅内处理30分钟之后而测得。具有抗热水收缩因子为3%或更小的容器确定是具理想耐热性的。
(c)可熔性是由断裂强度(kg/15mm)表示的,其是借助于将具有15mm宽的矩形样品片在3mm宽的区域进行热封,并在180°方向以100mm/分钟之速度将其张紧而测得,具有至少4.5kg的可熔性的容器确定为具有理想的可熔性。
(d)凝胶体百分数对应于样品(在这种情况下,在具有层状结构的容器中取出具有隔氧性的树脂)在二甲苯中沸煮24小时后所剩余的容量百分数,并且用这个指标可以衡量耐热性和抗化学性。具有至少40%的凝胶百分数的密器确定为具有理想的耐热性和抗化学性。
(e)关于电子束对样吕的穿透能力,相对的用量由38μm厚的CTA(三乙酸纤维素)用量测定仪(由富士胶卷有限公司提供)测量。
例1中等密度的聚乙烯具有密度为0.938g/cm3,熔点为125℃与乙烯-丙烯共聚物(含乙烯80mol%)以比例70∶30(重量比)混合,从而获得密度为0.916g/cm3的混合物,并将该混合物由直径为40mm且有效长度为1000mm的螺杆以190℃的金属模温度在金属模中进行挤压,从而形成管状模压件。将该管状件之一端部进行热封,从而形成具壁厚为0.45mm,内直径为40mm,长度为150mm的管状容器。将该管状容器和100KGY的电子束照射。对最终形成的样品测量其凝胶百分数,抗热水收缩因子及抵抗力。表1示出其结果。
例2一种高密度的聚乙烯具有密度为0.953g/cm3,熔点为130℃与乙烯-丙烯共聚物按比例70∶30(重量比)混合,从而获得一种密度为0.925g/cm3的混合物,并将该混合物由直径为40mm并且有效长度为1000mm的螺杆,以190℃的金属模温度在金属模中进行挤压,从而形成管状模压件。将该管状模压件的一端热密封,从而形成具有壁厚0.45mm,内直径为40mm,长度为150mm的管状容器。将该管状容器用100KGY的电子束照射,对最后形成的样品测量其凝胶体的百分含量,抗热水收缩因子,以及抵抗力,其结果示于表1中。
例3线性低密度聚乙烯具有密度为0.921g/cm3,熔点为117℃与乙烯-丙烯共聚物按比例90∶10(重量比)混合,从而获得一种密度为0.916g/cm3的混合物,将该混合物由直径为40mm且有效长度为1000mm的螺杆以190℃的金属模温度在金属模中进行挤压,从而形成管状模压件。将该管状模压件一端热密封,从而形成具壁厚0.45mm,内径40mm,长度为150mm的管状容器。将该管状容器用150KGY的电子束照射,对最后形成的样品测量其凝胶体的百分含量,抗热水收缩因子以及抵抗力,其结果示于表1中。
例4线性低密度聚乙烯具有0.924g/cm3的密度,熔点为119℃与乙烯-丙烯共聚物按比例90∶10(重量比)混合,从而获得一种密度为0.917g/cm3的混合物,将该混合物由直径为40mm且有效长度为1000mm的螺杆以190℃的金属模温度从金属模中挤压出,从而形成管状模压件。将该管状模压件一端热密封,从而形成具有壁厚0.45mm内径40mm,长度为150mm的管状容器。将该管状容器用200KGY的电子束照射,对最后形成的样品测量其凝胶体的百分含量抗热水收缩因子,以及抵抗力,其结果示于表1中。
比较例1中密度的聚乙烯具有0.935g/cm3的密度,熔点为125℃与乙烯-丙烯共聚物(乙烯含80mol%)按比例70∶30(重量比)混合而得到一密度为0.916g/cm3的混合物,并将该混合物由直径为40mm,有效长度为1000mm的螺杆以190℃的金属模温度在金属模中挤压,从而形成管状模压件。将该管状模压件之一端部进行热封而成壁厚为0.45mm,内直径为40mm,长为150mm的管状容器。测量该管状容器中凝胶体的百分含量,抗热水收缩因子,以及抵抗力,其结果示于表1中。
比较例2中密度的聚乙烯具有0.935g/cm3的密度,熔点为125℃,将其由直径40mm且有效长度为1000mm的螺杆以190℃的金属模温度在金属模中挤压,从而形成管状模压件。将该管状模压件的一端部热密封,从而形成壁厚为0.45mm,内直径为40mm,长度为150mm的管状容器。用100KGY的电子束照射该管状容器,并测量最终的样品中凝胶体的百分含量,抗热水收缩因子,以及抵抗力,其结果示于表1中。
表1
例5中等密度的聚乙烯具有0.938g/cm3的密度,熔点为125℃与乙烯-丙烯共聚物(乙烯含量80mol%)按比例70∶30(重量比)混合而得到密度为0.916g/cm3的混合物,并将该混合物模制挤压形成壁厚为0.45mm,内直径为40mm,长为150mm的管状模压件。将该管状模压件的一端部热密封,从而得到管状容器。用加速电压250KV,离开孔的距离为7.5cm,并且用照射到容器表面的用量为300KGY的电子束照射该容器。在这种情况下,在容器壁的表面,中间点及另一面的相对用量分别是100、70及30%。
测量上述获得的样品的热封强度,抗热水收缩因子,凝胶体的百分含量,抵抗力,其结果示于表2中。
例6线性低密度聚乙烯具有0.924g/cm3的密度,熔点为117℃,与乙烯-丙烯共聚物(乙烯含量80mol%)按比例90∶10(重量比)混合而得到密度为0.916g/cm3的混合物,将该混合物模制挤压形成壁厚0.45mm,内直径40mm,及长度150mm的管状模压件。将该管状模压件的一端部热密封,从而形成管状容器。用加速电压250KV,离孔的距离为7.5cm,并且用照射到容器表面的用量为300KGY的电子束照射该管状容器。在这种情况下,在容器壁表面,在中间点以及在另一面的相对用量分别是100、70及3%。
测量上述获得的样品的热密强度,抗热水收缩因子,凝胶体的百分含量,及抵抗力,其结果示于表2中。
例7中间密度的聚乙烯具有0.938g/cm3的密度,熔点125℃,与乙烯-丙烯共聚物(乙烯含量为80mol%)按比例70∶30(重量比)混合而得到密度为0.916g/cm3的混合物,并将该混合物模制挤压成壁厚为0.45mm,内直径为40mm,长度为150mm的管状模压件。将该管状模压件的一端热密封,从而形成管状容器。用加速电压260KV,离孔的距离为7.5cm并且用照射到密器表面的用量为300KGY的电子束照射该管状容器。在这种情况下,在容器壁的表面,在中间点,以及在另一面的相对用量分别是100、75和20%。
测量上述获得的样品的热封强度,抗热水收缩因子,凝胶体的百分含量及抵抗力,其结果示于表2中。
比较例3线性低密度聚乙烯具有密度为0.924g/cm3,熔点为117℃,与乙烯-丙烯共聚物(乙烯含量为80mol%)按比例90∶10(重量比)混合而得密度为0.916g/cm3的混合物,并将该混合物模制挤压形成壁厚为0.45mm,内直径为40mm,长度为150mm的管状模压件。将该模压件的一端热密封,从而得到管状容器。
测量上述管状容器的热封强度,抗热水收缩因子,凝胶体的百分含量以及抵抗力,其结果示于表2中。
比较例4中等密度的聚乙烯具有密度为0.938g/cm3,熔点为125℃,与乙烯-丙烯共聚物(乙烯含量80mol%)按比例70∶30(重量比)混合而得到密度为0.916g/cm3的混合物,并将该混合物模制挤压从而形成壁厚为0.45mm,内径为40mm,长度为150mm的管状模压件。将该管状模压件的一端部热密封,从而得到管状容器。
测量上述管状容器的热封强度,抗热水收缩因子,凝胶体的百分将其由直径40mm且有效长度为1000mm的螺杆以190℃的金属模温度在金属模中挤压,从而形成管状模压件。将该管状模压件的一端部热密封,从而形成壁厚为0.45mm,内直径为40mm,长度为150mm的管状容器。用100KGY的电子束照射该管状容器,并测量最终的样品中凝胶体的百分含量,抗热水收缩因子,以及抵抗力,其结果示于表1中。
表1
例5中等密度的聚乙烯具有0.938g/cm3的密度,熔点为125℃与乙烯-丙烯共聚物(乙烯含量80mol%)按比例70∶30(重量比)混合而得到密度为0.916g/cm3的混合物,并将该混合物模制挤压形成壁厚为0.45mm,内直径为40mm,长为孔的加速距离为7.5cm,用照射到容器表面的用量为300KGY的电子束照射该管状容器。在这种情况下,在容器壁的表面,在中间点及在另一面的相当用量分别是100、70和3%。
测量上述获得的样品的热强度、抗热水收缩因子,凝胶体的百分含量,抵抗力及氧渗透性,其结果示于表3中。
比较例5改性的低密度聚乙烯用0.15%重量的马来酸酐接枝改性,并且其密度为0.920g/cm3,用于构成内层和外层。“EVAL”(注册商标名EP-F(MFR1.3)由Kuraray有限公司提供)作为具隔氧性的树脂用于形成中间层。上述聚乙烯和“EVAL”一起共同模制挤压形成外层/中间层/内层,其厚度分别为150/50/250μm,内直径为40mm,长度为150mm的管状模压件。将该模压件的一端部热密封,从而形成管状容器。
测量上述管状容器的热封强度,抗热水收缩因子,凝胶体的百分含量,阻力及氧输送量测量,其结果示于表3中。
表3
例9具有下列结构的各层在下列条件下借助于共同挤压成形而得到管状容器外层混合的(A)(密度为0.916g/cm3)由经0.17%重量的马来酸酐接枝改性后的密度为0.938g/cm3的改性的中密度的聚乙烯与乙烯-丙烯共聚物(乙烯含量80mol%)按比例70∶30混合而得,由具有直径40mm和有效长度为1000mm的螺杆在190℃时挤压。
中间层“EVAL”(B)(注册商标名,EP-F,MFR1.3,则Kuraray有限公司提供)作为具有隔氧性的树脂,由直径为30mm和有效长度750mm的螺杆在225℃时挤压。
内层混合物(A)(密度为0.916g/cm3)由经0.17%重量的马来酸酐接枝改性后的密度为0.938g/cm3的改性的中密度的聚乙烯与乙烯-丙烯共聚物(乙烯含量80mol%)按比例70∶30混合而得,由具有直径50mm和有效长度1200mm的螺杆在160℃时挤压。
金属模的温度为230℃,模压速率为6米/分钟。
按上述方式,获得外层/中间层/内层,其厚度分别为150/50/250μm,内直径为40mm和长度为150mm的管状容器。作200KGY的电子束照射该管状容器。测量获得的样品进行抗热水收缩因子,凝胶体的百分含量,抵抗力、及氧渗透性。此外,样品中充注有水,并且该样品在120℃时消毒处理30分钟,从而确定其形状之改变量。表4示出了其结果。
例10具有下列结构的各层在下列条件下借助共同挤压成形,从而得到管状容器外层混合物(C)(密度为0.916g/cm3)由具有密度为0.938g/cm3熔点为125℃的中等密度的聚乙烯与乙烯-丙烯共聚物(乙烯含量80mol%)按比例70∶30混合而得,并借助直径为50mm和有效长度为1200mm的螺杆在190℃时而挤压。
粘结层1混合物(A)(密度为0.916g/cm3),由经0.17%重量的马来酸酐接枝改性的密度为0.938g/cm3的改性中密度聚乙烯与乙烯-丙烯共聚物(乙烯含量80mol%)按比例70∶30混合而得,并且由直径为40mm有效长度为1000mm的螺杆在190℃时进行挤压。
中间层“EVAL”(B)(注册商标名,EP-F,MFR1.3,由Kuraray有限公司提供)作为具有隔氧性的树脂,由直径为30mm和有效长度750mm的螺杆在225℃时进行挤压。
粘接层2混合物(A)(密度为0.916g/cm3)由经0.17%重量的马来酸酐接枝改性的密度为0.938g/cm3的改性中密度聚乙烯与乙烯-丙烯共聚物(乙烯含量80mol%)按比例70∶30混合而得,并由直径为40mm,有效长度为1000mm的螺杆在190℃时挤压。
内层混合物(C)(密度为0.916g/cm3)由将密度为0.938g/cm3,熔点为135℃的中密度聚乙烯与乙烯-丙烯共聚物(乙烯含量80mol%)按比例70∶30混合而得,并由直径为50mm,有效长度为1200mm的螺杆在190℃时挤压。
在上述方式中,可获得具有外层/粘接层1/中间层/粘接层2/内层,其厚度分别为130/20/50/20/230μm,内直径为40mm且有效长度为150mm管状容器。
用200KGY的电子束照射该管状容器。测量所获得得的样品进行抗热水收缩因子,凝胶体的百分含量,抵抗力及氧渗透性。此外,在样品中注有水并且该样品在120℃时消毒处理30分钟以确定其形状之改变量。结果示于表4中。
比较例6具有下列结构的各层在下列条件下由共同挤压成形,从而得到管状容器。
外层混合物(A)(密度为0.916g/cm3),由经0.17%的重量的马来酸酐接枝改性并且密度为0.938g/cm3的改性中密度聚乙烯与乙烯-丙烯共聚物(乙烯含量80ml%)按比例70∶30混合而得,并由直径为40mm且有效长度为1000mm的螺杆在190℃时进行挤压。
中层“EVAL”(B)(注册商标名,EP-F,MFR1.3,由Kuraray有限公司提供)作为具有隔氧性的树脂,由直径为30mm有效长度为750mm的螺杆在225℃时进行挤压。
内层混合物(A)(密度为0.916g/cm3)由经0.17%的重量的马来酸酐接枝改性,并且密度为0.938g/cm3的改性中密度聚乙烯与乙烯-丙烯共聚物(乙烯含量80mol%)按比例70∶30混合而得,并且直径为50mm有效长度为1200mm的螺杆在160℃时进行挤压。金属模的温度为230℃,模压速率为6米/分。
在上述方式中,可获得具有外层/中间层/内层,其厚度分别为150/50/250mm,内直径为40mm,有效长度为150mm的管状容器。
测量上述管状容器的抗热水收缩因子,凝胶体的百分含量,抵抗力及氧渗透性。此外,在该管状容器中注有水,并在120℃下将该容器消毒处理30分钟,以确定其形状之改变量。结果示于表4中。
比较例7具有下列结构的各层在下列条件下通过共同挤压成形,从而得到管状容器。
外层由0.15%重量的马来酸酐接枝改性,并且密度为0.92g/cm3的改性低密度聚乙烯,直径为40mm,有效长度为1000mm的螺杆在190℃时进行挤压。
中间层
“EVAL”(B)(注册商标名,EP-F.MRF1.3,由Kuraray有限公司提供)作为具隔氧性的树脂,由直径为30mm有效长度为750mm的螺杆在225℃时进行挤压。
内层经0.15%重量的马来酸酐接枝改性,且密度为0.91/cm3的改性低密度聚乙烯由直径为50mm有效长度为1200mm的螺杆在160℃时进行挤压。
在上述方式中,可获得外层/中间层/内层其厚度分别为150/50/250mm,内直径为40mm,有效长度为150mm的和状容器。用200KGY的电子束照射该管状容器。测量所获得的样品的抗热水收缩因子,凝胶体的百分含量,抵抗力及氧渗透率。此外,在该样品中,充注有水,并且在120℃时消毒处理30分钟,从而确定其形状之改变量。表4示出了其结果。
比较例8具有下列结构的各层在下列条件下通过共同挤压成形,从而形成管状容器。
外层由0.15%重量的马来酸酐接枝改性,且密度为0.92g/cm3的改性低密度聚乙烯,由直径为40mm有效长度为1000mm的螺杆,在190℃时进行挤压。
中间层尼龙作为具有隔氧性的树脂,由直径为30mm有效长度为750mm的螺杆在215℃时进行挤压。
内层
经0.15%重量的马来酸酐接枝改性,并且具有0.91g/cm3的密度的改性低密度聚乙烯,由直径为50mm有效长度为1200mm的螺杆在160℃时进行挤压。
在上述方式中,可获得外层/中间层/内层其厚度分别为150/50/250mm,内直径为40mm有效长度为150mm的管状容器。用200KGY的电子束照射该管状容器。测量所获得的样品进行抗热水收缩因子,凝胶体的百分含量,抵抗力及氧渗透性。此外,样品中充注有水并在120℃时消毒处理30分钟,从而确定其形状之改变量。其结果示于表4中。
表4
比较例9具有下列结构的各层在下列条件下通过共同挤压成形,从而形成管状容器。
外层混合物(C)(密度为0.916g/cm3)由密度为0.938g/cm3熔点为125℃的中密度聚乙烯与乙烯丙烯共聚物(乙烯含80mol%)按比例70∶30混合而得,并且由直径为40mm,有效长度为1000mm的螺杆在190℃时进行挤压。
中间层“EVAL”(B)(注册商标名,Ep-F.MFR1.3,由Kurary有限公司提供)作为具有隔氧性的树脂,由直径30mm,有效长度750mm的螺杆在225℃时进行挤压。
内层混合物(C)(密度为0.916g/cm3)由密度为0.938g/cm3,熔点为125℃的中密度聚乙烯与乙烯-丙烯共聚物(乙烯含量80mol%)按比例70∶30混合而得,并且由直径为50mm,有效长度为1200mm的螺杆在160℃时进行挤压。
在上述方式中,可获得外层/中间层/内层,其厚度分别为150/50/250mm,内直径为40mm,有效长度为150mm的管状容器。由用于构成上述管状容器外层的未改性的聚乙烯是不具有极性的,因此它不会粘接到具隔氧性的树脂的中间层上,并且中间层和内层之间的内层剥落强度低达50g/15mm或更低。因此所获得的管状容器不能满足用层状结构构成管状容器的功能要求。
权利要求
1.一种可挤压的管状容器(a)它由密度为0.900至0.975g/cm3的聚乙烯与密度小于0.900g/cm3的乙烯/α烯烃共聚物的组合物构成;(b)它具有由电子束照射而产生的交联结构;(c)它是可高温消毒的。
2.如权利要求1所述可挤压的管状容器,其特征是所述组合物含有乙烯/α烯烃共聚物的重量占聚乙烯和乙烯/α烯烃共聚物的总重量的5至50%。
3.如权利要求1所述可挤压的管状容器,其特征是该可挤压的管状容器具有用50至500KGY的电子束照射而产生的交联结构。
4.一种容器(a)它由含密度为0.900至0.975g/cm3的聚乙烯与密度小0.900g/cm3的乙烯/α烯烃共聚物的组合物构成;(b)沿厚度方向用电子束照射该容器,其用量为,当电子束在表面上的相对用量为100时,电子束的穿透能力在厚度的中点为60至80,而在另一面为40或更小,并且至少在表面上具有交联结构;(c)它是可热密封的,或可超声密封的,并且可在高温下消毒。
5.如权利要求4所述容器,其特征是所述组合物含有以乙烯和乙烯/α烯烃共聚物总重量为基础计5至50%重量的乙烯/α烯烃共聚物。
6.如权利要求4所述容器,其特征是该容器至少在其表面上以用量范围50于500KGY的电子束照射而产生交联结构。
7.一种可挤压的由层状物构成的管状容器。(a)该容器由内层、中间层和外层构成,构成内外层的组合物有用不饱和羧酸或其衍生物接枝改性并且其密度为0.900至0.975g/cm3的聚乙烯和密度小于0.900gcm3的乙烯/α烯烃共聚物,构成中间层的树脂具有隔氧性;(b)用电子束照射该容器,并且至少在外层形成交联结构;(c)该容器可高温消毒。
8.如权利要求7所述可挤压的由层状物构成的管状容器,其特征是该组合物含有以聚乙烯和乙烯/α烯烃共聚物总重量计的乙烯/α烯烃共聚物的重量为5至50%。
9.如权利要求7所述可挤压的由层状物构成的管状容器,其特征是该可挤压的管状容器在50至500KGY用量范围的电子束的照射下产生交联结构。
10.如权利要求7所述可挤压的由层状物构成的管状容器,其特征是具隔氧性的树脂为尼龙或乙烯-乙酸乙烯酯共聚物的皂化产品。
11.一种制造可挤压管状容器的方法,其包括用电子束照射由含密度为0.900至0.975g/cm3的聚乙烯和密度小于0.900g/cm3的乙烯/α烯烃共聚物的组合物构成的管状容器,并使其产生交联结构,因此使该管状容器可高温消毒。
12.如权利要求11所述制造可挤压管状容器的方法,其特征是用电子束照射该管状容器时,遮盖容器的密封部分,使管状容器产生交联结构,因此使该管状容器可热密封或可超声密封,并且可高温消毒。
13.一种容器的生产方法,其包括沿厚度方向用电子束照射管状容器,其用量为电子束在表面上的相对用量为100时,电子束的穿透能力在厚度的中点为60至80,在另一面为40或更小,照射由含密度为0.900至0.975g/cm3的聚乙烯与密度小于0.900g/cm3的乙烯/α烯烃共聚物的组合物构成的管状容器,使乙烯和乙烯/α烯共聚物产生交联,从而使该容器可热密封或可超声密封,并且可高温消毒。
14.一种制造可挤压由的管状叠层容器的方法,其包括用电子束照射由内层外层中间层构成的管状叠层容器,该内层和外层是由含经饱和羧酸或其衍生物接枝改性的密度这0.900至0.975g/cm3的聚乙烯与密度小于0.900g/cm3的乙烯/α烃共聚物形成的组合物构成,该中间层之树脂具有隔氧性,从而至少使管形层状物的容器外层产生交联结构,因此使上述管形层状物容器可高温消毒。
全文摘要
一种管状可挤压的容器及其制造方法,(a)该容器由含密度为0.900至0.975g/cm
文档编号C08L51/06GK1092032SQ93120228
公开日1994年9月14日 申请日期1993年10月26日 优先权日1992年10月26日
发明者幕内惠三, 串田秀男, 栗原孝弘, 二见靖男, 吉井文男, 中岛静, 菅原良二, 石山正信, 宫本元, 河内秀史, 中川幹夫 申请人:株式会社吉野工业所, 三井石油化学工业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1