增稠的酸组合物及其用途的制作方法

文档序号:3725518阅读:911来源:国知局
专利名称:增稠的酸组合物及其用途的制作方法
技术领域
本发明通常涉及增稠的酸凝胶及其用途。
背景技术
本发明通常涉及增稠的酸凝胶以及这种增稠凝胶的用途。例如,酸增稠溶液可用于清洁制剂,诸如硬表面清洁剂、抽水马桶清洁剂、工业清洁剂等,以及油井领域,诸如油井增产措施中。这些和其他用途对本领域技术人员是显然的。
本发明的组合物尤其可用于油井领域。通过钻井穿透地下储油岩层,提供使油达到地表的支流径,可以获得烃类。为了使油从岩层流往钻井,必须有从岩层通往钻井的流径。该流径通过岩层的岩石,并且具有足够的尺寸和数量足以使油导管穿过岩层的孔。
油产量下降的通常原因是岩层破损堵塞岩石孔隙并阻碍油向钻井以及最终向地表的流动。这样的破损通常由于故意将其它流体注入钻井而产生。甚至在钻井后,一些钻孔液体残留在钻井附近的岩层区域中,脱水并在钻井上形成涂层。该涂层的自然影响是降低了离开岩层向钻井方向移动的油的渗透性。
油产量降低的另一个原因是当岩层的孔尺寸小,使油只能非常缓慢地向油井移动时产生的。在上述两种情况下,希望提高岩层的低渗透性。
油井增产措施是指用于提高储油岩层渗透性的各种技术。一般采用三种常规的油井增产措施。第一种方法是将化学物质注入油井,与有损渗透性的材料诸如油井涂层反应并将其溶解。第二种方法要求使化学物质通过油井并注入岩层,与少量岩层反应并将其溶解,从而产生使烃流向油井的另外流径。这些另外的流径使在岩层的低渗透性或破损区域周围的油流再定向。第三种技术通常称为压破,包括在足以实际上使岩层破裂的压力下将化学物质注入岩层,从而产生大的流动通道,使烃能够更容易地离开岩层并流入油井。
在一个实施方案中,本发明涉及通过除去油井附近储油岩层的破损或通过将少量岩层溶解以产生另外的流径而增强储油岩层的烃产率的方法。这通常称为基质酸化(matrix acidizing)。在该技术中,酸或酸基流体在这一点上是有用的,这是由于它们能溶解在钻井或校正操作过程中引入钻井/岩层的岩层矿物质和污染物。用于酸处理的主要流体是无机酸,诸如盐酸,其在碳酸盐岩层中仍然是优选的酸处理。对于砂岩层而言,优选的流体是盐酸/氢氟酸混合物。
酸处理的目的在于沿着尽可能多的烃流径除去岩层破损。因此,有效的处理必须沿着整个流径尽可能多地除去破损。本发明的流体和技术使酸的渗透最大,产生更为有效的处理。
本发明的增稠的酸粘弹性流体还可以应用于水力压破、卵石回填和本领域技术人员已知的其它油井增产技术中。此外,本发明的酸增稠的流体可用于各种家庭和工业清洁剂中,包括但不限于洗涤剂组合物、抽水马桶清洁剂、硬表面清洁剂、润滑脂切削组合物等。
发明的概述本发明总体涉及用通式I的酰氨基氧化胺胶凝剂和/或粘弹性表面活性剂增稠的含水粘弹性酸性组合物
(1)其中R1是约7-30个碳原子的饱和或不饱和的直链或支链脂族基团,R2是2-6个碳原子的二价亚烷基,其可以是直链或支链的,取代或未取代的,且R3和R4分别是C1-C4烷基或羟烷基,或者它们一起形成最多六元的杂环,以及R5是氢或C1-C4烷基或羟烷基。
上述胶凝剂有利地提供经过长时间也不相分离并且表现出高度热稳定性的凝胶。本发明的增稠酸凝胶可应用于家庭和工业清洁剂和脱脂剂、以及油田增产应用等。
发明的详述本发明总体涉及粘弹性酸组合物、用于酸性溶液的胶凝剂以及使用所述胶凝的酸组合物的方法。本发明的增稠酸组合物可以以钻孔液体、完并液(completion fluids)、修井液(workover fluids)、酸化液、卵石回填等的形式用于增加和/或改变地下岩层的渗透性的方法。此外,本发明的酸增稠组合物还可以用于清洁制剂、水基涂层、洗涤制剂、个人护理制剂、水基沥青制剂等。
在一个实施方案中,本发明涉及含水的增稠酸凝胶,其包括酸和胶凝剂。任何已知的酸都可以使用,包括但不限于无机酸、有机酸等。本发明的含水酸增稠组合物可以按照如下所述,通过向酸水溶液中加入一种或多种胶凝剂而获得。胶凝剂在含水组合物中的浓度通常是基于组合物总重量计的约0.5%-10%重量,优选约2%-8%重量,更优选约4%-6%重量范围内。本发明的含水组合物可以包括下述的无机盐和各种添加剂。
此处公开和描述的胶凝剂是表面活性剂,其可以单独加入,或者可以作为本发明含水增稠酸组合物中的主要组分使用。
本发明的胶凝剂组合物包括至少一种二元醇和至少一种具有下式结构的酰氨基氧化胺
其中R1是约7-30个碳原子、优选约14-21个碳原子的饱和或不饱和的直链或支链脂族基团。更优选R1是碘值为约1-140、优选约30-90、更优选约40-70的衍生自天然脂肪或油的脂肪脂族基。R1可以局限于单链长,或者可以是混合链长,诸如那些衍生自天然脂肪和油或者石油原料的基团。优选牛油烷基、硬化牛油烷基、菜籽油烷基、硬化菜籽油烷基、妥尔油烷基、硬化妥尔油烷基、椰油烷基、油基或大豆烷基。R2是2-约6个碳原子、优选2-4个碳原子和更优选3个碳原子的直链或支链的取代或未取代的二价亚烷基。R3和R4可以相同或不同,选自1-约4个碳原子的烷基或羟烷基,优选是羟乙基或甲基。或者,式I酰氨基氧化胺中的R3和R4和与这些基团连接的氮原子一起形成最多六元的杂环。最后,R5是氢或C1-C4烷基或羟烷基。这些酰氨基氧化胺的例子是衍生自下述化合物的那些 (II)吡咯烷 (III)哌啶 (IV)吗啉本发明关注的酰氨基氧化胺的其它例子包括但不限于选自以下的那些牛油酰氨基烷基氧化胺、硬化的牛油酰氨基烷基氧化胺、菜籽油酰氨基烷基氧化胺、硬化菜籽油酰氨基烷基氧化胺、妥尔油酰氨基烷基氧化胺、硬化妥尔油酰氨基烷基氧化胺、椰油酰氨基烷基氧化胺、硬脂酰基酰氨基烷基氧化胺、油基酰氨基烷基氧化胺、大豆酰氨基烷基氧化胺及其混合物。本发明酰氨基氧化胺的优选特例包括但不限于下述牛油酰氨基丙基氧化二甲胺、氢化牛油酰氨基丙基氧化二甲胺、大豆酰氨基丙基氧化二甲胺、油基酰氨基丙基氧化二甲胺、瓢儿菜酰氨基丙基氧化二甲胺、菜籽油酰氨基丙基氧化二甲胺、氢化菜籽油酰氨基丙基氧化二甲胺、妥尔油酰氨基丙基氧化二甲胺、氢化妥尔油酰氨基丙基氧化二甲胺、C14-C22饱和或不饱和的脂肪酸酰氨基丙基氧化二甲胺及其混合物。
氧化胺胶凝剂组合物可以通过在作为溶剂的可混溶性二元醇中,将叔胺,例如叔酰氨基胺,与浓缩的过氧化氢反应而制备。二元醇的加入量是通过欲制备的氧化胺溶液的浓度而确定的。
使用的二元醇是能从过氧化氢反应物中加溶叔胺、氧化胺和水的高闪点溶剂。如果使用水作为溶剂,得到最大氧化胺浓度是20-30%的凝胶/糊料。如果使用醇诸如异丙醇作为溶剂,那么产物将具有较低的闪点,并且必须被分级为可燃。而且,醇类,诸如异丙醇,可能改变形成的表面活性剂聚集体的结构,因此负面影响氧化胺溶液增稠溶液的能力。根据本发明使用二元醇,克服了现有技术的缺点,并且可以制备出具有优异增稠能力的浓缩氧化胺粘弹性组合物。
或者,可以通过在醇溶剂诸如异丙醇中,将叔胺与浓缩过氧化氢反应制备氧化胺胶凝剂组合物,但如上所述,由于醇溶剂,诸如异丙醇,对于胶凝剂的性能具有不利影响,优选从终产物中除去醇并用二元醇溶剂代替。
尽管根据本发明可以使用任何二元醇溶剂,最优选的二元醇包括但不限于乙二醇、丁二醇类、二甘醇、聚丙二醇、聚乙二醇、甘油、丙二醇类、1,4-丁二醇、四甲基乙二醇、1,3-丙二醇等。丙二醇类(诸如1,2-丙二醇)是最优选的二元醇。
由于游离脂肪酸对于胶凝剂有害,所以将形成的游离脂肪酸的量最小化也很重要。更具体而言,如果氧化胺含有少于5%游离脂肪酸,更优选少于3%游离脂肪酸和最优选少于1%游离脂肪酸,则本发明的胶凝剂会使水溶液的粘度更高。为了实现低的游离脂肪酸含量,重要的是在上述制备本发明胶凝剂的方法中使用氧化催化剂。优选的氧化催化剂包括但不限于溶解的二氧化碳、碳酸盐、碳酸氢盐等。这样的催化剂体系可以参见U.S.专利No.4,960,934,此处引作参考。
可以在存储过程中使用螯合剂稳定高温下的产物。优选的螯合剂是膦酸盐诸如SolutiaTM出售的商品名为Dequest的膦酸盐。优选的产品是Dequest2010。螯合剂可以在制备本发明胶凝剂组合物的过程中加入,或者在其后的任何时间加入。
如果氧化胺含有少于10%但多于0.5%的游离胺,优选8%-2%的游离胺,最优选约6%-3%的游离胺,则胶凝剂组合物会使酸水溶液粘度更高。
根据所需的粘度,胶凝剂组合物的浓度优选在约1%-10%的范围内,更优选约3%-8%,最优选约4%-6%。
本发明的胶凝剂显示出有效地将盐酸溶液增稠3-15%。
本发明的组合物还可以含有无机盐(例如,含碱金属盐、碱土金属盐和/或铵盐的盐水)以及其它粘度改进添加剂(例如,诸如纤维素类)。用所述试剂凝胶的盐水优选用作分水剂、推送液、压裂液、钻探泥浆、卵石回填液、钻入液(drill-in fluids)、修井液、完井液等。
本发明的凝胶酸组合物还可以用于清洁和卫生洗涤制剂、水基涂料(例如油漆)、洗涤剂、个人护理制剂、水基沥青体系、混凝土、建筑产品(例如灰浆、石膏、接缝化合物等)、农用漂移控制剂(agricultural drift controlagents)、以及用于油井增产应用等。
当用于增产应用时,本发明的增稠酸凝胶任选包括润滑剂、防腐剂和各种其它添加剂。
润滑剂可以包括有机硫、磷、硼或羧酸的金属盐或胺盐。典型的这种盐是1-22个碳原子的羧酸,包括芳族和脂族酸;含硫的酸,诸如烷基和芳族磺酸等;含磷的酸,诸如磷酸、亚磷酸、次膦酸、磷酸酯和类似的含硫同系物,诸如硫代磷酸和二硫代磷酸以及相关的酸酯;巯基苯并噻唑;硼酸类,包括硼酸、硼酸酯等;以及月桂酸胺盐。
防腐剂可以包括碱金属的亚硝酸盐、硝酸盐、磷酸盐、硅酸盐和苯甲酸盐。代表性的适合有机抑制剂包括烃基胺和羟基取代的烃基胺中和的酸化合物,诸如中和的磷酸盐和烃基磷酸酯、中和的脂肪酸(例如具有8-约22个碳原子的那些)、中和的芳族羧酸(例如4-(叔丁基)-苯甲酸)、中和的环烷酸和中和的烃基磺酸盐。还可以使用烷基化琥珀酰亚胺的混合盐酯。防腐剂还可以包括链烷醇胺,诸如乙醇胺、二乙醇胺、三乙醇胺和相应的丙醇胺,以及吗啉、乙二胺、N,N-二乙基乙醇胺、α-和γ-甲基吡啶、哌嗪和异丙基氨基乙醇。
增产液还可以包括用于特定应用以优化流体性能的添加剂。其例子包括着色剂;染料;除臭剂,诸如香茅;杀菌剂和其它抗微生物剂;螯合剂,诸如乙二胺四乙酸钠盐或氨三乙酸;防冻剂,诸如乙二醇和类似的聚氧亚烷基多元醇;防泡剂,诸如含聚硅氧烷的试剂,以及剪切稳定剂,诸如市售的聚氧亚烷基多元醇。还可以加入抗磨剂、摩擦改性剂、防滑剂和润滑剂。还可以包括耐特压添加剂,诸如磷酸酯和二烷基二硫代磷酸锌。
此处公开和描述的增稠酸凝胶可以有利地用作酸化液。全世界大部分的烃储量是在已知渗透性非常低的碳酸盐岩石结构中发现的。在许多砂岩储层中,岩石结构可以与碳酸盐结合在一起,或者碳酸盐垢可以接近产油井聚集,结果二氧化碳由于压降而从溶液中释放出来。另一类可以在产油井周围聚集的结垢是铁垢,尤其铁的氧化物和氢氧化物。低渗透性、钻井破损和结垢的聚集均阻碍了油向产油井的流动,用于开启井眼周围通道以提高流速的常规方法是注入酸,这称为酸化或酸增产。
有两种类型的酸处理方法破裂酸化,即以高于破裂压力的速度注入酸,将所得断面刻蚀;以及基质酸化,其中以低于破裂压力的速度注入酸,以溶解岩石中的流动通道或除去钻井引起的结垢或破损。酸处理用于所有类型的油井,并且偶尔用于水井其可在新钻井中用于打开裂缝或除去破损,或者将产量已经下降的旧井复原。将酸泵入井中,其在井中与碳酸钙按照以下反应式进行反应
氯化钙(CaCl2)高度溶于水,并且酸在岩石中刻蚀出通道,因此改善了油或气体向井的流动。盐酸立即与碳酸盐岩石反应,并趋向于形成穿过岩石的一些大的通道(称为条虫状气孔),而不是打通孔结构。酸的渗透距离最多不过几英尺。
由于盐酸在与碳酸盐岩石接触时反应如此快,人们研究了大量产品以助于减慢反应速度,使得酸进一步渗入岩层或在井眼周围更均匀地反应。盐酸的反应可以根据本发明通过将酸凝胶化而减慢。此外,本发明的酸增稠凝胶已经显示出被碳酸钙增稠达到约13-17%,此时凝胶相分离,导致迅速变稀。
乙酸的反应由于反应产物二氧化碳的出现降低了反应速度而自然减慢。放出的二氧化碳进入岩层或被油、水或烃气体吸收,乙酸的反应得以继续。
碳酸盐储层中的烃井通常在钻井后和开始生产之前立即酸化,并且经常每2-3年进行重复处理。
本发明的增稠酸凝胶还可用于基质压裂,其中通过将悬浮在含水流体(称为压力支撑剂)中的沙子以高于压裂压力的速度注入井中而形成断裂。当移去注入压力时,沙子留在原地,将断面撑开。接着使用盐酸处理撑开的裂缝是非常不常见的,这是因为酸和岩石之间的快速反应速度会引起裂缝倒塌。但是从压力支撑悬浮液中滤出凝胶会在断面上引起破损,这显著降低油或气体流入裂缝的速度。
常规的油井是垂直向下钻入油储层并通过储层的产油带。油流入垂直的井眼。近年来,在水平方向上从垂直的井身中钻井穿过储层变得普遍。在许多情况下,水平井已经将烃产量提高了几个数量级。通过从水平井中积聚钻探泥浆滤饼和细岩石颗粒除去钻井破损是成本很高的方法,这是因为需要使用特殊的技术,诸如通过旋管注入酸,以避免腐蚀井口设备并防止盐酸在其到达水平井的远端之前被用尽。酸处理或酸化岩层的目的在于沿尽可能多的烃流径除去岩层破损。所以,有效的处理必须沿着整个流路除去尽可能多的破损。本发明的流体和技术使得酸的渗透最大化,得到更为有效的处理。
最后,当储层已经由于天然储层压力降低而耗尽时,可以注入水或二氧化碳以回收更多百分比的原地的油。水或气体是通过储层中的部分井(注入井)而注入的,因此将油向产油井推送。在一些储层中,水的注入速度较低,因此油的生产速度较低。可以使用本发明的酸凝胶进行酸处理,以提高注入井的注入性。
较之目前作为胶凝剂用于井下流体的聚合物(例如多糖),此处公开的胶凝剂提供了几项优点。例如,当使用此处列举的化合物(特别是烷基酰氨基氧化胺,更特别是烷基酰氨基丙基氧化胺)作为胶凝剂用于井下流体时,其在岩层上的残留物较少,所述残留物会在井下操作过程中以及之后引起岩层破损。
而且,较之通常必须水合的聚合物而言,生产凝胶流体更容易,并且可以将凝胶流体设计为随着岩层温度,或者其它因素,诸如氧化剂而“裂开”。还可以通过使用溶剂,诸如烃类、醇类,甚至岩层中油将凝胶就地“裂开”。以下列举的胶凝剂根据其链长可以在很宽的温度范围内使用,并且有助于从岩层中除去油。
为了选择性改善地下岩层的渗透性,首先可以将一种或多种胶凝剂与所需强度的含水酸组合物混合,形成增稠的酸性粘弹性液体,随后将其以能改善岩层渗透性的有效量注入岩层。任选地,酸液中的胶凝剂浓度是约0.5%-10%重量,优选约2%-8%重量,更优选约4%-6%重量。对于优化性能而言,胶凝剂含少于约1%游离脂肪酸和约2-8%游离胺也很重要。应当避免使用醇,诸如异丙醇,因为其会破坏本发明胶凝剂的粘弹性特征。
本发明的增稠酸凝胶还可以用于清洁和卫生洗涤制剂、水基涂料(例如油漆)、洗涤剂、个人护理制剂、水基沥青体系、混凝土、建筑产品(例如灰浆、石膏、接缝化合物等)、农用漂移控制剂、用于其它油井增产应用和油田应用等。
下面通过以下实施例阐述本发明。
实施例1胶凝剂的制备步骤向3加仑的反应器中装入(8.4磅)牛油酰氨基丙基二甲胺(TAPA)、(7.0磅)溶剂(丙二醇或异丙醇)和(1.8克)Dequest 2010。测定就有酰氨基丙基胺的净当量重量(NE)。随后加入(70克)碳酸氢铵。反应器加热至50℃并使用N2吹扫反应器顶部空间。随后缓慢加入3%摩尔过量的70%H2O2,同时将反应温度保持在55-60℃。反应剧烈放热。随后以8.5g/分钟加入H2O2(加入时间最短60分钟)。需要很好地控制温度,以使不希望的副产物最少。在H2O2加完后,于55℃蒸煮反应混合物,直至游离胺在本说明书范围内得到牛油酰氨基丙基氧化胺胶凝剂,以下称为AromoxAPA-T。AromoxAPA-T是由Akzo Nobel Surface Chemistry LLC,Chicago,IL市售的。
实施例2使用AromoxAPA-T作为酸增稠剂进行研究以测定Aromox APA-T在酸增稠应用中的有效性。选择盐酸作为代表性的酸,以及使用Ethomeen T/12乙酸酯*作为高酸强度(15%)下的基准。使用三种酸浓度代表一般家用清洁剂(3%)、高强度酸的家庭清洁剂(9%)和油田酸化(15%)。在2-8%浓度(按照供应)以及28和43℃的温度下将Aromox APA-T过筛。加入碳酸钙的作用是用于在15%的酸强度下检查两种表面活性剂。粘度测定全部是使用#52心轴,以0.5转/分钟在Brookfield粘度计上进行的。Aromox APA T批次SR302415;EthomeenT/12批次SR269281X。报告中的浓度均是指“按照供应”;Aromox APAT是以~50%浓度提供的,Ethomeen T/12是以>97%的浓度提供的。因此,6%的Aromox APA T溶液中的表面活性剂含量(以重量计)与3%的Ethomeen T/12乙酸酯所含大致等量。
图表1.Aromox APA T酸增稠-温度曲线 结果与讨论如图表1所示,Aromox APA T凝胶的粘度随表面活性剂的浓度而增加,但随着酸强度的增加和/或随温度增加而下降。在3%的HCl下,28和43℃之间的粘度差异相对较小。而在15%的HCl下,粘度随温度的降低更为显著。通过增加酸强度加剧了升温的削弱作用。例如,在6%的表面活性剂强度下,3%的HCl凝胶在温度由28℃升高至43℃时不降低粘度,而在15%的HCl下,经过相同的温度改变,凝胶的粘度升高约75%。
配方和稳定性需要将3%HCl溶液加热至40-50℃,以使Aromox APA T在一小时内完全溶解。9%HCl溶液也需要类似的处理,以实现表面活性剂浓度大于6%的溶解度。在室温下,15%HCl溶液立即溶解的表面活性剂浓度最高8%。除了15%HCl/8%Aromox APA T凝胶是浅黄色之外,凝胶全部是澄清的。一旦处于溶液中,通过冷却至室温,将凝胶相稳定至少3周。室温下的稳定性实验已经证明,在约3周后,9%的凝胶按照最低到最高表面活性剂浓度的顺序开始分离。3%和15%的凝胶最多稳定约5-6周,但随后按照表面活性剂增加的顺序相分离。在相同的酸强度内,表面活性剂的浓度越低,相分离发生得越快。令人惊奇的是,较之更高或更低的酸浓度,9%HCl凝胶的相分离更快。
对比Aromox APA T和Ethomeen T/12乙酸酯作为参照点,在15%HCl溶液中,在2-8%的浓度下将Ethomeen T/12乙酸酯过筛。在室温下,立即溶于15%酸溶液中的表面活性剂浓度最高为8%。所有凝胶是黄色-橙色,并随着表面活性剂浓度的增加而变深。如图表2所示,Ethomeen T/12乙酸酯凝胶在约4%的浓度下达到最大粘度。随着加入的表面活性剂增加,凝胶的粘度迅速降低。这是Aromox APA T和EthomeenT/12乙酸酯凝胶之间的主要区别。在6-8%的表面活性剂浓度时观察到大的区别。
图表2.15%HCl下的酸增稠对照 加入碳酸钙的效果当酸化油井以提高产量时,将大量石灰石(方解石(CaCO3)白云石(CaCO3+MgCO3等摩尔)之比大于50%)溶于酸性基质。为了了解AromoxA PA T和Ethomeen T/12乙酸酯凝胶是如何在这些条件下起作用的,进行了一系列实验,其中向15%HCl凝胶中加入碳酸钙。如图表3所示,通过在43℃加入碳酸钙/降低酸强度,较之EthomeenT/12乙酸盐,Aromox APAT在更大程度上增稠。注意,粘度是以cP的log表示的,使得可以在同轴上看出对于两种凝胶的趋势。两种凝胶均在碳酸钙高于13-17%时发生引起迅速变稀的相分离。
图表3.于43℃下加入CaCO3的效果-按照供应的表面活性剂 *以1∶1(wt/wt)与冰醋酸混合加入15%HCl溶液Aromox APA T是有效的酸增稠剂。粘度随着表面活性剂的浓度而增加,但随着酸强度的增加和/或温度的增加而下降。在15%的酸浓度下(HCl),在相同的原料浓度下,Aromox APA T产生的粘度比Ethomeen T/12乙酸酯大,超过4%。性能的差异在较高的浓度(6-8%)下最显著,此时Ethomeen T/12乙酸酯在约4%时达到最大粘度,随后随着加入的表面活性剂增加而迅速变稀。较之Ethomeen T/12乙酸酯,Aromox APA T也随着碳酸钙的加入/酸浓度降低而在较大程度上增稠。两种凝胶均在约13-17%的碳酸钙时发生引起粘度急剧下降的相分离。
权利要求
1.一种含水的增稠酸组合物,其包括至少一种酸和一种用于所述酸的胶凝剂,其中所述胶凝剂包括作为溶剂的至少一种二元醇和至少一种通式(I)的酰氨基氧化胺 其中,R1是约7-30个碳原子的饱和或不饱和的直链或支链脂族基团,R2是2-约6个碳原子的直链或支链的饱和或不饱和的二价亚烷基,R3和R4是相同或不同的,是1-约4个碳原子的烷基或羟烷基,或者R3和R4和与它们连接的氮原子一起形成最多六元的杂环,以及R5是氢或1-约4个碳原子的烷基或羟烷基,其中所述胶凝剂组合物含有少于约10%的游离脂肪酸。
2.权利要求1的增稠组合物,其中所述胶凝剂含有约2-10%游离胺。
3.权利要求1的增稠组合物,其中R1是约15-21个碳原子的脂族基团,R2是约2-4个碳原子的亚烷基。
4.权利要求1的增稠组合物,其中R1是由碘值为约1-140的天然脂肪和油衍生的脂族基,而R2是具有3个碳原子的亚烷基。
5.权利要求1的增稠组合物,其中R1选自牛油烷基、硬化牛油烷基、菜籽油烷基、硬化菜籽油烷基、妥尔油烷基、硬化妥尔油烷基、椰油烷基、硬脂酰基、油基和大豆烷基,R2是具有3个碳原子的亚烷基,R3和R4分别是甲基。
6.权利要求1的增稠组合物,其中R3和R4和与它们连接的胺氮原子一起形成带有衍生自吡咯烷的5元环的杂环基。
7.权利要求1的增稠组合物,其中R3和R4和与它们连接的胺氮原子一起形成带有衍生自哌啶的6元环的杂环基。
8.权利要求1的增稠组合物,其中R3和R4和与它们连接的胺氮原子一起形成带有衍生自吗啉的6元环的杂环基。
9.权利要求1的增稠组合物,其中所述至少一种二元醇溶剂选自乙二醇、丁二醇、二甘醇、丙二醇、聚乙二醇、聚丙二醇、甘油、1,4-丁二醇、四甲基乙二醇、1,3-丙二醇及其混合物。
10.权利要求1的增稠组合物,其中所述酰氨基氧化胺选自牛油酰氨基烷基氧化胺、硬化牛油酰氨基烷基氧化胺、菜籽油酰氨基烷基氧化胺、硬化菜籽油酰氨基烷基氧化胺、妥尔油酰氨基烷基氧化胺、硬化妥尔油酰氨基烷基氧化胺、椰油酰氨基烷基氧化胺、硬脂酰基酰氨基烷基氧化胺、油基酰氨基烷基氧化胺、大豆酰氨基烷基氧化胺及其混合物。
11.权利要求1的增稠组合物,其中所述酰氨基氧化胺选自牛油酰氨基丙基氧化二甲胺、氢化牛油酰氨基丙基氧化二甲胺、大豆酰氨基丙基氧化二甲胺、油基酰氨基丙基氧化二甲胺、瓢儿菜基酰氨基丙基氧化二甲胺、菜籽油酰氨基丙基氧化二甲胺、氢化菜籽油酰氨基丙基氧化二甲胺、妥尔油酰氨基丙基氧化二甲胺、氢化妥尔油酰氨基丙基氧化二甲胺、C14-C22饱和或不饱和的脂肪酸酰氨基丙基氧化二甲胺及其混合物。
12.权利要求1的增稠组合物,其中所述酰氨基氧化胺选自牛油酰氨基丙基氧化二甲胺、氢化牛油酰氨基丙基氧化二甲胺、大豆酰氨基丙基氧化二甲胺、油基酰氨基丙基氧化二甲胺、瓢儿菜基酰氨基丙基氧化二甲胺、菜籽油酰氨基丙基氧化二甲胺、氢化菜籽油酰氨基丙基氧化二甲胺、妥尔油酰氨基丙基氧化二甲胺、氢化妥尔油酰氨基丙基氧化二甲胺、C14-C22饱和或不饱和的脂肪酸酰氨基丙基氧化二甲胺及其混合物,且所述二元醇选自乙二醇、丁二醇、二甘醇、丙二醇、聚乙二醇、聚丙二醇、甘油、1,4-丁二醇、四甲基乙二醇、1,3-丙二醇及其混合物。
13.权利要求1的增稠组合物,其中所述酸选自无机酸、有机酸及其混合物。
14.权利要求13的组合物,其中所述酸选自盐酸、氢氟酸、乙酸、甲酸、氨基磺酸、氯乙酸及其混合物。
15.一种用于增稠含水的酸混合物的方法,包括向所述混合物中加入增稠有效量的至少一种胶凝剂组合物,其中所述胶凝剂组合物含有至少一种二元醇和至少一种下式的酰氨基氧化胺 其中,R1是约7-30个碳原子的饱和或不饱和的直链或支链脂族基团,R2是2-约6个碳原子的直链或支链的饱和或不饱和的二价亚烷基,R3和R4是相同或不同的,是1-约4个碳原子的烷基或羟烷基,或者R3和R4和与它们连接的氮原子一起形成最多六元的杂环,以及R5是氢或1-约4个碳原子的烷基或羟烷基,其中所述胶凝剂组合物含有少于约10%的游离脂肪酸。
16.权利要求15的方法,其中所述胶凝剂含约2-10%游离胺。
17.权利要求15的方法,其中R1是约15-21个碳原子的脂族基,R2是约2-4个碳原子的亚烷基。
18.权利要求17的方法,其中R1选自牛油烷基、硬化牛油烷基、菜籽油烷基、硬化菜籽油烷基、妥尔油烷基、硬化妥尔油烷基、椰油烷基、硬脂酰基、油基和大豆烷基,R2是具有3个碳原子的亚烷基,R3和R4分别是甲基。
19.权利要求15的方法,其中R3和R4和与它们连接的胺氮原子一起形成带有衍生自吡咯烷、哌啶或吗啉的5元环的杂环基。
20.权利要求15的方法,其中所述至少一种二元醇溶剂选自乙二醇、丁二醇、二甘醇、丙二醇、聚乙二醇、聚丙二醇、甘油、1,4-丁二醇、四甲基乙二醇、1,3-丙二醇及其混合物。
21.权利要求1的方法,其中所述酰氨基氧化胺选自牛油酰氨基烷基氧化胺、硬化牛油酰氨基烷基氧化胺、菜籽油酰氨基烷基氧化胺、硬化菜籽油酰氨基烷基氧化胺、妥尔油酰氨基烷基氧化胺、硬化妥尔油酰氨基烷基氧化胺、椰油酰氨基烷基氧化胺、硬脂酰基酰氨基烷基氧化胺、油基酰氨基烷基氧化胺、大豆酰氨基烷基氧化胺及其混合物。
22.权利要求21的方法,其中所述酰氨基氧化胺选自牛油酰氨基丙基氧化二甲胺、氢化牛油酰氨基丙基氧化二甲胺、大豆酰氨基丙基氧化二甲胺、油基酰氨基丙基氧化二甲胺、瓢儿菜基酰氨基丙基氧化二甲胺、菜籽油酰氨基丙基氧化二甲胺、氢化菜籽油酰氨基丙基氧化二甲胺、妥尔油酰氨基丙基氧化二甲胺、氢化妥尔油酰氨基丙基氧化二甲胺、C14-C22饱和或不饱和的脂肪酸酰氨基丙基氧化二甲胺及其混合物。
23.权利要求22的方法,其中所述酰氨基氧化胺选自牛油酰氨基丙基氧化二甲胺、氢化牛油酰氨基丙基氧化二甲胺、大豆酰氨基丙基氧化二甲胺、油基酰氨基丙基氧化二甲胺、瓢儿菜基酰氨基丙基氧化二甲胺、菜籽油酰氨基丙基氧化二甲胺、氢化菜籽油酰氨基丙基氧化二甲胺、妥尔油酰氨基丙基氧化二甲胺、氢化妥尔油酰氨基丙基氧化二甲胺、C14-C22饱和或不饱和的脂肪酸酰氨基丙基氧化二甲胺及其混合物,且所述二元醇选自乙二醇、丁二醇、二甘醇、丙二醇、聚乙二醇、聚丙二醇、甘油、1,4-丁二醇、四甲基乙二醇、1,3-丙二醇及其混合物。
24.权利要求15的方法,其中所述酸选自无机酸、有机酸及其混合物。
25.权利要求13的方法,其中所述酸选自盐酸、氢氟酸、乙酸、甲酸、氨基磺酸、氯乙酸及其混合物。
26.一种油井增产流体,其包括权利要求1的增稠组合物。
27.权利要求26的油井增产流体,其中所述流体是基质酸化流体、完井酸化流体、破裂酸化流体或破损除去酸化流体。
28.一种酸化地下岩层的方法,包括将权利要求1的增稠酸组合物注入所述储层中。
29.权利要求28的方法,其中所述储层是烃储层或水储层。
30.权利要求29的方法,其中所述烃是油或气体。
31.权利要求28的方法,其中所述增稠组合物是以等于或高于储层破裂压力的速度注入的。
32.权利要求28的方法,其中所述增稠组合物是以低于储层破裂压力的速度注入的。
33.权利要求15的方法,当采用破裂或基质处理时进行。
34.一种清洁组合物,包括权利要求1的增稠酸溶液。
35.权利要求34的清洁组合物,还包括至少一种选自抗菌剂、抗真菌剂、抗病毒剂及其混合物的其它组分。
全文摘要
本发明通常涉及用酰氨基氧化胺胶凝剂和/或通式(I)的粘弹性表面活性剂增稠的含水酸性组合物,其中R
文档编号C09K8/506GK1656300SQ03812120
公开日2005年8月17日 申请日期2003年4月18日 优先权日2002年4月29日
发明者R·E·多布森, D·K·莫斯, R·S·普雷马钱德兰 申请人:阿克佐诺贝尔股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1