车辆车轮信息处理设备及其方法

文档序号:3968343阅读:94来源:国知局
专利名称:车辆车轮信息处理设备及其方法
技术领域
本发明涉及用于处理车辆车轮信息的技术。更具体地,本发明涉及对从设置于车辆车轮的通信设备接收到的车辆信息进行处理的车辆车轮信息处理设备及车辆车轮信息处理方法。
背景技术
为了促进车辆的安全运行,将车辆车轮保持在正常状态非常重要。例如,如果车辆长期运行时轮胎具有低的压力或高的温度,则轮胎的可靠性劣化。在某些情况下,这种可靠性的降低会导致各种不希望的现象。为了解决此问题,需要适当地监控每个车轮的各种状态(例如轮胎的气压及温度),并当检测到异常时在早期向驾驶员发出报警的技术。
日本实用新型公开号JP U H5-13802公开了一种轮胎气压报警系统,其包括设置于车辆车轮并传输轮胎气压信息的车辆车轮通信设备;以及设置于车体并接收来自车辆车轮通信设备的轮胎气压信息的车体接收器。
但是,日本实用新型公开号JP U H5-13802公开的轮胎气压报警系统的先决条件是,在每个车辆车轮中都要设置单独的车辆车轮通信设备。由此,在多个车辆车轮通信设备被设置在每个车辆车轮中的情况下,会产生信号干扰的问题。为了确定每个车辆车轮的状态,作为车辆车轮信息,需要各种类型的涉及气压、温度等等的传感器信息。此外,当检测温度时,需要来自例如轮胎及车轮的不同位置或部分的传感器信息。由此,需要这样的技术,该技术包括每个车辆车轮上的多个传感器及用于接收并传输各个传感器输出的多个通信设备,其中传输自多个车辆车轮通信设备的信号可以没有干扰的被接收并处理。
此外,根据日本实用新型公开JP U H5-13802公开的轮胎气压报警系统,对每个车辆车轮使用不同的质数周期由车辆车轮通信设备来完成信号传输。但是,使用此方法,如果增加了车辆车轮通信设备的数量,则传输周期变长,这会导致可获得的信息量的改变。

发明内容
本发明的目的是提供一种车辆车轮信息处理技术,其可准确地接收来自多个车辆车轮通信设备的车辆车轮信息。
根据本发明的第一方面的车辆车轮信息处理设备包括多个车辆车轮通信设备,其设置于单个车辆车轮;及车体通信设备,其与所述多个车辆车轮通信设备进行通信。根据第一方面,传输自每个所述车辆车轮通信设备的信号的传输模式被设置为不同于传输自每个其他所述车辆车轮通信设备的信号的传输模式。
此外,所述多个车辆车轮通信设备传输所述各个信号作为响应于来自所述车体通信设备的请求信号的各个反馈信号。此外,检测单个车辆车轮的车辆车轮状态值的多个传感器可以设置在单个车辆车轮中,使得传感器分别连接至车体通信设备。通过此结构,车体通信设备可以使用请求信号由每个传感器请求输出值等,且每个传感器的输出值都可由车辆车轮通信设备传输。由此,可以避免车辆车轮通信设备的反馈信号的信号干扰,且由此车体通信设备可准确地获得来自车辆车轮通信设备的车辆车轮信息。
根据本发明的第二方面的车辆车轮信息处理设备包括多个车辆车轮通信设备,其设置于单个的车辆车轮;及车体通信设备,其与所述多个车辆车轮通信设备进行通信。根据第二方面,每个所述车辆车轮通信设备都具有不同于每个其他所述车辆车轮通信设备的识别数的识别数。所述车体通信设备传输包括至少一个所述识别数的请求信号至所述车辆车轮通信设备。然后,相应的,在其单独的识别数被包括在所述接收到的请求信号中的情况下,每个车辆车轮通信设备都被配置为传输反馈信号至所述车体通信设备。由此,通过此配置,车体通信设备可确定作为通信目标的车辆车轮通信设备,并从所确定的车辆车轮通信设备获得车辆车轮信息。
根据本发明的第三方面的车辆车轮信息处理设备包括多个车辆车轮通信设备,其设置于单个车辆车轮;及车体通信设备,其与所述多个车辆车轮通信设备的至少一个进行通信。多个车辆车轮通信设备包括(i)直接与所述车体通信设备通信的第一车辆车轮通信设备,以及(ii)使用所述第一车辆车轮通信设备作为中继,间接与所述车体通信设备通信的第二车辆车轮通信设备。
根据本发明的第四方面的车辆车轮信息处理方法是用于接收并处理来自设置于单个车轮的多个车辆车轮通信设备的车辆车轮信息的方法。该方法包括第一步骤,其中使用对于每个所述车辆车轮通信设备都不同的传输模式,每个所述车辆车轮通信设备各自的信号都被传输至车体通信设备。此外,该方法还包括第二步骤,其中传输自每个所述车辆车轮通信设备的所述各个信号都由所述车体通信设备接收。
该方法还可以包括第三步骤,其中来自所述车体通信设备的请求信号被传输至所述车辆车轮通信设备。此外,每个所述车辆车轮通信设备都可以响应于所述请求信号传输所述信号。
根据本发明的第五方面的车辆车轮信息处理方法是用于接收并处理来自设置于单个车轮的多个车辆车轮通信设备的车辆车轮信息的方法。该方法包括第一步骤,其中包括至少一个所述车辆车轮通信设备的至少一个识别数的请求信号从所述车体通信设备传输至所述车辆车轮通信设备。此外,该方法还包括第二步骤,其中所述车体通信设备接收来自其识别数被包括在所述请求信号中的所述车辆车轮通信设备的至少一个反馈信号。
根据本发明的第六方面的车辆车轮信息处理方法是用于接收并处理来自设置于单个车轮的多个车辆车轮通信设备的车辆车轮信息的方法。该方法包括第一步骤,其中包含在所述多个车辆车轮通信设备中的第一车辆车轮通信设备传输信号至车体通信设备;第二步骤,其中第二车辆车轮通信设备传输信号至所述第一车辆车轮通信设备;及第三步骤,其中所述第一车辆通信设备转发接收自所述第二车辆车轮通信设备的所述信号至所述车体通信设备。
需注意,上述描述中所使用的术语“识别数”用来指数字或编码两者。
根据本发明的车辆车轮信息处理设备及方法,在避免了信号之间干扰的同时,车体通信设备可准确的获得所需的车辆车轮信息。


参考附图,通过对优选实施例的下述描述将使本发明的上述及其他目的、特征及优点变得清楚,其中使用相似的数字来表示相似的组件,其中图1示出了设置有根据本发明的第一实施例的车辆车轮信息处理设备的车辆的整体结构;图2示出了设置于图1所示的轮胎的多个传感器的各个附装位置;图3A至3C说明了一个过程,其中响应于指定了传感器并由图2所示的车体通信设备传输的请求信号,该传感器传输反馈信号;图4A至4C说明了一个过程,其中响应于由图2所示的车体通信设备传输的请求信号,多个传感器以相互不同的传输开始时间传输各自的反馈信号;图5A至5C说明了一个过程,其中响应于由图2所示的车体通信设备传输的请求信号,多个传感器以相互不同的传输周期传输各自的反馈信号;图6A至6C说明了一个过程,其中响应于由图2所示的车体通信设备传输的请求信号,多个传感器以随机的传输间隔传输各自的反馈信号;图7是说明性示图,示出了在根据本发明的第二实施例的车体通信设备与多个传感器之间如何进行通信;图8是图7所示的车体通信设备及多个传感器的通信过程的说明性示图;及图9是说明性示图,示出了车体通信设备及多个传感器的另一通信模式。
具体实施例方式
第一实施例图1示出了设置有根据本发明的第一实施例的车辆车轮信息处理设备的车辆10的整体结构。车辆10包括四个车辆车轮20a至20d以及车体12。车辆车轮20a至20d设置有(i)检测各个车辆车轮状态值的各个传感器30a至30d;(ii)传输相关于检测到的车辆车轮状态值的信息(以下简称为“车辆车轮信息”)至车体12的各个通信设备40a至40d;以及(iii)用于通信的各个通信天线50a至50d。此外,车体12包括(i)接收来自各个车辆车轮20a至20d的车辆车轮信息的车体通信设备200a至200d;(ii)用于通信的各个通信天线210a至210d;(iii)进行车辆10的整体控制的电子控制单元(以下称为“ECU”)64;(iv)初始化开关68;(v)报警蜂鸣器70;以及(vi)报警灯72。为了简化以下说明,将省去例如车轮20a至20d的每个结构元件的参考标号a至d。由此,整体上,将对单独一个车轮20的结构进行说明。
包括在车轮20中的多个传感器30传输各自的传感器输出值至通信设备40。然后这些传感器输出值经由天线50被无线传输至车体通信设备200。需注意,通信设备40及天线50可以结合在传感器30中。
车体通信设备200经由天线210(其设置在车辆车轮20附近)接收来自通信设备40的车辆车轮信息,然后传输接收到的车辆车轮信息至ECU64。然后ECU64基于接收自车体通信设备200的车辆车轮信息来确定车辆车轮20的状态。然后,例如如果车辆车轮20的轮胎温度高于预定值,或者如果车辆车轮20的轮胎气压低于预定值,则报警灯72发光或蜂鸣器70发出警报,以通知驾驶员车辆车轮20的状态异常。
ECU64包括存储部分,其存储设置在车轮20中的多个传感器30的各自的附装位置信息及识别信息(其例如可包括数字及识别码)。当车辆10的发动机(未示出)启动时,车体通信设备200接收来自车辆车轮20的多个传感器30的每个的识别信息。然后,ECU64适当地更新存储在存储部分中的识别信息。需注意,当旋转或替换车辆车轮20时,由驾驶员按下初始化开关68。当按下初始化开关68时,进行控制使得每个车体通信设备200都接收一个信号,该信号包括来自设置在车轮20中对应于车体通信设备200的位置处的传感器30的识别信息。由此,ECU64更新存储在存储部分中的涉及传感器30的附装位置信息及识别信息。在按下初始化开关68后,该信息基于由车体通信设备200从每个车辆车轮20接收到的车辆车轮信息而更新。
图2是车辆车轮20的截面图,说明了多个传感器30的各个附装位置及结构,如图1所示该多个传感器30设置于车辆车轮20。车辆车轮20包括轮胎21、车轮22及轮辋26。车轮侧传感器31装配至车轮22的气门24以与其成为一体。此外,轮胎侧传感器32嵌入轮胎胎面28。车轮侧传感器31是多功能传感器,其包括检测轮胎21的气压的气压传感器,以及检测轮胎21内气体温度的温度传感器。轮胎侧传感器32是检测轮胎胎面28的温度的温度传感器。由此,在此示例中,以车轮侧传感器31及轮胎侧传感器32的形式设置了两个传感器30。但是,本发明不限于传感器30设置于车辆车轮20的车轮侧及轮胎侧两者的结构。由此,可以将多个传感器30例如全部设置在车轮侧上或全部设置在轮胎侧上。如图1所示,车轮侧传感器31及轮胎侧传感器32分别包括传感器30、通信设备40以及天线50,并经由天线50与车体12的车体通信设备200无线通信。
车体通信设备200将请求信号传输至车轮侧传感器31及轮胎侧传感器32。当车轮侧传感器31及轮胎侧传感器32接收此请求信号时,合适的答复被回传至车体通信设备200。需注意,在车体通信设备200与车轮侧传感器31之间以及车体通信设备200与轮胎侧传感器32之间进行双向通信。此双向通信利用低频段。
当使用低频段进行无线通信时,通常交换信号而不附加表明通信源及通信目标的识别信息。这是因为当通信范围较短时不太可能发生与其他信号的干扰。但是,在此实施例中,车轮侧传感器31及轮胎侧传感器32和设置在车辆车轮20附近的车体通信设备200在较短的范围上进行无线通信。对于此结构,如果不将识别信息包括在通信信号中以允许区分各个信号,则如果车轮侧传感器31与轮胎侧传感器32各自的通信信号的传输时间相互重叠,就可能会发生信号干扰。
需注意,尽管通信范围较短,但是将存在在四个车轮20a至20d之间产生信号干扰的微小的可能性。即,由设置在右前车轮20a附近的车体通信设备200来接收来自左前车轮20b的传感器30的传输信号是可能的。但是,即使在车轮20a至20d之间发生了信号干扰,基于对一个请求信号的答复数量的不同,以及接收到的信号的强度的不同,由任一车轮的车体通信设备200区分已经由车体通信设备200接收到的信号是来自其自身或另一车轮也是可能的。由此,以下将给出通信过程的说明,该通信过程使得车体通信设备200、车轮侧传感器31以及轮胎侧传感器32防止在相同车轮20内的信号干扰。
图3A至3C说明了当车体通信设备200使用识别信息表明通信目标时,车体通信设备200、车轮侧传感器31以及轮胎侧传感器32的通信过程。如图3A所示,在时间t0,车体通信设备200传输请求信号100(其表明了车轮侧传感器31的识别信息)至车轮侧传感器31及轮胎侧传感器32。然后,在时间t1,车轮侧传感器31及轮胎侧传感器32接收传输自车体通信设备200的请求信号100。因为由车轮侧传感器31接收到的请求信号100包括表明车轮侧传感器31自身的识别信息(以下,表明任何特定传感器的识别信息将称为“自识别识别信息”),如图3B所示车轮侧传感器31传输反馈信号110至车体通信设备200。即,车体通信设备向多个车辆车轮通信设备传输包括多个车辆车轮通信设备中的一个的识别信号的请求信号。在多个车辆车轮通信设备中,仅具有与包括在所接收到的信号中的识别信息相同的识别信息的车辆车轮通信设备输出反馈信号。另一方面,因为由轮胎侧传感器32接收到的请求信号100不包括此自识别识别信息,故如图3C所示轮胎侧传感器32没有发出回复。
这样,车体通信设备200将表明设置在一个车轮20中的多个传感器30中的一个的识别信息附加至请求信号100。这样,通过向多个传感器30的每一个都发出相同的请求信号100,车体通信设备200就可选择一个传感器30作为通信目标。由此,可以避免信号干扰。
图4A至4C说明了其中响应于来自车体通信设备200的请求信号100,对车轮侧传感器31及轮胎侧传感器32设置不同的各自反馈信号的传输开始时间的通信过程。如图4A所示,在时间t0,车体通信设备200传输请求信号100至车轮侧传感器31及轮胎侧传感器32。在此示例中,车体通信设备200没有特别选择车轮侧传感器31或轮胎侧传感器32。而是,车体通信设备200传输请求信号100至传感器31及32两者,并请求传感器31及32传输其各自的检测值。
在时间t1,车轮侧传感器31及轮胎侧传感器32从车体通信设备200接收请求信号100。然后,如图4B所示,车轮侧传感器31将反馈信号110的传输开始时间设置为在当接收到请求信号100的时间t1之后经过期间T1的时间。另一方面,如图4C所示,轮胎侧传感器32将反馈信号120的传输开始时间设置为在当接收到请求信号100的时间t1之后经过期间T2的时间。由此,轮胎侧传感器32的反馈信号110的传输开始时间被延迟使得其晚于车轮侧传感器31的反馈信号的传输开始时间。
作为以此方式错开传输开始时间的结果,车轮侧传感器31及轮胎侧传感器32的各自的反馈信号110及120的传输时间相互不重叠。由此避免了信号干扰。车体通信设备200可以可靠地接收来自车轮侧传感器31及轮胎侧传感器32各自的反馈信号110及120而不会被信号干扰所影响。此外,对于两个反馈信号110及120各自的传输开始时间,经过的时间T1和T2被设置成不相同。由此,车体通信设备200可以区分两个反馈信号110及120。
图5A至5C说明了其中响应于来自车体通信设备200的请求信号100,对车轮侧传感器31及轮胎侧传感器32设置不同的各自反馈信号的传输周期的通信过程。如图5A所示,在时间t0,车体通信设备200传输请求信号100至车轮侧传感器31及轮胎侧传感器32。然后,在时间t1,车轮侧传感器31及轮胎侧传感器32接收传输自车体通信设备200的请求信号100。如图5B所示,车轮侧传感器31在传输周期S1传输反馈信号110。此外,轮胎侧传感器32在传输周期S2传输反馈信号120。
车轮侧传感器31及轮胎侧传感器32的各自的反馈信号110及120的传输周期,即有间隔S1及S2的时间模式被设置成不相同。由此,如图5B和5C所示,在各个信号的传输之间产生时间差,由此避免了反馈信号110及120的信号干扰。由此,车体通信设备200基于各自的传输周期S1及S2可以区分车轮侧传感器31及轮胎侧传感器32各自的反馈信号110及120。
图6A至6C说明了其中响应于来自车体通信设备200的请求信号100,反馈信号的各自的传输间隔被随机设置的通信过程。如图6A所示,在时间t0,车体通信设备200传输请求信号100至车轮侧传感器31及轮胎侧传感器32。在时间t1,车轮侧传感器31及轮胎侧传感器32从车体通信设备200接收请求信号100。然后,如图6B所示,车轮侧传感器31以各个随机的传输间隔R1及R2传输反馈信号110多次。此外,如图6C所示轮胎侧传感器32以各个随机的传输间隔R3及R4传输反馈信号120多次。
车轮侧传感器31及轮胎侧传感器32的反馈信号110及120的各自的传输间隔被随机设置。当然,有反馈信号110及120的传输时间相重叠的可能。但是,如图6B及6C所示,两个反馈信号110及120传输多次,且车轮侧传感器31的反馈信号110的传输间隔R1及R2与轮胎侧传感器32的反馈信号120的传输间隔R3及R4不相同。由此,在被传输多次的两个反馈信号110及120的各自的传输时间上产生了差异,由此可以避免传输时间上的重叠。由此避免了信号干扰。车轮侧传感器31的反馈信号110及轮胎侧传感器32的反馈信号120还可包括相互不同的数据形式。例如,数据的位长可以不相同。由此,车体通信设备200可基于数据形式的不同区分车轮侧传感器31及轮胎侧传感器32各自的反馈信号110及120。
如上所述,车轮侧传感器31及轮胎侧传感器32各自的反馈信号110及120具有相互设置为不同的传输模式。由此,车体通信设备200可以接收两个反馈信号110及120而不会产生信号干扰,而且也可基于传输模式区分两个反馈信号110及120。由此,不需要车轮侧传感器31及轮胎侧传感器32附加传感器识别信息至传输信号,且可使用简单的过程避免信号干扰。
第二实施例第二实施例具有与第一实施例相同的结构,但是用于多个传感器30与车体通信设备200之间的通信过程不相同。图7是说明性示图,示出了在第二实施例中在车轮侧传感器31、轮胎侧传感器32及车体通信设备200之间是如何进行通信的。根据本发明的此实施例,轮胎侧传感器32没有直接与车体通信设备200通信。而是,轮胎侧传感器32附加自识别识别信息至其输出信号,并无线传输信号至车轮侧传感器31。当车轮侧传感器31接收来自轮胎侧传感器32的输出信号时,其转发输出信号至车体通信设备200。此外,车轮侧传感器31附加自识别识别信息至其自身的输出信号,并直接传输此输出信号至车体通信设备200。基于分别设置附加至其的识别信息,车体通信设备200可以区分直接接收自车轮侧传感器31的车轮侧传感器31的输出信号及经由车轮侧传感器31间接接收的轮胎侧传感器32的输出信号。
图8是用于车体通信设备200、车轮侧传感器31及轮胎侧传感器32的通信过程的说明性示图。在步骤S10中,车体通信设备200传输请求信号至车轮侧传感器31。然后,在步骤S12中,车轮侧传感器31附加自识别识别信息至请求信号,并将其传输至车体通信设备200。
在步骤S14中,车轮侧传感器31转发来自车体通信设备200的请求信号至轮胎侧传感器32。然后,在步骤S16中,轮胎侧传感器32传输附加有自识别识别信息的反馈信号至车轮侧传感器31。然后在步骤S18中,车轮侧传感器31转发接收自轮胎侧传感器32的反馈信号至车体通信设备200。
在上述过程中,在步骤S 12中,车轮侧传感器31传输其自身的反馈信号至车体通信设备200。但是,可以改变该过程。例如,可以省去步骤S12,且在步骤S18中,车轮侧传感器31可以将轮胎侧传感器32的反馈信号与其自身的反馈信号一起传输至车体通信设备200。
在此实施例中,车轮侧传感器31起轮胎侧传感器32的通信的中继的作用。由此,车轮侧传感器31的反馈信号及轮胎侧传感器32的反馈信号的传输时间不会相互重叠。即,车体通信设备200仅接收来自车轮侧传感器31的反馈信号。由此,基本上不会产生信号干扰。因为轮胎侧传感器32与车轮侧传感器31进行较短范围的无线通信,相较于当轮胎侧传感器32与在车体12侧上的车体通信设备200通信的情况,通信范围较短。由此,可以用最小的电能来进行通信。由此,例如,在轮胎侧传感器32是由电池驱动的情况下,可以保持电池的能量消耗在较低的级别。此外,车轮侧传感器31比轮胎侧传感器32更接近车轮20的轴定位。由此,当通过此实施例的结构车轮侧传感器31起中继的作用时(相较于如果轮胎侧传感器32起中继的作用),可以可靠地进行中继与车体通信设备200之间的通信。
需注意,在步骤S16中,轮胎侧传感器32使用短范围无线通信传输反馈信号至车轮侧传感器31。但是,可以想到轮胎侧传感器32的传输信号可以经由天线210到达车体通信设备200。由此,有以下可能性,即由于车体通信设备200接收轮胎侧传感器32的传输信号及车轮侧传感器31的传输信号可能导致信号干扰。为了解决此问题,如上述第一实施例,车轮侧传感器31及轮胎侧传感器32各自的反馈信号的传输模式可以设置成相互不同,由此可以避免在车体通信设备200中的信号干扰。例如,相较于车轮侧传感器31,轮胎侧传感器32可以以不同的传输频率传输信号。由此,车体通信设备200可以区分已经接收到的信号是来自车轮侧传感器31或是来自轮胎侧传感器32。
图9是说明性示图,示出了可以进行车体通信设备200、车轮侧传感器31及轮胎侧传感器32的通信的另一模式。在图7的结构中,轮胎侧传感器32及车轮侧传感器31进行双向无线通信。但是,在图9的结构中,轮胎侧传感器32及车轮侧传感器31由连接线缆33连接,且轮胎侧传感器32的输出信号由线缆传输至车轮侧传感器31。但是,除了轮胎侧传感器32与车轮侧传感器31之间的通信是有线而非无线进行的,所使用的通信过程与图8中的都相同。通过此改变的形式,轮胎侧传感器32不需要通信设备40或天线50。由此,可以减少轮胎侧传感器32的成本。需注意,因为当更换轮胎21时,轮胎侧传感器32与轮胎21一起丢弃,故此轮胎侧传感器32的成本减少特别重要。
以上,已参考不同的实施例对本发明进行了说明。但是,上述实施例仅是示例,且对本领域的技术人员来讲不脱离本发明的范围进行其他的改变是明了的。这些可能的不同的改变将在以下说明。
车辆车轮侧上的通信设备40可以是发射机应答器,其中电源的电能根据来自车体通信设备200的无线电波来供应。此外,通信设备40可以是电池驱动并包括内建电池。在上述结构中,在车辆车轮侧上的通信设备40与车体通信设备200之间进行双向通信。此外,通信设备40响应于来自车体通信设备200的请求信号传输反馈信号。但是,该结构可以是在车辆车轮侧上的通信设备40仅具有传输功能,且车体通信设备200仅具有接收功能。在此情况下,通信过程可以改变为传感器30的检测值从通信设备40有规律地传输至车体通信设备200。例如,如图5A至5C所示,车轮侧传感器31的传输周期可与轮胎侧传感器32的传输周期不相同。而且,如图6A至6C所示,车轮侧传感器31及轮胎侧传感器32中的每个都可以以随机的间隔传输信号。
根据所示出的实施例,分别地实现车辆车轮的传感器与分离的各个车体通信设备的通信。但是,需注意,车体通信设备200a至200d可压缩至其中信号集中处理的单个车体通信设备。
根据第一及第二实施例,作为设置于车辆车轮20的多个传感器30的示例,已描述了其中车轮侧传感器31设置于车轮22的气门24且轮胎侧传感器32设置于轮胎胎面28的结构。但是,这仅是可以附装传感器的一个示例。当然也可想到其他附装位置,例如传感器可设置在车轮22的轮辋26。此外,传感器的类型不限于气压传感器及温度传感器。也可使用各种其他类型的检测各个车辆车轮状态值的传感器,例如速度传感器、加速度传感器等等。
根据第一及第二实施例,基于传输开始时间、传输周期、数据形式、识别信息等的不同,车体通信设备200可区分车轮侧传感器31的反馈信号及轮胎侧传感器32的反馈信号。但是,如果不能使用这些参数中的一个来区分信号,则ECU64可通过分析接收自车体通信设备200的信号来确定特定信号是来自车轮侧传感器31或是来自轮胎侧传感器32。
例如,如果车轮侧传感器31及轮胎侧传感器32两者皆为具有相同数据形式的温度传感器,则不能使用各自的数据形式来区分他们。但是,因为初始化开关68已按下,基于接收自温度传感器的信号,ECU64可监测已经产生的温度变化。利用此信息,ECU64可确定接收到的显示较大温度升高的信号是来自轮胎侧传感器32的信号。此确定是基于轮胎侧传感器32检测轮胎胎面28的温度,而车轮侧传感器31检测轮胎21中气体温度的事实。由此,可以确定接收到的有较大温度升高的信号是轮胎侧传感器32的信号,因为在运行期间轮胎胎面28相较于轮胎21中的气体具有较大的温度升高。
此外,如果为轮胎侧及车轮侧两者都设置加速度传感器,则轮胎侧的加速度传感器相较于车轮侧的加速度传感器输出较高频率。由此,ECU64可分析接收到的信号的频率,并区分来自轮胎侧加速度传感器的信号及来自车轮侧加速度传感器的信号。
这样,ECU64可分析从车体通信设备200获得的车辆车轮信息以获知车辆车轮20的多个传感器30的各个附装位置,并在存储部分中存储此信息。ECU64在诸如发动机启动时的惯常的时间分析车辆车轮信息,并检查传感器30的附装状态。如果附装状态有任何变化,则存储的数据被自动重新初始化。此外,在没有包括识别信息的请求信号由车体通信设备200传输至轮胎侧传感器32的情况下,当接收自轮胎侧传感器32的反馈信号包括不同于已存储在存储部分中的识别信息的识别信息时,或当反馈信号接收自处于车轮中不同于先前位置的位置处的轮胎侧传感器32时,ECU64确定已经发生了轮胎替换或轮胎旋转。由此,ECU64自动重新初始化所存储的数据。
如上述实施例中描述的,可以防止车体通信设备200同时接收来自设置在相同车轮中的多个传感器30的信号。即,可以防止信号干扰。特别是在上述实施例中,多个传感器30的传输周期不需要是相互不同的素数周期。由此,传输周期不需要很长。而且,即使当车体通信设备200偶然同时接收到来自多个传感器30的信号,也可以通过使用包括在每个信号中的识别信息或每个信号的传输周期,或通过分析每个信号来确定传输每个信号的传感器30。
权利要求
1.一种车辆车轮信息处理设备,包括多个车辆车轮通信设备,其设置于单个车辆车轮;及车体通信设备,其与所述多个车辆车轮通信设备进行通信,其中传输自每个所述车辆车轮通信设备的信号的传输模式被设置成不同于每个其他信号的传输模式。
2.如权利要求1所述的车辆车轮信息处理设备,其中所述多个车辆车轮通信设备传输所述各个信号作为响应于来自所述车体通信设备的请求信号的各个反馈信号。
3.如权利要求2所述的车辆车轮信息处理设备,其中响应于所述请求信号被传输的所述每个反馈信号的传输开始时间被设置成对于每个车辆车轮通信设备都不相同。
4.如权利要求2所述的车辆车轮信息处理设备,其中每个所述车辆车轮通信设备都多次传输所述反馈信号,且每个所述反馈信号的传输周期被设置成对于每个车辆车轮通信设备都不相同。
5.如权利要求2所述的车辆车轮信息处理设备,其中每个所述车辆车轮通信设备都多次传输所述反馈信号,且每个所述反馈信号的传输间隔都被随机设置,使得所述车辆车轮通信设备的各个所述传输间隔都相互不同。
6.如权利要求1至5任一项所述的车辆车轮信息处理设备,其中每个所述车辆车轮通信设备都传输所述信号至所述车体通信设备,每个所述信号都具有不同于传输自每个其他车辆车轮通信设备的所述信号的区分特征的区分特征。
7.如权利要求6所述的车辆车轮信息处理设备,其中所述区分特征是所述车辆车轮通信设备的单独识别数,每个所述车辆车轮通信设备各自的识别数都相互不同,且每个所述车辆车轮通信设备都传输包括其所述识别数的信号至所述车体通信设备。
8.如权利要求7所述的车辆车轮信息处理设备,其中所述车体通信设备传输包括至少一个所述识别数的请求信号至所述车辆车轮通信设备,且在其单独的识别数被包括在所述接收到的请求信号中的情况下,每个所述车辆车轮通信设备都被配置为传输反馈信号至所述车体通信设备,由此传输自每个所述车辆车轮通信设备的所述信号的所述传输模式都设置成不同于每个其他信号的传输模式。
9.如权利要求6所述的车辆车轮信息处理设备,其中所述区分特征是传输自每个所述车辆车轮通信设备的每个信号的数据形式,传输自每个所述车辆车轮通信设备的所述各个信号的所述数据形式相互不相同。
10.如权利要求6所述的车辆车轮信息处理设备,其中所述区分特征是传输自所述每个车辆车轮通信设备的每个信号值的量级,基于每个所述车辆车轮通信设备的附装位置,传输自所述每个车辆车轮通信设备的所述各个信号值的所述量级相互不同,且所述车体通信设备分析传输自所述各个车辆车轮通信设备的所述信号值,并基于所述分析确定哪个所述信号是已传输自哪个所述车辆车轮通信设备。
11.如权利要求10所述的车辆车轮信息处理设备,其中所述车体通信设备分析传输自所述每个车辆车轮通信设备的所述每个信号值的历史,并基于所述分析确定哪个所述信号是已传输自哪个所述车辆车轮通信设备。
12.如权利要求10所述的车辆车轮信息处理设备,其中所述车体通信设备分析传输自所述每个车辆车轮通信设备的所述每个信号值的所述量级,并基于所述分析确定哪个所述信号是已传输自哪个所述车辆车轮通信设备。
13.一种车辆车轮信息处理设备,包括多个车辆车轮通信设备,其设置于单个车辆车轮;及车体通信设备,其与所述多个车辆车轮通信设备进行通信,其中所述多个车辆车轮通信设备包括直接与所述车体通信设备通信的第一车辆车轮通信设备,以及使用所述第一车辆车轮通信设备作为中继,间接与所述车体通信设备通信的第二车辆车轮通信设备。
14.如权利要求13所述的车辆车轮信息处理设备,其中所述单个车轮设置有检测第一车辆车轮信息的第一检测传感器,以及检测第二车辆车轮信息的第二检测传感器,所述第一检测传感器被包括在所述第一车辆车轮通信设备中,且所述第二检测传感器被包括在所述第二车辆车轮通信设备中。
15.如权利要求14所述的车辆车轮信息处理设备,其中所述车体通信设备传输请求信号至所述第一车辆车轮通信设备,且响应于所述被传输的请求信号,所述第一车辆车轮通信设备(i)传输包括所述被检测的第一车辆车轮信息及所述第一车辆车轮通信设备的识别数的第一信号,并(ii)转发所述请求信号至所述第二车辆车轮通信设备,且响应于所述转发的请求信号,所述第二车辆车轮通信设备传输包括所述被检测的第二车辆车轮信息及所述第二车辆车轮通信设备的识别数的第二信号至所述第一车辆车轮通信设备,且所述第一车辆车轮通信设备传输来自所述第二车辆车轮通信设备的所述第二信号至所述车体通信设备。
16.如权利要求14或15所述的车辆车轮信息处理设备,其中所述第一车辆车轮信息是不同于所述第二车辆车轮信息的信息。
17.如权利要求14至16任一项所述的车辆车轮信息处理设备,其中所述第一车辆车轮通信设备包括用于传输所述被检测的第一车辆车轮信息至所述第二车辆车轮通信设备的通信线缆。
18.如权利要求13至17任一项所述的车辆车轮信息处理设备,其中所述车辆车轮包括车轮及附装至所述车轮的外周的轮胎,且所述第一及第二车辆车轮通信设备中的一个设置于所述车轮,且所述第一及第二车辆车轮通信设备中的另一个设置于所述轮胎。
19.如权利要求18所述的车辆车轮信息处理设备,其中所述第一车辆车轮通信设备设置于所述车轮,且所述第二车辆车轮通信设备设置于所述轮胎。
20.一种车辆车轮信息处理设备,包括多个车辆车轮通信设备,其设置于单个车辆车轮;及车体通信设备,其与所述多个车辆车轮通信设备进行通信,其中每个所述车辆车轮通信设备都包括不同于每个其他所述车辆车轮通信设备的识别数的识别数,所述车体通信设备传输包括至少一个所述识别数的请求信号至所述车辆车轮通信设备,且在其单独的识别数被包括在所述接收到的请求信号中的情况下,每个所述车辆车轮通信设备都被配置为传输反馈信号至所述车体通信设备。
21.一种车辆车轮信息处理方法,用于接收并处理来自设置于单个车轮的多个车辆车轮通信设备的车辆车轮信息,所述方法包括第一步骤,其中使用对于每个所述车辆车轮通信设备都不同的传输模式,每个所述车辆车轮通信设备各自的信号都被传输至车体通信设备;及第二步骤,其中传输自每个所述车辆车轮通信设备的所述各个信号都由所述车体通信设备接收。
22.如权利要求21所述的方法,还包括第三步骤,其中来自所述车体通信设备的请求信号被传输至所述车辆车轮通信设备,其中每个所述车辆车轮通信设备都响应于所述请求信号传输所述信号。
23.如权利要求21或22所述的方法,还包括第四步骤,其中基于所述各个传输模式,所述车体通信设备确定哪个所述信号已传输自哪个所述车辆车轮通信设备。
24.一种车辆车轮信息处理方法,用于接收并处理来自设置于单个车轮的多个车辆车轮通信设备的车辆车轮信息,所述方法包括第一步骤,其中包括至少一个所述车辆车轮通信设备的至少一个识别数的请求信号从所述车体通信设备传输至所述车辆车轮通信设备;及第二步骤,其中所述车体通信设备从其识别数被包括在所述请求信号中的所述车辆车轮通信设备接收至少一个反馈信号。
25.一种车辆车轮信息处理方法,用于接收并处理来自设置于单个车轮的多个车辆车轮通信设备的车辆车轮信息,所述方法包括第一步骤,其中第一车辆车轮通信设备传输信号至车体通信设备;第二步骤,其中第二车辆车轮通信设备传输信号至所述第一车辆车轮通信设备;及第三步骤,其中所述第一车辆车轮通信设备转发接收自所述第二车辆车轮通信设备的所述信号至所述车体通信设备。
全文摘要
本发明涉及一种车体通信设备(200),其传输请求信号至设置于车轮(22)的气门(24)中的车轮侧传感器(31)及嵌入轮胎胎面(28)的轮胎侧传感器(32)。当车轮侧传感器(31)及轮胎侧传感器(32)接收来自车体通信设备(200)的请求信号时,各个反馈信号被传输至车体通信设备(200)。各个传输模式被设置为不相同。
文档编号B60C23/04GK1784318SQ200480012488
公开日2006年6月7日 申请日期2004年9月23日 优先权日2003年9月25日
发明者小川敦司, 米谷正弘 申请人:丰田自动车株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1